Alzheimer’s disease (AD) is the most common age-related neurodegenerative disorder. Currently, 5.3 million individuals are afflicted with this insidious disorder, including over 588,000 in the State of California alone. Unfortunately, existing therapies provide only palliative relief. Although transgenic mouse models and cell culture experiments have contributed significantly to our understanding of the proteins and factors involved in the pathology of AD, these approaches are beset by certain critical limitations. Most notably, mouse models by definition are not based on human cells and cell culture models have been limited to non-human or non-neuronal cells. Hence, there is an urgent need to develop a human neuronal cell-based model of AD. To address this need, we have engineered human embryonic stem cell lines to overexpress mutant human genes that cause early-onset familial AD. These novel stem cell lines will provide a valuable system to test therapies and enhance our understanding of the mechanisms that mediate this devastating disease. Interestingly, we have found that overexpression of these AD-related genes can trigger the rapid differentiation of human embryonic stem cells into neuronal cells. We have examined the mechanisms involved and anticipate that our findings may provide a novel and rapid method to generate neurons from embryonic stem cells.