A comprehensive series of studies was undertaken to determine if/how stem cell transplantation could ameliorate the adverse effects of cranial irradiation, both at the cellular and cognitive levels. These studies are important since radiotherapy to the head remains the only tenable option for the control of primary and metastatic brain tumors. Unfortunately, a devastating side-effect of this treatment involves cognitive decline in ~50% of those patients surviving ≥ 18 months. Pediatric patients treated for brain tumors can lose up to 3 IQ points per year, making the use of irradiation particularly problematic for this patient class. Thus, the purpose of these studies was to determine whether cranial transplantation of stem cells could afford some relief from the cognitive declines typical in patients afflicted with brain tumors, and subjected to cranial radiotherapy. Human embryonic (hESCs) and neural (hNSCs) stem cells were implanted into the brain of rats following head only irradiation. At 1 and 4 months later, rats were tested for cognitive performance using a series of specialized tests designed to determine the extent of radiation injury and the extent that transplanted cells ameliorated any radiation-induced cognitive deficits. These cognitive tasks take advantage of the innate tendency of rats to explore novelty. Successful performance of this task has been shown to rely on intact spatial memory function, a brain function known to be adversely impacted by irradiation. Our data shows that irradiation elicits significant deficits in learning and spatial task recognition 1 and 4-months following irradiation. We have now demonstrated conclusively, and for the first time, that irradiated animals receiving targeted transplantation of hESCs or hNSCs 2-days after, show significant recovery of these radiation induced cognitive decrements. In sum, our data shows the capability of 2 stem cell types (hESC and hNSC) to improve radiation-induced cognitive dysfunction at 1 and 4 months post-grafting, and demonstrates that stem cell based therapies can be used to effectively to reduce a serious complication of cranial irradiation.