Human Stem Cell Use: iPS Cell


Bioengineering human stem cell-derived beta cell organoids to monitor cell health in real time and improve therapeutic outcomes in patients

Research Objective We will generate nanoprobe-containing stem cell-derived human beta cells that can be monitored in real time in response to inflammatory stress upon transplantation in patients with type 1 diabetes. Impact Our product will replace donor islets for cell replacement therapy in patients with type 1 diabetes, and will provide a readout of cell […]

Enabling non-genetic activity-driven maturation of iPSC-derived neurons

Research Objective We will empower stem cell biologists to generate iPSC-derived neurons faster and with enhanced maturation by enabling optical cell stimulation and triggering activity-dependent maturation processes Impact Our project will address such critical bottlenecks as insufficient maturity of iPSC-derived neurons that limits their utility in age-related neurological disorders that manifest later in life. Major […]

Developing gene therapy for dominant optic atrophy using human pluripotent stem cell-derived retinal organoid disease models

Research Objective We will develop a gene therapy for a major inherited optic nerve disease and test the effectiveness of the treatment by analyzing healthy and patient stem cell-derived mini human retinas. Impact The research will use stem cell-based methods to overcome the shortage of human retinal cells and establish disease models, thus allow testing […]

Novel antisense therapy to treat genetic forms of neurodevelopmental disease.

Research Objective We propose to discovery and evaluate antisense gene therapy for specific mutations underlying debilitating or life-threatening neurodevelopmental diseases including epilepsy and autism syndromes. Impact The conditions are four specific neurodevelopmental syndromes where mutations are well suited to ASO therapy. The bottlenecks are current lack of cellular evidence for ASOs to impact disease course. […]

Drug Development of Inhibitors of Inflammation Using Human iPSC-Derived Microglia (hiMG)

Research Objective We will screen for modifiers of the response to misfolded αSyn and Aβ, and their cognate antibodies. Development of drugs to combat this inflammation is important in neurodegenerative diseases. Impact Inhibiting the immune response to minimize NLRP3 inflammasome activation may prevent the neurotoxic effect of activated microglia, and attenuate disease progression in neurodegenerative […]

A new precision medicine based iPSC-derived model to study personalized intestinal fibrosis treatments in pediatric patients with Crohn’s disease

Research Objective We propose to discover a tool that will utilize patient specific iPSC-derived human mini-guts to identify personalized antifibrotic treatments in pediatric Crohn’s disease patients Impact The major bottleneck in intestinal fibrosis research is the difficulty in obtaining patient-specific biologically relevant cells for in vitro modeling. This iPSC-derived tool would overcome it. Major Proposed […]

AAV-dCas9 Epigenetic Editing for CDKL5 Deficiency Disorder

Research Objective We propose a gene therapy for the treatment of a severe infantile epilepsy called CDKL5 Deficiency Disorder using CRISPR-mediated epigenetic editing Impact A transformative treatment for females affected by CDKL5 Deficiency Disorder in addition a platform for the approximately 38 other X-linked intellectual disabilities that predominately affect females Major Proposed Activities Validation of […]

iPSC-derived smooth muscle cell progenitor conditioned medium for treatment of pelvic organ prolapse

Research Objective Conditioned media from human iPSC-derived smooth muscle cell progenitors. This media exerts paracrine effect to restore damaged vaginal wall in patients with pelvic organ prolapse. Impact Pelvic organ prolapse (POP) is characterized by the downward movement of the vagina and/or uterus through the vaginal opening. It is treated with surgery. The candidate is […]

iPSC Extracellular Vesicles for Diabetes Therapy

Research Objective We will derive extracellular vesicles (EVs) from induced pluripotent stem cells (iPSCs), characterize the content and immunomodulatory activity of EVs, and deliver iPSC-EVs to treat Type-1 diabetes. Impact Type 1 diabetes (T1D) is an autoimmune disease and there is no therapy to preserve islet cells. Accomplishment of this project will generate a new […]

RNA-directed therapy for Huntington’s disease

Research Objective We develop a novel adeno-associated viral (AAV) vector-delivered RNA-targeting therapeutic for elimination of toxic RNA causative of Huntington’s disease. Impact There are no disease-modifying therapies for Huntington’s disease. Our therapeutic, if successful, will be a first-in-class treatment for this invariably fatal neurodegenerative disorder. Major Proposed Activities In vitro studies of the RNA-targeting system […]