Human Stem Cell Use: Embryonic Stem Cell

Programs of alternative splicing regulation by polypyrimidine tract binding protein

The therapeutic promise of stem cell biology lies in its potential for cell replacement therapies in diseases where an essential cell type of the patient malfunctions or degenerates. This is particularly evident in diseases of the nervous system where cells largely lose their ability to proliferate and thus regenerate after embryonic differentiation. Devastating neurodegenerative disorders, […]

RUNX1 in maintenance, expansion, and differentiation of therapeutic pluripotent stem cells

Recent technical advancements in human embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) production have revolutionized their potential applications in regenerative medicine. However, a remaining big hurdle in this process is the need for efficient, effective, and stable generation of specific cell types from such stem cells for therapeutic usage. The ultimate goal […]

TCF-3: A Wnt Pathway Effector and Nanog Regulator in Pluripotent Stem Cell Self-Renewal

Despite the enormous potential for human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) for development of new treatments for human disease, there still remain important gaps in our knowledge about the molecular mechanisms regulating establishment and maintenance of the pluripotent state. Improved understanding of fundamental mechanisms regulating pluripotency could improve the […]

Systemic Protein Factors as Modulators of the Aging Neurogenic Niche

Approaches to repair the injured brain or even prevent age-related neurodegeneration are in their infancy but there is growing interest in the role of neural stem cells in these conditions. Indeed, there is hope that some day stem cells can be used for the treatment of spinal cord injury, stroke, or Parkinson’s disease and stem […]

The EphrinB2/EphB4 axis in regulating hESC pluripotency and differentiation

Human embryonic stem cells (hESC) have an inexhaustible ability to divide and renew, and under the appropriate conditions, differentiate and change into any cell type in the body. This balance between pluripotency and self-renewal is a complex and carefully choreographed response of the hESC to local microenvironmental cues. Understanding the molecular regulators of this balance, […]

Differentiation of Human Embryonic Stem Cells into Urothelium

Augmentation or replacement of the bladder is often necessary for the treatment of adults with bladder cancer and children with spinal cord injury or spina bifida. Current surgical techniques utilize segments of intestine or stomach as a substitute for bladder wall. Use of intestinal segments is associated with many complications including infection, stones, salt imbalance, […]

Novel Mechanism in Self-Renewal/Differentiation of Human Embryonic Stem Cells

The most prominent feature of the stem cell is its pluripotent capacity to differentiate into various types of cells. The importance of the orchestrated interplay between molecular regulators has been demonstrated in the maintenance of self-renewing pluripotent property or the initiation of differentiation. Advance in the generation of the induced pluripotent stem cells (iPSCs) have […]

The function of YAP in human embryonic stem cells

Embryonic stem cells have the potential to generate all tissue types that could be used for regenerative medicine, such as replacement of damaged neurons, replenish of insulin secreting beta cells, or generation of blood cells. The discovery of in vitro reprogramming of somatic cells (normal cells in our body) into induced pluripotent stem cells (iPS, […]

MGE Enhancers to Select for Interneuron Precursors Produced from Human ES Cells

There are now viable experimental approaches to elucidate the genetic and molecular mechanisms that underlie severe brain disorders through the generation of stem cells, called iPS cells, from the skin of patients. Scientists are now challenged to develop methods to program iPS cells to become the specific types of brain cells that are most relevant […]

Endothelial cells and ion channel maturation of human stem cell-derived cardiomyocytes

Cardiovascular diseases remain the major cause of death in the western world. Stem and progenitor cell-derived cardiomyocytes (SPC-CMs) hold great promise for myocardial repairs. However, most SPC-CMs displayed heterogeneous and immature electrophysiological (EP) phenotypes with variable automaticity. Implanting these electrically immature and inhomogeneous CMs into hearts might carry arrhythmogenic risks. Human embryonic stem cell-derived cardiomyocytes […]