Human Stem Cell Use: Embryonic Stem Cell

Reprogramming of human somatic cells back to pluripotent embryonic stem cells

The ability to dedifferentiate or reverse lineage-committed cells to pluripotent/multipotent cells might overcome many of the obstacles (e.g. cell sources, immunocompatibility and bioethical concerns) associated with using other ES and adult stem cells in clinical applications. With an efficient dedifferentiation process, it is conceivable that healthy, abundant and easily accessible somatic cells could be reprogrammed […]

Bioengineering technology for fast optical control of differentiation and function in stem cells and stem cell progeny

Embryonic stem (ES) cells potentially could provide clinically important replacement tissue for central nervous system (CNS) disease treatment, and regenerative medicine approaches involving ES cells have been suggested for common CNS disorders. But it has been difficult to produce the right kind of replacement tissues from ES cells because the “differentiation”, or cell-type specification process, […]

Noncoding RNAs in Cell Fate Determination

The human body is composed of thousands of cell types, which all came originally from embryonic stem cells. Although all these cell types have the same genetic blueprint, different genes are active in different cells in order to give each its distinctiveness. The process by which the genes remember whether they are in liver, brain, […]

Addressing the Cell Purity and Identity Bottleneck Through Generation and Expansion of Clonal Human Embryonic Progenitor Cell Lines

Human embryonic stem (hES) cells and induced pluripotent (iPS) cells, such as reprogrammed skin cells, offer the potential to revolutionize medicine because they can replicate indefinitely and become virtually any cell in the body. They therefore have the potential to provide a limitless source of cells to replace cells lost to injury (spinal cord, skin […]

In Utero Model to Assess the Fate of Transplanted Human Cells for Translational Research and Pediatric Therapies

nfants with inherited blood diseases (such as sickle cell anemia, thalassemia, bleeding disorders) or other inherited metabolic disorders can be identified early in development using sophisticated diagnostic tests. Currently, the treatment for many of these childhood illnesses may include bone marrow transplantation which is complicated by: (1) the toxicity associated with chemotherapy or radiation-based regimens […]

Developmental Candidates for Cell-Based Therapies for Parkinson’s Disease (PD)

Parkinson’s Disease (PD) is a devastating disorder, stealing vitality from vibrant, productive adults & draining our health care dollars. It is also an excellent model for studying other neurodegenerative conditions. We have discovered that human neural stem cells (hNSCs) may exert a significant beneficial impact in the most authentic, representative, & predictive animal model of […]

Maximizing the Safety of Induced Pluripotent Stem Cells as an Infusion Therapy: Limiting the Mutagenic Threat of Retroelement Retrotransposition during iPSC Generation, Expansion and Differentiation

The ability to convert human skin cells to induced pluripotent stem cells (IPSCs) represents a seminal break-through in stem cell biology. This advance effectively circumvents the problem of immune rejection because the patient’s own skin cells can be used to produce iPSCs. This exciting technology could accelerate treatments for a number of presently incurable diseases. […]

Ensuring the safety of cell therapy: a quality control pipeline for cell purification and validation

The clinical application of cell replacement therapy in the US is dependent on the FDA’s approval, and the primary objective of the FDA is to protect patients from unsafe drugs and procedures. The FDA has a specific mandate for human gene and cell therapy and since the unexpected deaths in early trials of gene therapy […]

Methods for detection and elimination of residual human embryonic stem cells in a differentiated cell product

Human embryonic stem cells (hESC), and other related pluripotent stem cells, have great potential as starting material for the manufacture of curative cell therapies. This is primarily for two reasons. First, by manipulating cues in their cell culture conditions, these cells can be directed to become essentially any desired human cell type (a property known […]

Stem Cell-Based Therapy for Cartilage Regeneration and Osteoarthritis

Arthritis is the result of degeneration of cartilage (the tissue lining the joints) and leads to pain and limitation of function. Arthritis and other rheumatic diseases are among the most common of all health conditions and are the number one cause of disability in the United States. The annual economic impact of arthritis in the […]