Human Stem Cell Use: Embryonic Stem Cell

Genomic instability during culturing of human embryonic stem cells

Human embryonic stem cells (hESCs) have important potential in the treatment of human disease. Because they can change into a large number of different cell types, they may be useful in restoring a variety of damaged tissues. One potentially harmful side effect of hESC therapy is cancer due to unregulated growth of the hESCs introduced […]

Generation and characterization of corticospinal neurons from human embryonic stem cells

A major goal of stem cell research is to generate various functional human cell types that can be used to better understand how these cells work and to use them directly in therapies. There are currently no effective treatments, let alone a cure, for many neurological conditions. Two particular devastating neurological conditions, spinal cord injury […]

Enhancer-mediated gene regulation during early human embryonic development

Less than 2% of the human genome encodes protein coding genes. But many trait-specific and disease specific mutations seem to map away from such coding sequences. This paradox is partially resolved by observation that some of the noncoding sequences are involved in regulation of when and where in the developing organism genes are to be […]

Molecular determinants of accurate differentiation from human pluripotent stem cells

The use of human pluripotent stem cells for cell-based therapeutics is predicated on the ability to convert these cells into functional equivalents of those lost in disease or injury. However, there is only scant evidence that either human embryonic stem cells or human induced pluripotent stem cells make differentiated progeny that are functionally equivalent to […]

Etsrp/ER71 mediated stem cell differentiation into vascular lineage

Human embryonic stem cells (hESC) have the potential to differentiate into all of the cell types that make up the body. Therefore, hESCs are promising tools for the treatment of degenerative diseases and for use in regenerative medicine. One highly desirable use of hESCs is to treat cardiovascular disease. Cardiovascular disease is a leading cause […]

Ubiquitin-dependent control of hESC self-renewal and expansion

Human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs) provide an invaluable resource for regenerative medicine and disease modeling. To be able to use these cells in the clinic, hESCs and iPSCs need to be expanded without introducing genetic instability. However, current protocols of hESC and iPSC propagation frequently result in aneuploidy, a […]

Forming the Hematopoietic Niche from Human Pluripotent Stem Cells

The clinical potential of pluripotent stem cells for use in regenerative medicine will be realized only when the process by which tissues are generated from these cells is significantly more efficient and controlled than is currently the case. Fundamental questions remain about the mechanisms by which pluripotent stem cells differentiate into mature tissue. The overall […]

Biological relevance of microRNAs in hESC differentiation to endocrine pancreas

There remains an urgent and critical need for a cell-based cure of diabetes, one of the most costly diseases in California. Islet transplantation with persistent immune suppression has shown promise in curing type 1 diabetes (TID). However, one major obstacle towards large scale implementation of this approach is the shortage of engraftable islets. Human ES […]

Homologous recombination in human pluripotent stem cells using adeno-associated virus.

Since their discovery in 1998, human embryonic stem cells (hESCs) have been considered to hold great potential for the treatment of many currently incurable diseases. Possibly the most exciting application of hESC in the clinic is in the arena of regenerative medicine where hESC-derived cell populations are used to replace diseased, damaged or dead tissues. […]

Cellular tools to study brain diseases affecting synaptic transmission

There is a group of brain diseases that are caused by functional abnormalities. The brains of patients afflicted with these diseases which include autism spectrum disorders, schizophrenia, depression, and mania and other psychiatric diseases have a normal appearance and show no structural changes. Neurons, the cellular units of the brain, function by making connections (or […]