Disease Focus: Immune Disease

Gene Correction of Autologous Hematopoietic Stem Cells in Artemis Deficient SCID

Artemis is a chemical in all cells in the body that is essential for the normal development of the immune system and repairing damaged DNA. Artemis deficiency (AD) causes Severe Combined Immunodeficiency (SCID-A), a “bubble baby” syndrome associated with increased sensitivity to radiation and chemotherapy. SCID-A is hard to treat with a bone marrow stem […]

A monoclonal antibody that depletes blood stem cells and enables chemotherapy free transplants

Successful stem cell therapy requires replacement of diseased or dysfunctional stem cells with healthy ones. These healthy stem cells can come from either a donor or can be stem cells that are modified by gene therapy techniques. One important step in this process of repair and replacement is to eliminate the existing diseased cells so […]

Development of RNA-based approaches to stem cell gene therapy for HIV

Despite significant advances in treatment and prevention programs, HIV infection with progression to Acquired Immunodeficiency Syndrome (AIDS) is still prevalent in California. The CDC Estimates >56,000 new cases of HIV infection each year in the US with over 148,000 cumulative cases reported in California alone (as of 2009). Multi-drug therapy has been helpful in reducing […]

Curing Hematological Diseases

The primary aim of this project is to develop treatments for incurable diseases of the blood and immune system. X-linked Severe Combined Immunodeficiency (X-SCID) and Fanconi anemia (FA) are two blood diseases where mutations in a single gene results in the disease. XSCID, more commonly known as the “bubble boy” disease, is characterized by a […]

Human Immune System Mouse models as preclinical platforms for stem cell derived grafts

A major obstacle to stem cell based therapies is the immune response of the patient to stem cell derived tissue, which can be recognized as foreign and attacked by the patient’s immune system. T cells orchestrate immune responses and are “educated” about self versus foreign in an organ called the thymus. It may be possible […]

Role of Innate Immunity in hematopoeitic stem cell-mediated allograft tolerance

The research proposed in this project has very high potential to identify new medications to boost the natural ability of stem cells to prevent rejection of transplanted organs. This is a very important goal, because patients that receive a life-saving transplanted organ must take toxic medications that increase their risk for cancer and serious infections. […]

Engineered immune tolerance by Stem Cell-derived thymic regeneration

Stem cell therapies have the potential to transform medicine by allowing the regeneration of tissues or organs damaged by disease or trauma. In order for stem cell therapies to proceed, it will be essential that the regulation of immune responses to the stem cell derived tissues be achieved. While the function of the immune system […]

Induction of immune tolerance to human embryonic stem cell-derived allografts

Human embryonic stem cells (hESCs) can undergo unlimited reproduction and retain the capability to differentiate into all cell types in the body. Therefore, as a renewable source of various cell types, hESCs hold great promise for human cell replacement therapy. Significant progress has been made in establishing the conditions to differentiate hESCs into cells of […]

Engineering Thymic Regeneration to Induce Tolerance

A healthy immune system produces T cells that can recognize and react against foreign molecules (antigens) to protect against infection, while leaving normal host cells with “self antigens” undamaged. All T cells are produced in the thymus from blood stem cells that migrate from the bone marrow. “Tolerant” T cells are those that have been […]

Application of Tolerogenic Dendritic Cells for Hematopoietic Stem Cell Transplantation

The immune system protects us from invading pathogens, but has to be kept in check to prevent harmful responses to our own tissues. Unique immune “suppressor” cells have been recently characterized that prevent harmful responses to our own cells and proteins. We have recently identified unique populations of white blood cells, called dendritic cells that […]