Embryonic stem cells repair heart damage in mice

Researchers at the Stanford University School of Medicine found that cells derived from human embryonic stem cells could repair damage in a mouse model of heart attack. The researchers first looked at which genes were active at every stage between the human embryonic stem cells and early heart muscle cells. The cells they implanted mirrored the genes that are active in the hearts of 20 week old fetal mice. After injecting the cells into the heart of a mouse with an induced heart attack, they found that the cells incorporated into the heart and significantly improved the heart's ability to pump blood. This work could lead to new stem cell-based therapies for repairing damaged heart tissue

PLoS ONE: October 22, 2008
CIRM funding: Joseph Wu (RS1-00322)

Related Information: Stanford Stem Cell Biology and Regenerative Medicine Institute, Wu bio

CIRM Stem Cell Blog

About this blog

CIRM's blog is intended to provide information about progress by CIRM grantees, highlight news in stem cell research, and comment on news and events that influence stem cell science whether it's in the U.S. or internationally.

Comment policy