Protein Flips Switch In Embryonic Stem Cell Growth

Researchers at the Burnham Institute for Medical Research and the Scripps Research Institute have found that a protein known to play an important role in maintaining mouse embryonic stem cells has a similarly crucial job in human embryonic stem cells. This protein, called Shp2, acts as a switch, telling the cells to either divide to make more of themselves – a process called self-renewal – or to mature into different cell types – called differentiation. Fine-tuning this balance between self-renewal and differentiation will be critical for developing new therapies based on embryonic stem cells. The cells need to self-renew in order to grow up enough cells to be therapeutically useful. Once researchers have sufficient cells, they need to switch the cells over to a state where they can mature into cell types such as nerves, retinal cells, or pancreatic islets that can be used to study or treat disease.

PLoS ONE: March 17, 2009
CIRM funding: Yuhong Pang (T2-00004)

Related Information: Press Release, Burnham Institute for Medical Research

CIRM Stem Cell Blog

About this blog

CIRM's blog is intended to provide information about progress by CIRM grantees, highlight news in stem cell research, and comment on news and events that influence stem cell science whether it's in the U.S. or internationally.

Comment policy