Light-Patterned RNA Interference of 3D-Cultured Human Embryonic Stem Cells.
Publication Year:
			2016
		PubMed ID:
			27787919
		Funding Grants:
			- Stem cell based treatment strategy for Age-related Macular Degeneration (AMD)
 - Phase 1 Safety Assessment of CPCB-RPE1, hESC-derived RPE Cell Coated Parylene Membrane Implants, in Patients with Advanced Dry Age Related Macular Degeneration
 - Stem cell based treatment strategy for Age-related Macular Degeneration (AMD)
 
Public Summary:
			A new method of spatially controlled gene regulation in 3D-cultured human embryonic stem cells is developed using hollow gold nanoshells (HGNs) and near-infrared (NIR) light. Targeted cell(s) are discriminated from neighboring cell(s) by focusing NIR light emitted from a two-photon microscope. Irradiation of cells that have internalized HGNs releases surface attached siRNAs and leads to concomitant gene downregulation.
		Scientific Abstract:
			A new method of spatially controlled gene regulation in 3D-cultured human embryonic stem cells is developed using hollow gold nanoshells (HGNs) and near-infrared (NIR) light. Targeted cell(s) are discriminated from neighboring cell(s) by focusing NIR light emitted from a two-photon microscope. Irradiation of cells that have internalized HGNs releases surface attached siRNAs and leads to concomitant gene downregulation.