The JAK inhibitor, Tofacitinib, Corrects the Overexpression of CEACAM6 and Limits Susceptibility to AIEC Caused by Reduced Activity of the IBD Associated Gene, PTPN2.

Return to Grants

Publication Year:
2024
Authors:
PubMed ID:
39399045
Public Summary:
BACKGROUND AND AIMS: A cohort of patients with inflammatory bowel disease (IBD) exhibit expansion of the gut pathobiont, adherent-invasive E. coli (AIEC). Loss of activity of the IBD susceptibility gene, protein tyrosine phosphatase type 2 (PTPN2), results in dysbiosis of the gut microbiota both in human subjects and mice. Further, constitutive Ptpn2 knock-out (Ptpn2-KO) mice display expansion of AIEC compared to wildtype littermates. CEACAM6, a host cell surface glycoprotein, is exploited by AIEC to attach to and enter intestinal epithelial cells (IECs). Here, we investigate the role of IEC-specific PTPN2 in restricting AIEC invasion. METHODS: Biopsies from IBD patients heterozygous (CT) or homozygous (CC) for the PTPN2 SNP (single nucleotide polymorphism) rs1893217 were processed for immunohistochemistry. HT-29 intestinal epithelial cells (IEC) were transfected with control shRNA (PTPN2-CTL), or a shRNA targeted towards PTPN2 (PTPN2-KD). The rs1893217 SNP was inserted (PTPN2-KI), or a complete knock-out of PTPN2 (PTPN2-KO) was generated, with CRISPR-Cas9 gene editing of Caco-2BBe IEC lines. Adherence and invasion assays were performed with either the human IBD AIEC isolate, LF82, or a novel fluorescent-tagged mouse adherent-invasive E. coli (mAIEC(red)) at multiplicity of infection (MOI) of 10. IL-6 and the pan-JAK inhibitor tofacitinib were administered to interrogate JAK-STAT signaling. Protein expression was determined by western blotting and densitometry. RESULTS: CEACAM6 expression was elevated (colon and ileum) in IBD patients carrying the PTPN2 rs1893217 SNP (CT, CC) compared to wildtype (TT) IBD patients. HT-29 and Caco-2BBe cell lines deficient in PTPN2 expressed significantly higher levels of CEACAM6. Further, PTPN2-KI and PTPN2-KO cell lines also displayed greater adherence and invasion by AIEC LF82 and higher mAIEC(red) invasion. CEACAM6 expression was further elevated after administration of IL-6 in PTPN2-deficient cell lines compared to untreated controls. Silencing of STAT1 and 3 partially reduced CEACAM6 protein expression. Tofacitinib significantly reduced the elevated CEACAM6 protein expression and the higher AIEC adherence and invasion in PTPN2-KI and PTPN2-KO cell lines compared to DMSO controls. CONCLUSION: Our findings highlight a crucial role for PTPN2 in restricting pathobiont entry into host cells. Our study also describes a role for the FDA-approved drug, tofacitinib (Xeljanz) in correcting the JAK-STAT-mediated over-expression of CEACAM6, used by pathobionts as an entry portal into host cells. These findings suggest a role for JAK-inhibitors in mitigating AIEC colonization in IBD-susceptible hosts.
Scientific Abstract:
BACKGROUND AND AIMS: A cohort of patients with inflammatory bowel disease (IBD) exhibit expansion of the gut pathobiont, adherent-invasive E. coli (AIEC). Loss of activity of the IBD susceptibility gene, protein tyrosine phosphatase type 2 (PTPN2), results in dysbiosis of the gut microbiota both in human subjects and mice. Further, constitutive Ptpn2 knock-out (Ptpn2-KO) mice display expansion of AIEC compared to wildtype littermates. CEACAM6, a host cell surface glycoprotein, is exploited by AIEC to attach to and enter intestinal epithelial cells (IECs). Here, we investigate the role of IEC-specific PTPN2 in restricting AIEC invasion. METHODS: Biopsies from IBD patients heterozygous (CT) or homozygous (CC) for the PTPN2 SNP (single nucleotide polymorphism) rs1893217 were processed for immunohistochemistry. HT-29 intestinal epithelial cells (IEC) were transfected with control shRNA (PTPN2-CTL), or a shRNA targeted towards PTPN2 (PTPN2-KD). The rs1893217 SNP was inserted (PTPN2-KI), or a complete knock-out of PTPN2 (PTPN2-KO) was generated, with CRISPR-Cas9 gene editing of Caco-2BBe IEC lines. Adherence and invasion assays were performed with either the human IBD AIEC isolate, LF82, or a novel fluorescent-tagged mouse adherent-invasive E. coli (mAIEC(red)) at multiplicity of infection (MOI) of 10. IL-6 and the pan-JAK inhibitor tofacitinib were administered to interrogate JAK-STAT signaling. Protein expression was determined by western blotting and densitometry. RESULTS: CEACAM6 expression was elevated (colon and ileum) in IBD patients carrying the PTPN2 rs1893217 SNP (CT, CC) compared to wildtype (TT) IBD patients. HT-29 and Caco-2BBe cell lines deficient in PTPN2 expressed significantly higher levels of CEACAM6. Further, PTPN2-KI and PTPN2-KO cell lines also displayed greater adherence and invasion by AIEC LF82 and higher mAIEC(red) invasion. CEACAM6 expression was further elevated after administration of IL-6 in PTPN2-deficient cell lines compared to untreated controls. Silencing of STAT1 and 3 partially reduced CEACAM6 protein expression. Tofacitinib significantly reduced the elevated CEACAM6 protein expression and the higher AIEC adherence and invasion in PTPN2-KI and PTPN2-KO cell lines compared to DMSO controls. CONCLUSION: Our findings highlight a crucial role for PTPN2 in restricting pathobiont entry into host cells. Our study also describes a role for the FDA-approved drug, tofacitinib (Xeljanz) in correcting the JAK-STAT-mediated over-expression of CEACAM6, used by pathobionts as an entry portal into host cells. These findings suggest a role for JAK-inhibitors in mitigating AIEC colonization in IBD-susceptible hosts.