Engineering Immunomodulatory Biomaterials to Drive Skin Wounds toward Regenerative Healing.

Return to Grants

Publication Year:
2023
Authors:
PubMed ID:
36123029
Public Summary:
The healing of human skin wounds is designed for a rapid fibroproliferative response at the expense of tissue complexity and is therefore prone to scar formation. Moreover, wound healing often goes awry when excessive inflammation leads to chronic nonhealing wounds or when excessive repair results in uncontrolled tissue fibrosis. The immune system plays a central role in orchestrating wound healing, and, thus, controlling immune cell activities holds great potential for reducing scars and enhancing regeneration. Biomaterial dressings directly interact with immune cells in the wound and have been shown to improve the repair process. A few studies have even shown that biomaterials can induce complete regeneration through mechanisms involving immune cells. Here, we review the role of the immune system in skin repair and regeneration and describe how advances in biomaterial research may uncover immunomodulatory elements to enhance fully functional skin regeneration.
Scientific Abstract:
The healing of human skin wounds is designed for a rapid fibroproliferative response at the expense of tissue complexity and is therefore prone to scar formation. Moreover, wound healing often goes awry when excessive inflammation leads to chronic nonhealing wounds or when excessive repair results in uncontrolled tissue fibrosis. The immune system plays a central role in orchestrating wound healing, and, thus, controlling immune cell activities holds great potential for reducing scars and enhancing regeneration. Biomaterial dressings directly interact with immune cells in the wound and have been shown to improve the repair process. A few studies have even shown that biomaterials can induce complete regeneration through mechanisms involving immune cells. Here, we review the role of the immune system in skin repair and regeneration and describe how advances in biomaterial research may uncover immunomodulatory elements to enhance fully functional skin regeneration.