Heart Disease

Support Cells Prevent Mature Heart from Repairing Damage

Researchers at the Gladstone Institute of Cardiovascular Disease may have discovered why developing heart muscles cells multiply in numbers while the adult counterparts do not. This finding could lead to therapies that roll back the clocks on heart muscle cells after injury such as a heart attack, allowing those cells to multiply and repair the damage. The researchers specifically looked at the role of cells called fibroblasts, which are packed in the heart amidst the muscle cells.

Genetic Factor Enables Immature Cells to Form Normal Heart Tissue

Researchers at the Gladstone Institute for Cardiovascular Disease found a genetic factor that helps in the earliest stages of heart development as the primitive tube loops around on itself and forms the separate chambers. This factor -- a short relative of DNA called microRNA -- has an identical counterpart in humans, leading the researchers to believe that their work in fish is likely to relate directly to human heart development.

Embryonic stem cells repair heart damage in mice

Researchers at the Stanford University School of Medicine found that cells derived from human embryonic stem cells could repair damage in a mouse model of heart attack. The researchers first looked at which genes were active at every stage between the human embryonic stem cells and early heart muscle cells. The cells they implanted mirrored the genes that are active in the hearts of 20 week old fetal mice.

Genetic Factor Influences Heart Muscle Formation from Embryonic Stem Cells

Researchers at the Gladstone Institute for Cardiovascular Disease discovered how two specific tiny genetic factors called microRNAs influence the differentiation of embryonic stem cells into heart muscle. They found that the factors not only drive the versatile cells to become heart, but also actively prevent them from becoming other tissue such as bone adding to their potential to make therapy more specific and targeted for patients.

Cell Stem Cell: March 6, 2008

Mutation Causing Cardiomyopathy Validated in Mouse Embryonic Stem Cells

Researchers at UC, Irvine used mouse embryonic stem cells to demonstrate that a specific mutation can cause cardiomyopathy, with a thickened heart wall, in the mouse. The team looked at the small DNA molecule located outside of the nucleus, so-called mitochondrial DNA, which we all inherit exclusively from our mothers. They also discovered that severe mutations in this mitochondrial DNA are readily eliminated from the mouse germ line in just four generations. They expect the method they used to become a robust research tool to study the impact of mutations on stem cells.

Pages

Subscribe to RSS - Heart Disease

© 2013 California Institute for Regenerative Medicine