Heart Disease

Coding Dimension ID: 
295
Coding Dimension path name: 
Heart Disease

Embryonic Stem Cell-Derived Therapies Targeting Cardiac Ischemic Disease

Funding Type: 
Comprehensive Grant
Grant Number: 
RC1-00124
ICOC Funds Committed: 
$2 524 617
Disease Focus: 
Heart Disease
Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Closed
Public Abstract: 
Statement of Benefit to California: 
Progress Report: 
  • Myocardial infarction can lead to death and disability with a 5-year death rate for congestive heart failure of 50%. It is estimated that cardiovascular disease is the leading cause of mortality and morbidity and is predicted to be the leading cause of death worldwide by 2020. Currently, heart transplantation is the only successful treatment for end-stage heart failure; however, the ability to provide this treatment is limited by the availability of donor hearts. Therefore, alternative therapies for both acute and chronic myocardial ischemia need to be developed.
  • Our results demonstrate that human embryonic stem cell (hESC)-derived hemangioblasts can create new blood vessels and improve blood flow in a rodent model of myocardial infarction. We demonstrated that adult stem cells (bone marrow CD34+ cells) can be successfully targeted to injured heart tissue, thus avoiding surgery or invasive catheter based therapies. The antibody technology can be used to target hESC-derived hemangioblasts specifically to injured heart tissue.
  • Further studies are needed to confirm our initial findings, determine whether the new blood vessel formation lead to an increase in heart function and safety studies. Studies are in progress to improve the efficiency and effectiveness of hESC-derived hemangioblasts to create new blood vessels. Additionally, investigations are underway to determine if immunosuppressive drugs will be necessary to increase survival of the hESC-derived hemangioblast. Our initial finding of hES-derived hemangioblasts inducing new blood vessel formation may eventually lead to the development of an unlimited and reliable cell source for renewing blood vessels and treating myocardial infarction.
  • Coronary artery disease (CAD) remains the leading cause of morbidity and mortality worldwide and is predicted to be the leading cause of death by 2020. In the US, it is estimated that cardiovascular disease affects 60 million patients costing the healthcare system approximately $186 billion annually. Approximately two-thirds of patients sustaining a myocardial infarction do not make a complete recovery and often are left with debilitating congestive heart failure. Despite the advances in medical treatment and interventional procedures to reduce mortality in patients with CAD, the number of patients with refractory myocardial ischemia and congestive heart failure is rapidly increasing. For end-stage heart failure, heart transplantation is the only successful treatment. However, the ability to provide this treatment is limited by the availability of donor hearts. Therefore, alternative therapies in the prevention and treatment of end-stage heart failure are needed.
  • Critical to any heart repair strategy is the need to provide vessels to allow for an adequate blood supply to nourish the heart. Our results demonstrate that human embryonic stem cell (hESC)-derived hemangioblasts can create new blood vessels and improve blood flow in a rodent model of myocardial infarction. Studies are in progress to improve the efficiency and effectiveness of hESC-derived hemangioblasts to create new blood vessels. Strategies to improve efficiency and effectiveness include the use of extracellular matrix proteins (components that make up the structural aspect of the heart) to increase the survival of the cells or the use of antibodies to direct and link the cells to the damaged heart muscle. Additionally, to decrease the risk of tumor formation from the hESC-derived hemangioblasts, the hESC-derived hemangioblasts are being cultured to form more mature endothelial cells (cells that mimic the bodies natural cells that produce blood vessels). These cells are being tested to determine whether they can effectively induce blood vessels in the heart. Our initial finding of hES-derived hemangioblasts inducing new blood vessel formation may eventually lead to the development of an unlimited and reliable cell source for renewing blood vessels and treating myocardial infarction.
  • Coronary artery disease (CAD) remains the leading cause of morbidity and mortality worldwide and is predicted to be the leading cause of death by 2020. In the US, it is estimated that cardiovascular disease affects 60 million patients costing the healthcare system approximately $186 billion annually. Approximately two-thirds of patients sustaining a myocardial infarction do not make a complete recovery and often are left with debilitating congestive heart failure. Despite the advances in medical treatment and interventional procedures to reduce mortality in patients with CAD, the number of patients with refractory myocardial ischemia and congestive heart failure is rapidly increasing. For end-stage heart failure, heart transplantation is the only successful treatment. However, the ability to provide this treatment is limited by the availability of donor hearts. Therefore, alternative therapies in the prevention and treatment of end-stage heart failure are needed.
  • Critical to any heart repair strategy is the need to provide vessels to allow for an adequate blood supply to nourish the heart. Our results demonstrate that human embryonic stem cell (hESC)-derived hemangioblasts can create new blood vessels and improve blood flow in a rodent model of myocardial infarction. Subsequent studies with hESC-derived endothelial progenitor cells decreased MI size and improved LV function in a mouse model of myocardial ischemia. Studies are in progress to improve the efficiency and effectiveness of hESC-derived endothelial progenitor cells to create new blood vessels.
  • Strategies to improve efficiency and effectiveness of stem cell therapy include the use of extracellular matrix proteins (components that make up the structural aspect of the heart) to increase the survival of the cells or the use of antibodies to direct and link the cells to the damaged heart muscle. We have demonstrated that antibodies can direct stem cells to injured myocardial tissue. Continued studies are in progress to perform studies needed for the submission of an IND. The development of peptide-modified scaffolds for the treatment of chronic heart failure has produced initial proof of concept studies that a tissue engineering approach for restoration of an injured heart is possible. Additionally, we have demonstrated that extracellular matrix derived peptides can recruit endogenous cardiac stem cells. Further development of a biopolymer scaffold for the treatment of chronic heart failure is in progress.
  • Coronary artery disease (CAD) remains the leading cause of morbidity and mortality worldwide and is predicted to be the leading cause of death by 2020. In the US, it is estimated that cardiovascular disease affects 60 million patients costing the healthcare system approximately $186 billion annually. Approximately two-thirds of patients sustaining a myocardial infarction do not make a complete recovery and often are left with debilitating congestive heart failure. Despite the advances in medical treatment and interventional procedures to reduce mortality in patients with CAD, the number of patients with refractory myocardial ischemia and congestive heart failure is rapidly increasing. For end-stage heart failure, heart transplantation is the only successful treatment. However, the ability to provide this treatment is limited by the availability of donor hearts. Therefore, alternative therapies in the prevention and treatment of end-stage heart failure are needed.
  • Critical to any heart repair strategy is the need to provide vessels to allow for an adequate blood supply to nourish the heart. Our results demonstrate that human embryonic stem cell (hESC)-derived hemangioblasts can create new blood vessels and improve blood flow in a rodent model of myocardial infarction. Subsequent studies with hESC-derived endothelial progenitor cells decreased MI size and improved LV function in a mouse model of myocardial ischemia. Studies are in progress to improve the efficiency and effectiveness of hESC-derived endothelial progenitor cells to create new blood vessels.
  • Strategies to improve efficiency and effectiveness of stem cell therapy include the use of extracellular matrix proteins (components that make up the structural aspect of the heart) to increase the survival of the cells or the use of antibodies to direct and link the cells to the damaged heart muscle. We have demonstrated that antibodies can direct stem cells to injured myocardial tissue. Continued studies are in progress to perform studies needed for the submission of an IND. The development of peptide-modified scaffolds for the treatment of chronic heart failure has produced initial proof of concept studies that a tissue engineering approach for restoration of an injured heart is possible. Additionally, we have demonstrated that extracellular matrix derived peptides can recruit endogenous cardiac stem cells. Further development of a biopolymer scaffold for the treatment of chronic heart failure is in progress.

Modeling Myocardial Therapy with Human Embryonic Stem Cells

Funding Type: 
Comprehensive Grant
Grant Number: 
RC1-00104
ICOC Funds Committed: 
$2 229 140
Disease Focus: 
Heart Disease
Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Closed
Public Abstract: 
Statement of Benefit to California: 
Progress Report: 
  • Five million people in the U.S. suffer with heart failure, at a cost of $30 billion/year. Heart failure occurs when the heart is damaged and becomes unable to meet the demands placed on it. Unlike some tissues, heart muscle does not regenerate. Human embryonic stem cells grow and divide indefinitely while maintaining the potential to develop into many tissues of the body, including heart muscle. They provide an unprecedented opportunity to both study human heart muscle in culture in the laboratory, and advance cell-based therapy for damaged heart muscle. During the first year of CIRM support, we have developed methods for identifying and isolating specific types of human embryonic stem cells, and stimulating them to become human heart muscle cells. We are currently working to determine the best methods and timing for delivering these cells into the hearts of mice that have had a heart attack. This research will identify those human embryonic stem cells that are best at repairing damaged heart muscle, thereby treating or avoiding heart failure.
  • Five million people in the U.S. suffer with heart failure, at a cost of $30 billion/year. Heart failure occurs when the heart is damaged and becomes unable to meet the demands placed on it. Unlike some tissues, heart muscle does not regenerate. Human embryonic stem cells grow and divide indefinitely while maintaining the potential to develop into many tissues of the body, including heart muscle. They provide an unprecedented opportunity to both study human heart muscle in culture in the laboratory, and advance cell-based therapy for damaged heart muscle. During this year of CIRM support, we have developed methods for identifying and isolating specific types of human embryonic stem cells, and stimulating them to become human heart muscle cells. We are currently working to determine the best methods and timing for delivering these cells into the hearts of mice that have had a heart attack. This research will identify those human embryonic stem cells that are best at repairing damaged heart muscle, thereby treating or avoiding heart failure.
  • Five million people in the U.S. suffer with heart failure, at a cost of $30 billion/year. Heart failure occurs when the heart is damaged and becomes unable to meet the demands placed on it. Unlike some tissues, heart muscle does not regenerate. Human embryonic stem cells grow and divide indefinitely while maintaining the potential to develop into many tissues of the body, including heart muscle. They provide an unprecedented opportunity to both study human heart muscle in culture in the laboratory, and advance cell-based therapy for damaged heart muscle. During this year of CIRM support, we have developed methods for identifying and isolating specific types of human embryonic stem cells, and stimulating them to become human heart muscle cells. We are currently working to determine the best methods and timing for delivering these cells into the hearts of mice that have had a heart attack. This research will identify those human embryonic stem cells that are best at repairing damaged heart muscle, thereby treating or avoiding heart failure.

In Vivo Molecular Magnetic Resonance Imaging of Human Embryonic Stem Cells in Murine Model of Myocardial Infarction

Funding Type: 
SEED Grant
Grant Number: 
RS1-00326
ICOC Funds Committed: 
$658 125
Disease Focus: 
Heart Disease
Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Closed
Public Abstract: 
Statement of Benefit to California: 
Progress Report: 
  • Magnetic resonance imaging (MRI) has emerged as one of the predominant modalities to evaluate the effects of stem cells in restoring the injured heart. However, MRI does not enable assessment of a fundamental issue in cell therapy, survival of the transplanted cells. The transplanted human embryonic cells (hESCs) must at the very least survive to restore the injured heart. In order to address this issue, this research has conducted the fundamental work to develop a reporter gene as outlined in the proposal and developed a reliable system to evaluate the survival of the transplanted hESCs.
  • First, using a commercially available genetic construct, the reporter gene was designed to generate specific cell surface tags as a signal of cell survival. Molecular assays demonstrated proper characteristics of the reporter gene and the construct has been inserted into human embryonic kidney cells to demonstrate proof of concept. MRI signal was generated from these cells and this result has been validated by flow cytometry confirming the expression of cell surface tags by the reporter gene. Second, the metabolic effects of the contrast agent, iron-oxide, used to magnetically activate the antibodies have been evaluated. The results demonstrated that the iron-oxide has no toxic effects to the cell metabolism. Finally, preliminary MRI of the iron-oxide labeled hESC injected directly into the mouse heart was obtained.
  • Based on above results, the molecular signal was further refined to generate optical signal of cell survival as an additional validation tool. Robust molecular signal of hESC survival was generated following transplantation of the reporter gene transduced hESC into the mouse myocardium. During the no cost extenstion period, correlation between hESC survival and functional restoration of the injured heart will be assessed. Using MRI, cell survival and functional restoration of the heart will be imaged non-invasively in order to obtain longitudinal information regarding survival of transplanted hESC and restoration of heart function.
  • Magnetic resonance imaging (MRI) has emerged as one of the predominant modalities to evaluate the effects of stem cells in restoring the injured heart. However, MRI does not assess a fundamental issue in cell therapy, survival of the transplanted cells. The transplanted human embryonic cells (hESCs) must at the very least survive to restore the injured heart. In order to address this issue, this research has conducted the fundamental work to develop a reporter gene as outlined in the proposal and developed a reliable system to evaluate the survival and teratoma formation of the transplanted hESCs.
  • Using a commercially available genetic construct, the reporter gene was designed to generate specific cell surface tags as a signal of cell survival. Molecular assays demonstrated proper characteristics of the reporter gene and the construct has been inserted into human embryonic stem cells. MRI signal was generated from these cells and this result has been validated by flow cytometry confirming the expression of cell surface tags by the reporter gene in viable human embryonic stem cells. The viable cells expressing this reporter gene were transplanted into mouse heart and MRI signal was generated from the heart of a live mouse.
  • Based on the above results, the molecular signal was further refined to generate optical signal of cell survival as an additional validation tool. Robust molecular signal of hESC survival was generated following transplantation of the reporter gene transduced hESC into the mouse myocardium. During the no cost extenstion period, detection of hESC survival, proliferation, and early teratoma formation was studied. These biological properties of the transplanted hESCs were monitored accurately. This information will be used to correlate hESC survival/proliferation/teratoma formation with functional restoration of the injured heart.

Technology for hESC-Derived Cardiomyocyte Differentiation and Optimization of Graft-Host Integration in Adult Myocardium

Funding Type: 
SEED Grant
Grant Number: 
RS1-00242
ICOC Funds Committed: 
$634 287
Disease Focus: 
Heart Disease
Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Closed
Public Abstract: 
Statement of Benefit to California: 
Progress Report: 
  • The success of cardiac cell grafts for repair of infarcts or congestive heart failure has been moderate to date. While graft cells may survive transplantation, their contribution to conduction and force generation is neither well-defined nor understood. Also, there is concern that the stem cells could negatively impact some aspects of heart function and lead to disturbances of heart rhythm. In light of this, we proposed to develop a model to study the detailed interaction of stem cells and healthy heart tissue in the laboratory, focusing on two main thrusts.
  • The first part of this project had seen the successful development of a platform to better understand the transition that stem cells make as they mature into heart cells, a process known as differentiation. Using arrays of microelectrodes, recording of electrical activity from maturing stem cells was demonstrated. Impact of electrical stimulation on the differentiation process had been probed. Investigation of the interaction between stem cells and heart cells had also been initiated. The second part focused mainly on the latter aspect – functional coupling of stem cells in the heart tissue. New analysis tools for the quantification of the conduction of the electrical activity across a heart tissue were developed. Studies with mixed co-cultures of cardiac cells and fibroblasts revealed a high sensitivity of the conduction properties to the presence of non-conductive cells (fibroblasts), and provide a model for assessing conduction in stem cell grafts of varying homogeneity. Co-cultures of heart cells (host) and stem cells (graft), first grown separately then allowed them to merge, highlighted issues of conduction mismatch at the interface between the host and graft tissue, as well as the dependence of this conduction on the maturity and purity of the grafts used. Most importantly, these studies demonstrated the value of the model developed under this grant for the investigation of electrical coupling and conduction in stem cell grafts, issues that are vital to the safe, effective and successful use of stem cell therapy.

Micro Platform for Controlled Cardiac Myocyte Differentiation

Funding Type: 
SEED Grant
Grant Number: 
RS1-00239-A
ICOC Funds Committed: 
$363 707
Disease Focus: 
Heart Disease
Stem Cell Use: 
Embryonic Stem Cell
Public Abstract: 
Statement of Benefit to California: 

Micro Platform for Controlled Cardiac Myocyte Differentiation

Funding Type: 
SEED Grant
Grant Number: 
RS1-00239-B
ICOC Funds Committed: 
$363 707
Disease Focus: 
Heart Disease
Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Closed
Public Abstract: 
Statement of Benefit to California: 
Progress Report: 
  • This year, we have made quite some progress in developing the microtechnology platform. We have developed a new way to form and culture human embryonic stem cells into uniform embryoid bodies in a high throughput fashion. Instead of using the laborious ‘hanging drop method’ or the complicated ‘spinning flask method’, we have developed a way for researchers to easily pipette their cells into standard well plates and increase their throughput by almost 1000x. This is achieved by placing inserts with rounded-bottom microwells into standard well plates. Each one of these inserts that can fit into a standard 24 or 96 well plate can have up to 1000 wells and therefore can create 1000 embryoid bodies, all of uniform size. We can even create wells of various sizes such that we can induce embryoid bodies of predefined sizes and numbers of cells. Many recent publications have demonstrated that the initial size of the embryoid bodies affect differentiation. We have observed this as well. Moreover, this new platform allows researchers to perform real-time microscopy of the cells during this whole process.
  • In addition to developing this new chip, we have also electrically stimulated at different stages during differentiation. The different stages of differentiation include: 1) during embryoid body development 2) when transferred to gelatin coated dishes 3) after about a week on gelatin and 4) isolated beating areas. Electrical stimulation was accomplished using a C-PACE voltage pulsing device at a 1 Hz frequency, 4.5 V (2.5 V/cm), and a 1 ms duration. Unfortunately, none of the electrical stimulation yielded any exhibited increased expression of cardiac markers. Future studies will examine pacing of differentiated cardiac cells for synchronization and will employ more markers using a PCR super microarray.
  • We have also worked on custom software development that allows us to automatically identify and track individual cells within the microplatform.
  • There were a number of factors that caused some unexpected delays in scientific progress this year. Most notably, the PI Michelle Khine and her lab moved to a new university. Therefore, this took quite some time to take down and then re-establish the lab at its new location. Now at UC Irvine, she finally has the ideal infrastructure to make progress quickly on this project. This one year extension to finish this project is therefore much needed and greatly appreciated.
  • To uniformly control the differentiation of embryoid bodies (EBs), we have developed a very simple to use culture platform the create homogenous-sized EBs.
  • We have made quite some progress with the EB array culture plate development, described in detail in the last progress report. Since then, we have developed a way to 1) translate to a more transparent material with lower autofluorescence (cyclic olefin copolymer, COC) to be compatible with optical imaging (Figure 1, c) and then 2) mated the microwells to the bottom of 24 well plates for ease of handling. While we have not had success with applying electric fields to induce cardiomyocyte differentiation, we are now working with !) optimizing the EB size to yield the most cardiomyocytes and then 2)perfusing the EBs with soluble factors.

Specification of Ventricular Myocyte and Pacemaker Lineages Utilizing Human Embryonic Stem Cells

Funding Type: 
SEED Grant
Grant Number: 
RS1-00198
ICOC Funds Committed: 
$609 999
Disease Focus: 
Heart Disease
Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Closed
Public Abstract: 
Statement of Benefit to California: 
Progress Report: 
  • In the current reporting period, we have worked on the generation of human embryonic stem cell derived marker cell lines for different steps of cardiomyocyte differentiation. The cell lines are designed to express fluorescent proteins under the control of gene promoters that mark cardiac progenitor cells, cardiomyocytes, or cardiac conduction system cells.
  • We tested several HUES cell lines for this purpose and chose cell lines that can differentiate into cardiomyocytes efficiently but are easy to expand and appear stable over several passages in culture. We generated several BAC transgenic cell lines that specifically express green fluorescent protein in cardiomyocytes. Further cell lines are being generated. The cell lines will be used in high-throughput screens to identify molecules and mechanisms that direct the efficient in vitro differentiation into different cardiac cells.

Development of Neuro-Coupled Human Embryonic Stem Cell-Derived Cardiac Pacemaker Cells.

Funding Type: 
SEED Grant
Grant Number: 
RS1-00171
ICOC Funds Committed: 
$744 639
Disease Focus: 
Heart Disease
Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Closed
Public Abstract: 
Statement of Benefit to California: 
Progress Report: 
  • Cardiovascular diseases remain the major cause of death in the US. Human Stem and progenitor cell-derived cardiomyocytes (SPC-CMs) hold great promise for myocardial repairs. Recent progress in cellular reprogramming of various somatic cell types into induced pluripotent stem cells opened the door for developing patient-specific, cell-based therapies. However, most SPC-CMs displayed heterogeneous and immature electrophysiological (EP) phenotypes with uncontrollable automaticity. Implanting these electrically immature and inhomogeneous CMs to the hearts would likely be arrhythmogenic and deleterious. Furthermore, as CMs mature, they undergo changes in automaticity and electrical properties. We used human embryonic stem cell-derived CMs (hESC-CMs) as the model system to study the development and maturation of CMs in the embryoid body (EB) environment. Elucidating molecular pathways governing EP maturation of early hESC-CMs in EBs would enable engineered microenvironment to create functional pacemaker cells or electrophysiologically compatible hESC-CMs for cell replacement therapies. We have established antibiotic (Abx)-resistant hESC lines conferred by lentiviral vectors under the control of a cardiac-specific promoter. With simple Abx treatment, we easily isolated >95% pure hESC-CMs at various stages of differentiation from EBs. In the first year of this grant support and using the Abx selection system, we found that hESC-CMs isolated at early stages of differentiation without further contacts with non-cardiomyocytes (non-CMs) depicted arrested electrical maturation. The intracellular Ca2+-mediated automaticity developed very early and contributed to dominant automaticity throughout hESC-CM differentiation regardless of the presence or absence of non-CMs. In contrast, sarcolemmal ion channels evolved later upon further differentiation within EBs and their maturation required the interaction with non-CMs. In the second year, we further developed an add-back co-culture system to enable adding non-CMs back to early isolated hESC-CMs, which rescued the arrest of EP maturation. We also developed techniques to isolate pure subsets of non-CMs, such as neural crest and endothelial cells, from hESC-derived EBs, which exerted influences on maturation of specific subsets of ion channel populations respectively. Therefore, our study showed for the first time that non-CMs exert significant influences on the EP maturation of hESC-CMs during differentiation. Knowledge of this study will allow us to improve functional maturation of primitive hESC-CMs or to create neuro-coupled pacemaker cells before cell transplantation.
  • Cardiovascular diseases remain the major cause of death in the US. Human Stem and progenitor cell-derived cardiomyocytes (SPC-CMs) hold great promise for myocardial repairs. Recent progress in cellular reprogramming of various somatic cell types into induced pluripotent stem cells opened the door for developing patient-specific, cell-based therapies. However, most SPC-CMs displayed heterogeneous and immature electrophysiological (EP) phenotypes with uncontrollable automaticity. Implanting these electrically immature and inhomogeneous CMs to the hearts would likely be arrhythmogenic and deleterious. Furthermore, as CMs mature, they undergo changes in automaticity and electrical properties. We used human embryonic stem cell-derived CMs (hESC-CMs) as the model system to study the development and EP maturation of CMs in the embryoid body (EB) environment. Elucidating molecular pathways governing EP maturation of early hESC-CMs in EBs would enable engineered microenvironment to create functional pacemaker cells or electrophysiologically compatible hESC-CMs for cell replacement therapies. We have established antibiotic (Abx)-resistant hESC lines conferred by lentiviral vectors under the control of a cardiac-specific promoter. With simple Abx treatment, we easily isolated >95% pure hESC-CMs at various stages of differentiation from EBs. In the first year of this grant support and using the Abx selection system, we found that hESC-CMs isolated at early stages of differentiation without further contacts with non-cardiomyocytes (non-CMs) depicted arrested electrical maturation. The intracellular Ca2+-mediated automaticity developed very early and contributed to dominant automaticity throughout hESC-CM differentiation regardless of the presence or absence of non-CMs. In contrast, sarcolemmal ion channels evolved later upon further differentiation within EBs and their maturation required the interaction with non-CMs. In the second year, we further developed an add-back co-culture system to enable adding non-CMs back to early isolated hESC-CMs, which rescued the arrest of EP maturation. In the third no-cost extension year, we further successfully established the cocultures of human neural crest cell (NCC)-derivatives and early-purified hESC-CMs. We found that peripheral neurons derived from human NCCs exerted strong influences on the development of a specific subset of ion channel populations during early hESC-CM differentiation. Therefore, our study showed for the first time that non-CMs, especially neurons derived from NCCs, exert significant influences on the EP maturation of hESC-CMs during differentiation. Knowledge of this study will allow us to improve functional maturation of primitive hESC-CMs or to create neuro-coupled pacemaker cells before cell transplantation.

Discovering Potent Molecules with Human ESCs to Treat Heart Disease

Funding Type: 
SEED Grant
Grant Number: 
RS1-00169
ICOC Funds Committed: 
$714 654
Disease Focus: 
Heart Disease
Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Closed
Public Abstract: 
Statement of Benefit to California: 
Progress Report: 
  • The original goals of the proposal were to apply medicinal chemistry to generate more potent and drug-like analogs of small molecules that stimulate differentiation of cardiomyocytes from embryonic stem cell (ESC) and potentially other progenitor cell types found in adult human heart. During the grant period, we over-achieved each Aim and provided large numbers of drug-like small molecules for cardiomyocyte differentiation studies. In addition, other related information was gained that has considerably expanded our understanding related to developing regenerative medicines.
  • 1. Synthetic Chemistry: From an initial screen of thousands of compounds, six 'hits' were identified. Almost 1300 compounds were synthesized as analogs of these “hits” with the goal of generating more effective novel compounds as possible therapeutics for heart disease.
  • 2. Assay development and screening: Novel synthetic chemical analogs were studied in cell-based assays to evaluate potency of stimulating cardiac cell development relative to the starting 'hit' compounds. The biological data contributed to structure activity relationship (SAR) studies, and provided valuable information about parts of the molecules important for cardiomyocyte stem cell differentiation and for other important pharmaceutical properties. The iterative feedback from the biological testing helped to guide the next generation designs of new and ever more effective compounds.
  • 3. Chemical optimization. Focused structure activity relationship (SAR) studies for 4 chemical series from the ESC cardiogenesis differentiation screen were done. SAR for 2 additional chemical classes was done but those agents proved less potent. In addition to SAR, considerable information was obtained leading to improved solubility and membrane permeability of compounds in development, which became a focus of the chemical optimizations.
  • In summary, the work has already led to one or more promising drug-like compounds ready for efficacy testing in animal models and thus, efforts have greatly accelerated the timeline of getting compounds to human patients.
  • The original goals of the proposal were to apply medicinal chemistry to generate more potent and drug-like analogs of small molecules that stimulate differentiation of cardiomyocytes from embryonic stem cells (ESCs) and potentially other progenitor cell types found in adult human heart. During the grant period, we over-achieved each Aim and provided large numbers of drug-like small molecules for cardiomyocyte differentiation studies. In addition, other related information was gained that has considerably expanded our understanding related to developing regenerative medicines.
  • 1. Synthetic Chemistry: From an initial screen of thousands of compounds, six ‘hits’ were identified. Almost 1400 compounds were synthesized as analogs of these “hits” with the goal of generating more effective novel compounds as possible therapeutics for heart disease.
  • 2. Assay development and screening: Novel synthetic chemical analogs were studied in cell-based assays to evaluate potency of stimulating cardiac cell development relative to the starting ‘hit’ compounds. The biological data contributed to structure activity relationship (SAR) studies, and provided valuable information about parts of the molecules important for cardiomyocyte stem cell differentiation and for other important pharmaceutical properties. The iterative feedback from the biological testing helped to guide the next generation design of new and ever more effective compounds.
  • 3. Chemical optimization. Focused structure activity relationship (SAR) studies for 4 chemical series from the ESC cardiogenesis differentiation screen were done. SAR for 2 additional chemical classes was done but those agents proved less potent. In addition to SAR, considerable information was obtained leading to improved solubility and membrane permeability of compounds in development, which became a focus of the chemical optimizations. The most potent compounds increased stem cell differentiation to cardiomyocytes 5-10 fold. The compounds were non-toxic, reasonably tractable to make, stable and were water-soluble and hence relatively easy to handle.
  • 4. A number of biological signaling pathways were identified as affiliated with cardiomyocyte differentiation. One such pathway also is involved in anti-cancer activities. Thus, our efforts in identifying cardiomyocyte differentiation agents led us to study novel biology associated with cancer. One “hit” of this signaling pathway was chosen to do synthetic chemistry and “hit” to lead refinement. Approximately 100 compounds were synthesized and tested for inhibition of this signaling pathway.
  • In summary, the work has already led to a number of promising drug-like compounds ready for efficacy testing in animal models and thus, efforts have greatly accelerated the timeline of getting compounds to human patients. A total of 1500 compounds were synthesized to optimize the potency and properties of cardiomyocyte differentiation agents. The most potent stimulated production of human cardiomyocytes 5-10-fold compared to vehicle-stimulated cells.

Autologous cardiac-derived cells for advanced ischemic cardiomyopathy

Funding Type: 
Disease Team Research I
Grant Number: 
DR1-01461
ICOC Funds Committed: 
$5 560 232
Disease Focus: 
Heart Disease
Stem Cell Use: 
Adult Stem Cell
Cell Line Generation: 
Adult Stem Cell
oldStatus: 
Closed
Public Abstract: 
The adult human heart contains small numbers of cardiac stem cells that are able to partially repair the heart following a heart attack or throughout the course of progressive heart failure. We have developed a method to isolate these cells and grow them to large numbers in the lab. Isolation begins with a minimally-invasive biopsy taken from a patient’s heart. Our method can be used to then generate clusters of cells (termed “cardiospheres [CSps]”) or individual cells (termed “cardiosphere-derived cells [CDCs]”), each with their own advantages and disadvantages. When delivered to animals after a heart attack or in the midst of heart failure, these cells can better repair the heart, form new heart muscle and new blood vessels. CDCs are currently being given to patients after a recent heart attack, using a catheter to deliver the single cells into a blood vessel supplying the heart, as part of an ongoing clinical trial. The proposed research aims to test both CSps and CDCs in large animals in the midst of heart failure, using a catheter to deliver the cells directly into the heart muscle, in preparation for another clinical trial. Preliminary data shows that CSps may be a more potent cell therapeutic when compared to their single cell counterparts. Direct injection into the muscle not only allows for safe delivery of the cell clusters, but also increases the effective dose of the cells. Patients with heart failure also stand to benefit more from such a cell-based therapeutic when compared to those victims of a recent heart attack. As such, this research will involve not only animal studies, but also cell manufacturing studies, and the preparation and filing of an IND in order to begin a clinical trial. The first study will test both cell products along with the direct-injection catheter in a large scale animal model in order to determine the optimum cell dose. The second study will determine the optimum number of injections to perform during the procedure. These results will be available by the end of the first year, and will allow for a final pivotal study to be conducted during the course of the second year. This pivotal study will examine both the safety and efficacy of cell delivery in the large scale animal model, utilizing a group of control animals, and will serve as key preclinical data when filing an IND. During the course of the first two years, cell manufacturing studies will be conducted in parallel. These studies will enable us to develop procedures to reproducibly generate, store, ship, and deliver the cell therapeutic in the manner that will be adopted during the clinical trial. During the third year, the preclinical and manufacturing data will be combined with a clinical protocol formulated during the course of the pivotal animal study, to constitute the bulk of an IND. Following pre-IND discussions and IND review, we will begin conducting a clinical trial in patients with heart failure in the hope of halting disease progression for these individuals.
Statement of Benefit to California: 
Few families in California are not impacted by heart disease. Cardiovascular disease remains the leading cause of death and disability in Americans- on average, cardiovascular disease kills one American every 37 seconds. The death toll from cardiovascular disease is greater than that for cancer, chronic respiratory diseases, accidents, and diabetes combined. Death rates have improved, but new treatments are urgently needed. Aside from the human costs, cardiovascular disease exacts a tremendous fiscal toll: the American Heart Association estimates that the total costs of cardiovascular disease in the United States approached one-half trillion dollars in 2008. All taxpayers must bear the economic burden of resulting death and disability. Clearly, virtually all Californians stand to benefit, directly or indirectly, from the development of more effective treatments of cardiovascular disease. Heart disease is a particularly good target not just because of the magnitude of the public health problem, but also because heart muscle does not ordinarily regenerate once it has been destroyed by heart attacks and other types of damage. We seek to tap into the innate repair mechanisms of the heart by harvesting adult cardiac stem cells. The present work seeks to provide the scientific basis for regulatory filings that would allow us to reintroduce cardiac stem cells into patients with advanced heart failure. The treatment would be “autologous”, in that cells from any given patient would be used to treat that same patient. Thus, the cells are a perfect genetic match, obviating the risk of rejection. If our studies are successful, we may offer a cost-effective way to reduce the tremendous damage to Californians inflicted by major types of cardiovascular disease. This in turn may also reduce the economic burden presently borne by taxpayers who support the health care systems in California. In addition to the public health benefits, spinoff technology developed by this disease team will benefit existing California-based biotechnology companies, leading to fuller employment and an enhanced tax base.
Progress Report: 
  • Disease Team Award DR1-01461, Autologous cardiac-derived cells for advanced ischemic cardiomyopathy, is targeted at developing novel therapies for the treatment of heart failure, a condition which afflicts 7 million Americans. Heart failure, when symptomatic, has a mortality exceeding that of many malignant tumors; new therapies are desperately needed. In the first year of CIRM support, we have developed and validated a development candidate, cardiospheres, which are three-dimensional (3D) functional microtissues engineered in culture and suitable for implantation in the hearts of patients via minimally-invasive catheter-based methods. Cardiospheres, derived from heart biopsies using methods developed by the Principal Investigator, have now been successfuly delivered via magnetically-navigated injection catheters into healthy heart tissue surrounding zones of myocardial damage in preclinical models. The 3D microtissues engraft efficiently in preclinical models of heart failure, as expected from prior work indicating their complex multi-layer nature combining cardiac progenitors, supporting cells and derivatives into the cardiomyocyte and endothelial lineages. We have also developed standard operating procedures for cardiosphere manufacturing, and are in the process of developing release criteria for the 3D microtissue development candidate. Next steps include efficacy studies, with a view to an approved IND by mid-2012.
  • Disease Team Award DR1-01461, autologous cardiac-derived cells for advanced ischemic cardiomyopathy, is targeted at developing novel therapies for the treatment of heart failure, a condition which afflicts 7 million Americans. Heart failure, when symptomatic, has a mortality exceeding that of many malignant tumors; new therapies are desperately needed. In the second year of CIRM support, pivotal pre-clinical studies have been completed. We have found that dose-optimized injection of CSps preserves systolic function, attenuates remodeling, decreases scar size and increases viable myocardium in a porcine model of ischemic cardiomyopathy. The 3D microtissues engraft efficiently in preclinical models of heart failure, as expected from prior work indicating their complex multi-layer nature combining cardiac progenitors, supporting cells and derivatives into the cardiomyocyte and endothelial lineages. Analysis of the MRI data continues. We have developed standard operating procedures for cardiosphere manufacturing and release criteria, product and freezing/thawing stability testing have been completed for the 3D microtissue development candidate. We have identified two candidate potency assays for future development. The disease team will evaluate the results of the safety study (immunology, histology, and markers of ischemic injury) and complete the pivotal pig study in Q1 2012. With data in hand, full efforts will be placed on preparation of the IND for Q2 2012 submission.

Pages

Subscribe to RSS - Heart Disease

© 2013 California Institute for Regenerative Medicine