Cancer

Coding Dimension ID: 
280
Coding Dimension path name: 
Cancer

Mechanisms Underlying the Responses of Normal and Cancer Stem Cells to Environmental and Therapeutic Insults

Funding Type: 
New Faculty II
Grant Number: 
RN2-00934
ICOC Funds Committed: 
$2 274 368
Disease Focus: 
Blood Cancer
Cancer
Trauma
oldStatus: 
Active
Public Abstract: 
Adult stem cells play an essential role in the maintenance of tissue homeostasis. Environmental and therapeutic insults leading to DNA damage dramatically impact stem cell functions and can lead to organ failure or cancer development. Yet little is known about the mechanisms by which adult stem cells respond to such insults by repairing their damaged DNA and resuming normal cellular functions. The blood (hematopoietic) system provides a unique experimental model to investigate the behaviors of specific cell populations. Our objective is to use defined subsets of mouse hematopoietic stem cells (HSCs) and myeloid progenitor cells to investigate how they respond to environmental and therapeutic insults by either repairing damaged DNA and restoring normal functions; accumulating DNA damage and developing cancer; or undergoing programmed cell death (apoptosis) and leading to organ failure. These findings will provide new insights into the fundamental mechanisms that regulate stem cell functions in normal tissues, and a better understanding of their deregulation during cancer development. Such information will identify molecular targets to prevent therapy-related organ damage or secondary cancers. These are severe complications associated with current cancer treatments and are among the leading causes of death worldwide. Originally discovered in blood cancers (leukemia), cancer stem cells (CSCs) have now been recognized in a variety of solid tumors. CSCs represent a subset of the tumor population that has stem cell-like characteristics and the capacity for self-renewal. CSCs result from the transformation of either stem or progenitor cells, which then generate the bulk of the cancer cells. Recent evidence indicates that CSCs are not efficiently killed by current therapies and that CSC persistence could be responsible for disease maintenance and cancer recurrence. Developing interventions that will specifically target CSCs is, therefore, an appealing strategy for improving cancer treatment, which is dependent on understanding how they escape normal regulatory mechanisms and become malignant. Few mouse models of human cancer are currently available in which the CSC population has been identified and purified. This is an essential prerequisite for identifying pathways and molecules amenable to interventional therapies in humans. We have previously developed a mouse model of human leukemia in which we have identified the CSC population as arising from the HSC compartment. We will use this model to understand how deregulations in apoptosis and DNA repair processes contribute to CSC formation and function during disease development. These results will provide new insights into the pathways that distinguish CSCs from normal stem cells and identify ways to prevent their transformation. Such information will be used to design novel and much-needed therapies that will specifically target CSCs while sparing normal stem cells.
Statement of Benefit to California: 
This application investigates how environmental and therapeutic insults leading to DNA damage impact stem cell functions and can lead to organ failure or cancer development. The approach is to study how specific population of blood (hematopoietic) stem, progenitor, and mature cells respond to DNA damaging agents and chose a specific cellular outcome. Such information could identify molecular pathways that are available for interventional therapies to prevent end-organ damage in patients who are treated for a primary cancer and reduce the risk of a subsequent therapy-induced cancer. These are severe complications associated with current mutagenic cancer treatments (radiation or chemotherapeutic agents) that comprise a substantial public health problem in California and in the rest of the developed world. The hematopoietic system is the first to fail following cancer treatment and the formation of therapy-related blood cancer (leukemia) is a common event. The development of novel approaches to prevent therapy-related leukemia will, therefore, directly benefit the health of the Californian population regardless of the type of primary cancer. This application also investigates a novel paradigm in cancer research, namely the role of cancer stem cells (CSCs) in the initiation, progression and maintenance of human cancer. The approach is to study how dysregulations in important cancer-associated pathways (apoptosis and DNA repair processes) contribute to CSC aberrant properties using one of the few established mouse model of human cancer where the CSC population has already been identified. Leukemia, the disease type investigated in this application, has been the subject of many landmark discoveries of basic principles in cancer research that have then been shown to be applicable to a broad range of other cancer types. Accordingly, this research should benefit the people of California in at least two ways. First, the information gained about the properties of CSCs should improve the ability of our physicians and scientists to design, develop and evaluate the efficacy of innovative therapies to target these rare disease-initiating cells for death. This would place Californian cancer research at the forefront of translational science. Second, an average of 11.55 out of 100,000 Californian inhabitants are diagnosed with primary leukemia each year. Thus, in California, leukemia occurs at approximately the same frequency as brain, liver and endocrine cancers. As is true for many types of cancer, most cases of leukemia occur in older adults. At this time, the only treatment that can cure leukemia is allogeneic stem cell transplantation, which is a high-risk and expensive procedure that is most successful in younger patients. The development of novel and safe curative therapies for leukemia would, therefore, particularly benefit the health of our senior population and the economy of the state of California by realizing savings in the healthcare sector.
Progress Report: 
  • Escape from apoptosis and increased genomic instability resulting from defective DNA repair processes are often associated with cancer development, aging and stem cell defects. Adult stem cells play an essential role in the maintenance of normal tissue. Removal of superfluous, damaged and/or dangerous cells is a critical process to maintain tissue homeostasis and protect against malignancy. Yet much remains to be learned about the mechanisms by which normal stem and progenitor cells respond to environmental and therapeutic genotoxic insults. Here, we have used the hematopoietic system as a model to investigate how cancer-associated mutations affect the behaviors of specific stem and progenitor cell populations. Our work during the first year of the CIRM New Faculty award has revealed the differential use of DNA double-strand break repair pathways in quiescent and proliferative hematopoietic stem cells (HSCs), which has clear implications for human health. Most adult stem cell populations, including HSCs, remain in a largely quiescent (G0), or resting, cell cycle state. This quiescent status is widely considered to be an essential protective mechanism stem cells use to minimize endogenous stress caused by cellular respiration and DNA replication. However, our studies demonstrate that quiescence may also have detrimental and mutagenic effects. We found both quiescent and proliferating HSCs to be similarly protected from DNA damaging genotoxic insults due to the expression and activation of cell type specific protective mechanisms. We demonstrate that both quiescent and proliferating HSCs resolve DNA damage with similar efficiencies but use different repair pathways. Quiescent HSCs preferentially utilize nonhomologous end joining (NHEJ) - an error-prone DNA repair mechanism - while proliferating HSCs essentially use homologous recombination (HR) - a high-fidelity DNA repair mechanism. Furthermore, we show that NHEJ-mediated repair in HSCs is associated with acquisition of genomic rearrangements. These findings suggest that the quiescent status of HSCs can, on one hand, be protective by limiting cell-intrinsic stresses but, on the other hand, be detrimental by forcing HSCs to repair damaged DNA with an error-prone mechanism that can generate mutations and eventually cause hematological malignancies. Our results have broad implications for cancer development and provide the beginning of a molecular understanding of why HSCs, despite being protected, are more likely than other cells in the hematopoietic system (i.e., myeloid progenitors) to become transformed. They also partially explain the loss of function occurring in HSCs with age, as it is likely that over a lifetime HSCs have acquired and accumulated numerous NHEJ-mediated mutations that hinder their cellular performance. Finally, our findings may have direct clinical applications for minimizing secondary cancer development. Many solid tumors and hematological malignancies are currently treated with DNA damaging agents, which may result in therapy-induced myeloid leukemia. Our results suggest that it might be beneficial to induce HSCs to cycle before initiating treatment, to avoid inadvertently mutating the patient's own HSCs by forcing them to undergo DNA repair using an error-prone mutagenic mechanism.
  • Our work during the second year of the CIRM New Faculty award has lead to the discovery of at least one key reason why blood-forming stem cells can be susceptible to developing genetic mutations leading to adult leukemia or bone marrow failures. Most adult stem cells, including hematopoietic stem cells (HSCs), are maintained in a quiescent or resting state in vivo. Quiescence is widely considered to be an essential protective mechanism for stem cells that minimizes endogenous stress associated with cellular division and DNA replication. However, we demonstrate that HSC quiescence can also have detrimental effects. We found that HSCs have unique cell-intrinsic mechanisms ensuring their survival in response to ionizing irradiation (IR), which include enhanced pro-survival gene expression and strong activation of a p53-mediated DNA damage response. We show that quiescent and proliferating HSCs are equally radioprotected but use different types of DNA repair mechanisms. We describe how nonhomologous end joining (NHEJ)-mediated DNA repair in quiescent HSCs is associated with acquisition of genomic rearrangements, which can persist in vivo and contribute to hematopoietic abnormalities. These results demonstrate that quiescence is a double-edged sword that, while mostly beneficial, can render HSCs intrinsically vulnerable to mutagenesis following DNA damage. Our findings have important implications for cancer biology. They indicate that quiescent stem cells, either normal or cancerous, are particularly prone to the acquisition of mutations, which overturns the current dogma that cancer development absolutely requires cell proliferation. They help explain why quiescent leukemic stem cells (LSC), which currently survive treatment in most leukemia, do in fact represent a dangerous reservoir for additional mutations that can contribute to disease relapse and/or evolution, and stress the urgent need to develop effective anti-LSC therapies. They also have direct clinical applications for minimizing the risk of therapy-related leukemia following treatment of solid tumors with cytotoxic agents. By showing that proliferating HSCs have significantly decreased mutation rates, with no associated change in radioresistance, they suggest that it would be beneficial to induce HSCs to enter the cycle prior to therapy with DNA-damaging agents in order to enhance DNA repair fidelity in HSCs and thus reduce the risk of leukemia development. While this possibility remains to be tested in the clinic using FDA approved agents such as G-CSF and prostaglandin, it offers exciting new directions for limiting the deleterious side effects of cancer treatment. Our findings also have broad biological implications for tissue function. While the DNA repair mechanism used by quiescent HSCs can indeed produce defective cells, it is likely not detrimental for the organism in evolutionary terms. The blood stem cell system is designed to support the body through its sexually reproductive years, so the genome can be passed along. The ability of quiescent HSCs to survive and quickly undergo DNA repair in response to genotoxic stress supports this goal, and the risk of acquiring enough damaging mutations in these years is minimal. The problem occurs with age, as these long-lived cells have spent a lifetime responding to naturally occurring insults as well as the effects of X-rays, medications and chemotherapies. In this context, the accumulation of NHEJ-mediated DNA misrepair and resultant genomic damages could be a major contributor to the loss of function occurring with age in HSCs, and the development of age-related hematological disorders. We are now using this work on normal HSCs as a platform to understand at the molecular level how the DNA damage response and the mechanisms of DNA repair become deregulated in leukemic HSCs during the development of hematological malignancies.
  • Our work during the third year of the CIRM New Faculty award has extended and broaden up our investigations in two novel directions that are still within the scope of our initial Aims: 1) identifying novel stress-response mechanisms that preserve hematopoietic stem cells (HSC) fitness during periods of metabolic stress; and 2) understanding how deregulations in DNA repair mechanisms contribute to the aberrant functions of old and transformed HSCs. Blood development is organized hierarchically, starting with a rare but well-defined population of HSCs that give rise to a series of committed progenitors and mature cells with exclusive functional and immunophenotypic properties. HSCs are the only cells within the hematopoietic system that self-renew for life, whereas other hematopoietic cells are short-lived and committed to the transient production of mature blood cells. Under steady-state conditions, HSCs are a largely quiescent, slowly cycling cell population, which, in response to environmental cues, are capable of dramatic expansion and contraction to ensure proper homeostatic replacement of all blood cells. While considerable work has deciphered the molecular networks controlling HSC activity, still little is known about how these mechanisms are integrated at the cellular level to ensure life-long maintenance of a functional HSC compartment. HSCs reside in hypoxic niches in the bone marrow microenvironment, and are mostly kept quiescent in order to minimize stress and the potential for damage associated with cellular respiration and cell division. Last year, we showed that HSCs can also engage specialized response mechanisms that protect them from the killing effect of environmental stresses such as ionizing radiation (IR) (Mohrin et al., Cell Stem Cell, 2010). We demonstrated that long-lived HSCs, in contrast to short-lived myeloid progenitors, have enhanced expression of pro-survival members of the bcl2 gene family and robust induction of p53-mediated DNA damage response, which ensures their specific survival and repair following IR exposure. We reasoned that HSCs have other unique protective features, which allow them to contend with a variety of cellular insults and damaged cellular components while maintaining their life-long functionality and genomic integrity. Now, we show that HSCs use the self-catabolic process of autophagy as an essential survival mechanism in response to metabolic stress in vitro or nutriment deprivation in vivo. Last year, we also reported that although HSCs largely survive genotoxic stress their DNA repair mechanisms make them intrinsically vulnerable to mutagenesis (Mohrin et al., Cell Stem Cell, 2010). We showed that their unique quiescent cell cycle status restricts them to the use of the error-prone non-homologous end joining (NHEJ) DNA repair mechanism, which renders them susceptible to genomic instability and transformation. These findings provide the beginning of an understanding of why HSCs, despite being protected at the cellular level, are more likely than other hematopoietic cells to initiate blood disorders (Blanpain et al., Cell Stem Cell, review, 2011). Such hematological diseases increase with age and include immunosenescence (a decline in the adaptive immune system) as well as the development of myeloproliferative neoplasms, leukemia, lymphoma and bone marrow failure syndromes. Many of these features of aging have been linked to changes in the biological functions of old HSCs. Gene expression studies and analysis of genetically modified mice have suggested that errors in DNA repair and loss of genomic stability in HSCs are driving forces for aging and cancer development. However, what causes such failures in maintaining HSC functionality over time remains to be established. We therefore asked whether the constant utilization of error-prone NHEJ repair mechanism and resulting misrepair of DNA damage over a lifetime could contribute to the loss of function and susceptibility to transformation observed in old HSCs. Similarly, we started investigating how mutagenic DNA repair could contribute to the genomic instability of HSC-derived leukemic stem cells (LSC).
  • Our work during the fourth year of the CIRM New Faculty award has been focused on achieving the goals set forth last year for the two first aims of the grant: 1) identifying the stress-response mechanisms that preserve hematopoietic stem cells (HSC) fitness during periods of metabolic stress; and 2) understanding how deregulations in DNA repair mechanisms contribute to the aberrant functions of old HSCs and the aging of the blood system.
  • Blood development is organized hierarchically, starting with a rare but well-defined population of HSCs that give rise to a series of committed progenitors and mature cells with exclusive functional and immunophenotypic properties. HSCs are the only cells within the hematopoietic system that self-renew for life, whereas other hematopoietic cells are short-lived and committed to the transient production of mature blood cells. Under steady-state conditions, HSCs are a largely quiescent, slowly cycling cell population, which, in response to environmental cues, are capable of dramatic expansion and contraction to ensure proper homeostatic replacement of all needed blood cells. While considerable work has deciphered the molecular networks controlling HSC activity, still little is known about how these mechanisms are integrated at the cellular level to ensure life-long maintenance of a functional HSC compartment.
  • HSCs reside in hypoxic niches in the bone marrow microenvironment, and are mostly kept quiescent in order to minimize stress and the potential for damage associated with cellular respiration and cell division. Previously, we found that HSCs also have a unique pro-survival wiring of their apoptotic machinery, which contribute to their enhanced resistance to genotoxic stress (Mohrin et al., Cell Stem Cell, 2010). Now, we identified autophagy as an essential mechanism protecting HSCs from metabolic stress (Warr et al., Nature, in press). We show that HSCs, in contrast to their short-lived myeloid progeny, robustly induce autophagy following ex vivo cytokine withdrawal and in vivo caloric restriction. We demonstrate that FoxO3a is critical to maintain a gene expression program that poise HSCs for rapid induction of autophagy upon starvation. Notably, we find that old HSCs retain an intact FoxO3a-driven pro-autophagy gene program, and that ongoing autophagy is needed to mitigate an energy crisis and allow their survival. Our results demonstrate that autophagy is essential for the life-long maintenance of the HSC compartment and for supporting an old, failing blood system.
  • Previous studies have also suggested that increased DNA damage could contribute to the functional decline of old HSCs. Therefore, we set up to investigate whether the reliance on the error-prone non-homologous end-joining (NHEJ) DNA repair mechanism we previously identified in young HSCs (Mohrin et al., Cell Stem Cell, 2010) could render old HSCs vulnerable to genomic instability. We confirm that old HSCs have increased numbers of γH2AX DNA foci but find no evidence of associated DNA damage. Instead, we show that γH2AX staining in old HSCs entirely co-localized with nucleolar markers and correlated with a significant decrease in ribosome biogenesis. Moreover, we observe high levels of replication stress in proliferating old HSCs leading to severe functional impairment in condition requiring proliferation expansion such as transplantation assays. Collectively, our results illuminate new features of the aging HSC compartment, which are likely to contribute to several facets of age-related blood defects (Flach et al, manuscript in preparation).
  • Our work during the fifth and last year of our CIRM New Faculty award has been essentially focused on understanding how deregulations in DNA repair mechanisms contribute to the aberrant functions of old hematopoietic stem cells (HSC) and the aging of the blood system.

Derivation and Characterization of Myeloproliferative Disorder Stem Cells from Human ES Cells

Funding Type: 
New Faculty II
Grant Number: 
RN2-00910
ICOC Funds Committed: 
$3 065 572
Disease Focus: 
Blood Cancer
Cancer
Stem Cell Use: 
Cancer Stem Cell
Embryonic Stem Cell
oldStatus: 
Active
Public Abstract: 
Cancer is the leading cause of death for people younger than 85. High cancer mortality rates related to resistance to therapy and malignant progression underscore the need for more sensitive diagnostic techniques as well as therapies that selectively target cells responsible for cancer propagation. Compelling studies suggest that human cancer stem cells (CSC) arise from aberrantly self-renewing tissue specific stem or progenitor cells and are responsible for cancer propagation and resistance to therapy. Although the majority of cancer therapies eradicate rapidly dividing cells within the tumor, the rare CSC population may be quiescent and then reactivate resulting in disease progression and relapse. We recently demonstrated that CSC are generated in chronic myeloid leukemia by activation of beta-catenin, a gene that allows cells to reproduce themselves extensively. However, relatively little is known about the sequence of events responsible for leukemic transformation in more common myeloproliferative disorders (MPDs) that express an activating mutation in the JAK2 gene. Because human embryonic stem cells (hESC) have robust self-renewal capacity and can provide a potentially limitless source of tissue specific stem and progenitor cells, they represent an ideal model system for generating and characterizing human MPD stem cells. Thus, hESC cell research harbors tremendous potential for developing life-saving therapy for patients with cancer by providing a platform to rapidly and rationally test new therapies that specifically target CSC. To provide a robust model system for screening novel anti-CSC therapies, we propose to generate and characterize BCR-ABL+ and JAK2+ MPD stem cells from hESC. We will investigate the role of genes that are essential for initiation of these MPDs such as BCR-ABL and JAK2 V617F as well as additional mutations in beta-catenin or GSK3betaï€ implicated in CSC propagation. The efficacy of a selective BCR-ABL and JAK2 inhibitors at blocking BCR-ABL+ and JAK2+ human ES cell self-renewal, survival and proliferation alone and in combination with a potent and specific beta-catenin antagonist will be assessed in robust in vitro and in vivo assays with the ultimate aim of developing highly active anti-MPD stem cell therapy that may halt progression to acute leukemia and obviate therapeutic resistance.
Statement of Benefit to California: 
Although much is known about the genetic and epigenetic events involved in CSC production in a Philadelphia chromosome positive MPD like chronic myeloid leukemia (CML), comparatively little is known about the molecular pathogenesis of the five-fold more common Philadelphia chromosome negative (Ph-) MPDs. MPD patients have a moderately increased risk of fatal thrombotic events as well as a striking 36-fold increased risk of death from transformation to acute leukemia. Recently, a point mutation, JAK2 V617F(JAK2+), resulting in constitutive activation of the JAK2 cytokine signaling pathway was discovered in a large proportion of MPD patients. A critical barrier to developing potentially curative therapies for both BCR-ABL+ and JAK2+ MPDs is a comprehensive understanding of relative contribution of BCR-ABL and JAK2 V617F to disease initiation versus transformation to acute leukemia. We recently discovered that JAK2 V617F is expressed at the hematopoietic stem cell level in PV, ET and MF and that JAK2 skewed ifferentiation in PV is normalized with a selective JAK2 inhibitor, TG101348. However, a detailed molecular pathogenetic characterization has been hampered by the paucity of stem and progenitor cells in MPD derived blood and marrow samples. Because hESC have robust self-renewal capacity and can provide a potentially limitless source of tissue specific stem and progenitor cells in vitro, they represent an ideal model system for generating human MPD stem cells. Thus, California hESC research harbors tremendus potential for understanding the MPD initiating events that skew differentiation versus events that promote self-renewal and thus, leukemic transformation. Moreover, a more comprehensive understanding of primitive stem cell fate decisions may yield key insights into methods to expand blood cell production that may have major implications for blood banking. Clinical Benefit Generation of MPD stem cells from hESC would provide an experimentally amenable and relevant platform to expedite the development ofsensitive diagnostic techniques to predict disease progression and to develop potentially curative anti-CSC therapies. Economic Benefit The translational research performed in the context of this grant will not only speed the delivery of innovative MPD targeted therapies for Californians, it will help to train Californiaís future R&D workforce in addition to developing leaders in translational medicine. This grant will provide the personnel working on the project with a clear view of the importance of thir research to cancer therapy and a better perspective on future career opportunities in California as well as directly generate revenue through development and implementation of innovative therapies aimed at eradicating MPD stem cells that may be more broadly applicable to CSC in other malignances.
Progress Report: 
  • Summary of Overall Progress
  • This grant focuses on generation of MPN stem cells from hESC or CB and correlates leukemic potential with MPN patient samples. In the first year of this grant, we have demonstrated that 1) hESC differentiate on AGM stroma to the CD34+ stage, which is associated with increased GATA-1, Flk2, GATA-2 and ADAR1 expression; 2) hESC CD34+ differentiation is enhanced in vitro and in vivo in the presence of a genetically engineered mouse stroma, which produces human stem cell factor, IL-3 and G-CSF; 3) hESC CD34+ cells can be transduced with our novel lentiviral BCR-ABL vector, which, unlike retroviral BCR-ABL, can transduce quiescent stem cells; 4) BCR-ABL expression by CP CML progenitors does not sustain engraftment but rather leukemic transformation is predicated, in part, on bcl-2 overexpression; 5) JAK2V617F expression in hES or CB stem cells is insufficient to induce leukemic transformation; 6) BCR-ABL transduced hESC CD34+ cells have significantly higher BCR-ABL transplantation potential than CP CML progenitors suggesting that they have higher survival capacity; 7) lentiviral -catenin transduction of BCR-ABL hESC CD34+ cells leads to serial transplantation indicative of LSC formation; 8) CML BC LSC persist in vivo despite potent BCR-ABL inhibition with dasatinib therapy and will likely require combined inhibitor therapy to eradicate. Currently, HEEBO arrays and phospho-flow studies are underway to detect bcl-2 family members and self-renewal protein expression in BCR-ABL and JAK2 V617F transduced hESC and CB CD34+ cells compared with MPN patient derived progenitors. This will aid in development of combined MPN stem cell inhibitor strategies in this grant.
  • This grant focuses on generation of myeloproliferative disorder or neoplasm (MPN) stem cells from pluripotent (hESC) or multipotent (CB) stem cells and seeks to correlate their leukemic potential with that of MPN patient sample-derived stem cells. To provide a platform for testing induction of stem cell differentiation, survival and self-renewal by BCR-ABL versus JAK2, hESC were utilized in the first year and as more patient samples and cord blood became available these were utilized.
  • In the first year of this grant, we found that hESC undergo hematopoietic differentiation on AGM stroma to the CD34+ stage resulting in increased GATA-1, Flk2, ADAR1 and GATA-2 expression. Moreover, CD34+ differentiation was enhanced on a genetically engineered mouse stroma (SL/M2) secreting human SCF, IL-3 and G-CSF. Lentiviral BCR-ABL transduced hESC-derived CD34+ cells had higher BCR-ABL+ cellular transplantation potential than chronic phase (CP) CML progenitors, indicative of a higher survival capacity. However, they sustained self-renewal only when co-transduced with lentiviral -catenin (Rusert et al, manuscript in preparation) suggesting that blast crisis evolution requires acquisition of both enhanced survival and self-renewal potential. Similarly, lentiviral mouse mutant JAK2 expression in hESC or CB stem cells was insufficient to produce self-renewing MPN stem cells, indicating that the cellular context, nature of the genetic driver and responses to extrinsic cues from the microenvironment play seminal roles in regulating therapeutically resistant MPN stem cell properties such as aberrant survival, differentiation, self-renewal and dormancy.
  • In the second year of this five year grant, we have focused on human cord blood (CB) stem cells compared with a large number of MPN patient samples propagated on SL/M2 stroma or in RAG2-/-c-/- mice to more adequately recapitulate the human MPN stem cell niche. Also, to more faithfully recapitulate human (rather than the previously published lentiviral mouse JAK2 vectors, Cancer Cell 2008) JAK2 driven MPNs, we cloned human wild-type JAK2 and human JAK2 V617F from MPN patient samples into lentiviral-GFP vectors (Court Recart A*, Geron I* et al, manuscript in preparation). We also incorporated full transcriptome RNA (ABI SOLiD 4.0) sequencing, PCR array and nanofluidic phosphoproteomics technology to better gauge the impact of JAK2 versus BCR-ABL on stem cell fate, survival, self-renewal and dormancy in the context of specific malignant microenvironments and the relative susceptibility of MPN stem cells in these niches to single agent molecularly targeted inhibitors.
  • This grant focuses on generation of myeloproliferative disorder or neoplasm (MPN) stem cells from pluripotent human embryonic stem cells (hESC) or multipotent cord blood (CB) stem cells, and seeks to correlate their leukemic potential with that of disease progression in MPN patient sample-derived stem cells. In the first and second years of this grant, we found that lentiviral BCR-ABL transduced hESC-derived CD34+ cells had higher leukemic transplantation potential than chronic phase (CP) chronic myeloid leukemia (CML) progenitors. However, they sustained self-renewal only when co-transduced with lentiviral beta-catenin suggesting that blast crisis (BC) evolution requires acquisition of both enhanced survival and self-renewal potential. Similarly, we have shown using lentiviral vectors that mouse and human mutant JAK2 were insufficient to produce self-renewing MPN stem cells. New results in Year 3 demonstrate that BCR-ABL and JAK2 activation drive differentiation of hematopoietic progenitors towards an erthyroid/myeloid lineage bias. We have used full transcriptome RNA-Sequencing (RNA-Seq) technology to evaluate the genetic and epigenetic status of BCR-ABL and JAK2-transduced normal progenitor cells as well as patient-derived MPN progenitors. This has allowed us to probe the mechanisms of aberrant differentiation and self-renewal of MPN progenitors and identify unique gene expression signatures of disease progression.
  • We previously found that overexpression and splice isoform switching of a key RNA editing enzyme – adenosine deaminase acting on dsRNA (ADAR), and splice isoform changes in pro-survival BCL2 family members, correspond with disease progression in CML. In the current reporting period, RNA-Seq analyses revealed that ADAR1-driven activation of RNA editing contributed to malignant progenitor reprogramming, promoting aberrant differentiation and self-renewal of MPN stem cells. Knocking down ADAR1 using lentiviral shRNA vectors reduced the self-renewal potential of CML progenitors. This work has culminated in a manuscript that has now been submitted to PNAS (Jiang et al.). Recent results also show that ADAR1 is activated in progenitors from patients with JAK2-driven MPNs. Thus, ADAR1 may be an important factor that works in concert with BCR-ABL or JAK2 to facilitate disease progression in MPNs.
  • Our results show that another self-renewal factor that may drive BCR-ABL or JAK2-mediated propagation of disease from quiescent MPN progenitors is Sonic hedgehog (Shh). We have examined the expression patterns of this pathway in MPN progenitors using qRT-PCR and RNA-Seq, and have tested a pharmacological inhibitor of this pathway in a robust stromal co-culture model of MPN progression to Acute Myeloid Leukemia (AML).
  • In sum, we have utilized full transcriptome RNA-Seq and qRT-PCR coupled with hematopoietic progenitor assays and in vivo studies to evaluate the impact of JAK2 versus BCR-ABL on stem cell fate, survival, self-renewal and dormancy. These techniques have allowed us to investigate in more detail the role of genetic and epigenetic alterations that drive disease progression in the context of specific malignant microenvironments, and the relative susceptibility of MPN stem cells in these niches to single agent molecularly targeted inhibitors.
  • The main objectives of this project are generation of myeloproliferative disorder or neoplasm (MPN) stem cells from pluripotent human embryonic stem cells (hESC) or multipotent stem cells, and identification of crucial leukemia stem cell (LSC) survival and self-renewal factors that contribute to the development and progression of BCR-ABL and JAK2-driven hematopoietic disorders. A key finding of our work thus far is that in addition to activation of BCR-ABL or JAK2 oncogenes, generation of self-renewing MPN LSC requires stimulation of other pro-survival and self-renewal factors such as β-catenin, Sonic hedgehog (SHH), BCL2, and in particular the RNA editing enzyme ADAR1, which we identified as a novel regulator of LSC differentiation and self-renewal.
  • We have now completed comprehensive gene expression analyses from next-generation RNA-sequencing studies performed on normal and leukemic human hematopoietic progenitor cells from primary cord blood samples and adult normal peripheral blood samples, along with normal cord blood transduced with BCR-ABL or JAK2 oncogenes, and primary samples from patients with BCR-ABL+ chronic phase and blast crisis chronic myeloid leukemia (CML). These studies revealed that gene expression patterns in survival and self-renewal pathways (SHH, JAK2, ADAR1) clearly distinguish normal and leukemic progenitor cells as well as MPN disease stages. These data provide a vast resource for identification of LSC-specific biomarkers with diagnostic and prognostic clinical applications, as well as providing new potential therapeutic targets to prevent disease progression.
  • New results from RNA-sequencing studies reveal high levels of expression of inflammatory mediators in human blast crisis CML progenitors and in BCR-ABL transduced normal cord blood stem cells. Moreover, expression of the inflammation-responsive form of ADAR1 correlated with generation of an abnormally spliced GSK3β gene product that has been previously linked to LSC self-renewal. These results have now been published in the journal PNAS (Jiang et al.). Together, we have demonstrated that ADAR1 drives hematopoietic cell fate by skewing cell differentiation – a trend which occurs during normal bone marrow aging – and promotes LSC self-renewal through alternative splicing of critical survival and self-renewal factors. Notably, inhibition of ADAR1 through genetic knockdown strategies reduced self-renewal capacity of CML LSC, and may have important applications in treatment of other disorders that transform to acute leukemia. Thus, these results suggest that RNA editing (ADAR1) and splicing represent key therapeutic targets for preventing LSC self-renewal – a primary driver of leukemic progression.
  • Whole transcriptome profiling studies coupled with qRT-PCR, hematopoietic progenitor assays and in vivo studies have shown that combined inhibition of BCR-ABL and JAK2 is another effective method to reduce LSC self-renewal in pre-clinical models. New results show that lentivirus-enforced BCR-ABL or JAK2 expression in normal cord blood stem cells drives generation of distinct splice isoforms of STAT5a. While inhibition of JAK2/STAT5a signaling or BCR-ABL tyrosine kinase activity alone did not eradicate self-renewing LSC, combined JAK2 and BCR-ABL inhibition dramatically impaired LSC survival and self-renewal in the protective bone marrow niche, and increased the lifespan of serial transplant recipients. These effects were associated with reduction in STAT5a isoform expression – which represents a novel molecular marker of response to combined BCR-ABL/JAK2 inhibition – and altered expression of cell cycle genes in human progenitor cells harvested from the bone marrow of transplanted mice. These results are the subject of a new manuscript currently under review (Court et al.). Moreover, this work has led to the development of new experimental tools that will facilitate study of LSC maintenance and cell cycle status in the context of normal versus diseased bone marrow microenvironments. In sum, studies completed thus far have uncovered a role for RNA editing and splicing alterations in leukemic progression, particularly in specific microenvironments. Using specific inhibitors targeting BCR-ABL and JAK2, along with strategies to block RNA editing and aberrant splicing activities, we have been able to establish the relative susceptibility of MPN stem cells to molecular inhibitors with activity against LSC residing in select hematopoietic niches that are difficult to treat with conventional chemotherapeutic agents.
  • In the final year of this project, we focused on elucidating the mechanisms of leukemia stem cell (LSC) generation in JAK2 compared with BCR-ABL1 initiated myeloproliferative neoplasms (MPN, previously called myeloproliferative disorders). To this end, we investigated the MPN stem cell propagating effects of BCR-ABL1 or JAK2 alone or in combination with activation of the human embryonic stem cell RNA editase, ADAR1. Recently, we discovered that ADAR1, which edits adenosine to inosine bases in the context of primate specific Alu sequences, leads to GSK3β missplicing and β-catenin activation in chronic phase (CP) CML progenitors leading to blast crisis (BC) transformation and LSC generation. In addition, variant isoform expression of a Wnt/β-catenin target gene, CD44, was also characteristic of LSC. In a previous report (Jiang et al., PNAS 2013), identification of ADAR1 as a malignant reprogramming factor represented the first description of RNA editing as a regulator of reprogramming. When lentivirally overexpressed, ADAR1 endows committed CP myeloid progenitors with self-renewal capacity. Further studies revealed that JAK2/STAT5a activates ADAR1 leading to deregulation of cell cycle progression and global down-regulation of microRNA expression thereby uncovering two additional key mechanisms of LSC generation in MPNs. This is consistent with our findings from gene expression profiling studies performed in the previous year, along with functional classification and network analysis using Ingenuity Pathway Analysis (IPA), showing that cell cycle-related genes were significantly altered in human progenitors from xenografted mice treated with combination JAK2 and BCR-ABL inhibitor therapy compared with single agent therapies alone. Together these data suggest that combined BCR-ABL and JAK2 inhibition impairs LSC survival and self-renewal via cell cycle modulation. ADAR1 and other stem cell regulatory pathways such as CD44 represent novel targets to detect and eradicate the self-renewing LSC. We also performed new studies that elucidate the stem cell-intrinsic genetic changes that occur during human bone marrow aging, which may contribute to BCR-ABL or JAK2-dependent functional alterations.
  • This work has led to discovery of a novel role for embryonic stem cell genes and splice isoforms, including ADAR1 p150 and a transcript variant of CD44, in the maintenance of LSC that promote MPN progression. In addition, through the course of this research we have 1) developed novel lentiviral tools for investigating normal hematopoietic stem and progenitor (HSPC) and malignant LSC survival, differentiation, self-renewal, and cell cycle regulation, and 2) devised innovative LSC diagnostic strategies and 3) tested therapeutic strategies targeting LSC-associated RNA editing and splice isoform generation that selectively inhibit LSC self-renewal.

Stem Cells for Immune System Regeneration to Fight Cancer

Funding Type: 
New Faculty II
Grant Number: 
RN2-00902
ICOC Funds Committed: 
$3 072 000
Disease Focus: 
Melanoma
Cancer
oldStatus: 
Active
Public Abstract: 
This proposal will define the biology of stem cell engineering to produce a cancer-fighting immune system. The immune system protects our body against most outside threats. However, it frequently fails to protect us from cancer. The T cell receptor (or TCR), a complex protein on the surface of an immune cell (or lymphocyte), allows to specifically recognize cancer cells. The TCR functions like a steering wheel for lymphocytes, allowing them to travel around the body and specifically find and attack cancercells. The goal of this research is to put TCR genes into stem cells to generate a renewable source of cancer-fighting lymphocytes. The studies in mice provide compelling evidence that inserting TCR genes into stem cells has several advantages for the progeny lymphocytes, allowing them to better fight cancer. The next step is to bring this approach to patients with cancer. The main reason is that the TCR genes inserted into stem cells allow the generation of a larger army of TCR re-directed cancer-fighting killer lymphocytes. I have dedicated most of my prior work to make the transition from studies in mice to the bedside. I have gaind the expertise to conduct clinical trials using cells as targeted drugs from patients. This experience has allowed me to design and start working on the clinical trials that will test the concept of inserting TCR genes into progenitors of lymphocytes and give them to patients. With my collaborators at other institutions, we have raised the adequate resources from private foundations and the NIH to initiate clinical trials inserting TCR genes into lymphocytes. I request additional funds from CIRM to allow me to extract the most information from the clinical trials and then help take them one step further by ultimately testing the use of hematopoietic stem cells (HSC) and induced pluripotent cells (iPS) to engineer a cancer-fighting immune system. There are several challenges tha need to be addressed, including what is the best approach to generate both immediate and long-term cancer fighting cells, what are the optimal stem cells to target, and how they should be manipulated and given to patients in the clinic. The study of samples obtained from patients participating in pilot clinical trials will provide information how to design new clinical trials using the method of inserting the cancer-specific TCR genes into stem cells. The experience of regenerating a cancer-fighting immune system in humans could then be applied to multiple cancer types and to infectious diseases that currently lack good treatment options.
Statement of Benefit to California: 
Preclinical studies have validated the concept that the immune system can be harnessed to fight cancer. However, clinical testing has failed short of expectations. I propose to genetically program the immune system starting from stem cells with the hope of advancing cancer immunotherapy. Malignant melanoma will be the cancer for the initial testing of this approach. Melanoma has a track record of being “immune-sensitive” and there are well-defined antigens against which the immune system can be targeted. Melanoma is the cancer with the fastest rising incidence in the U.S. This disease impacts heavily in our society, since it strikes adults at the prime years of life (30-60 years old). In fact, melanoma is the second cancer cause of lost of productive years given its incidence early in life and its high mortality once it becomes metastatic. The problem is particularly worrisome in areas of the world like California, with large populations of persons originally from other latitudes with much lower sun exposure and with skin types unable to handle the increased exposure to ultraviolet (UV) light in California. Although most frequent in young urban Caucasians, melanoma also strikes other ethnicities. The incidence of acral melanoma (non-UV light induced melanoma that develops in the palms and soles) has also steadily increased in Hispanics and Blacks over the past decades. Early melanoma can be cured with surgery. Therefore, programs aimed at early detection have the highest impact in this disease. Once it becomes metastatic, melanoma has no curative standard therapy. Despite this grim outlook, it has been long known that occasional patients participating in experimental immunotherapy protocols have long remissions and are seemingly cured. This proposal aims at incorporating the most current knowledge arising from preclinical research and prior clinical experimentation of immunotherapy strategies to engineer the immune system genetically to better fight metastatic melanoma. Bringing new science from the laboratory to the bedside requires well-designed, well-organized and informative clinical trials. It is not enough to show some responses, we need to understand how they develop and why some patients respond and other do not. Therefore, the analysis of stem cell-based immune system engineering within clinical trials proposed herein requires thorough analysis of patient-derived samples to inform the follow-up clinical testing. Information resulting from the genetic engineering of the immune system in patients with melanoma will help develop studies to direct the immune system to fight other cancers and infectious diseases like HIV. Once optimized, I envision the ability to clone T cell receptor (TCR) genes specific for tumor or infectious disease antigens expressed by different cancers or infectious agents, and use these TCRs to genetically program the patient’s immune system to attack them.
Progress Report: 
  • The awarded grant supports a patient-oriented research project to genetically engineer the human immune system to become cancer-targeted and provide benefit to patients with metastatic melanoma, a deadly form of skin cancer currently devoid of successful treatment options.
  • During the first funding period we initiated a clinical trial where patients with metastatic melanoma receive immune cells that have been re-directed by gene engineering techniques to become melanoma-specific. The immune cells are obtained from the patient’s own blood and they are manipulated in an in-house clinical grade facility for one week to insert into the cells two genes (T cell receptor or TCR genes) that turn them specific melanoma killer cells, called the. The genetic reprogramming of the immune system cells to express TCR genes is done using a crippled virus called a gene transfer vector. These cells undergo extensive testing to meet the standards of the Food and Drug Administration (FDA) before they can be given back to patients.
  • We give back the TCR re-directed immune cells to patients after receiving a chemotherapy preparative regimen to partially deplete their own immune system so the new cells have the ability to expand. In addition, the patients receive a treatment called high dose interleukin-2 (IL-2) to further allow these cells to expand. Furthermore, these patients receive three doses of dendritic cell vaccines, also generated from the patient’s own blood cells, which further helps the TCR re-directed immune cells to attack the melanoma lesions.
  • Seven patients have been enrolled onto this study at this time. Two patients are too early to evaluate and in the other patients we have early encouraging evidence of antitumor activity. We are conducting studies to determine how these cells behave in the patients by analyzing if they acquire ability to persist long term, what we call T memory stem cells. These are ongoing studies that will continue to the next funding period.
  • Finally, we have initiated the work to set up a follow up clinical trial where we will genetically modify patient’s blood stem cells, which we hypothesize will allow the continuous generation of TCR re-directed immune cells starting from the stem cells. This would provide means for immune system regeneration that would have applications to other cancers and non-cancer diseases like infectious diseases and autoimmune diseases. To this end, a new gene transfer vector has initiated clinical grade production to allow us to use it in the proposed next generation clinical trial.
  • The awarded grant supports a patient-oriented research project to genetically engineer the human immune system to become cancer-targeted and provide benefit to patients with metastatic melanoma, a deadly form of skin cancer currently devoid of successful treatment options.
  • During the second funding period we continued to conduct a clinical trial where patients with metastatic melanoma receive immune cells that have been re-directed by gene engineering techniques to become melanoma-specific. The immune cells are obtained from the patient’s own blood and they are manipulated in an in-house clinical grade facility for one week to insert into the cells two genes (T cell receptor or TCR genes) that turn them specific melanoma killer cells, called the. The genetic reprogramming of the immune system cells to express TCR genes is done using a crippled virus called a gene transfer vector. These cells undergo extensive testing to meet the standards of the Food and Drug Administration (FDA) before they can be given back to patients.
  • Ten patients have been enrolled onto this study at this time. In nine of them there has been evidence of tumor shrinkage, demonstrating the strong therapeutic activity of TCR redirected lymphocytes. However, these have been transient beneficial effects. Our ongoing studies point to a loss of function of the TCR transgenic cells over time. Therefore, it is of key importance to develop means to optimize the presence of long lasting memory cells. As proposed in the initial grant we are conducting studies to characterize the presence of T memory stem cells, which are cells able to self-replicate and maintain a cancer-fighting immune system for long periods of time. These are ongoing studies that will continue to the next funding period.
  • In addition, we have put a lot of work to set up a follow up clinical trial where we will genetically modify patient’s blood stem cells, which we hypothesize will allow the continuous generation of TCR re-directed immune cells starting from the stem cells. This would provide means for immune system regeneration that would have applications to other cancers and non-cancer diseases like infectious diseases and autoimmune diseases. To this end, we have generated new gene transfer vectors that are being studied for optimal function in relevant animal models to then allow an informed decision on the vector to take for clinical grade production and use it in the proposed next generation clinical trial.
  • The awarded grant supports patient-oriented research with the ultimate goal of reconstituting a cancer-fighting immune system. The research is conducted in samples obtained from patients with metastatic melanoma, a deadly form of skin cancer, and using preclinical models.
  • During the third funding period we have introduced modifications to enhance the ability of immune cell long term persistence within a clinical trial where patients with metastatic melanoma receive immune cells that have been re-directed by gene engineering techniques to become cancer-fighter cells. The immune cells are obtained from the patient’s own blood and they are manipulated in an in-house clinical grade facility for one week to insert into the cells two genes (T cell receptor or TCR genes) that turn them specific melanoma killer cells. The genetic reprogramming of the immune system cells to express TCR genes is done using a crippled virus called a gene transfer vector. These cells undergo extensive testing to meet the standards of the Food and Drug Administration (FDA) before they can be given back to patients.
  • When using a higher number of the TCR genetically engineered lymphocytes that are not frozen before their infusion to patients we are now detecting a higher ability of these cancer-fighting immune system cells to persist for long periods of time. This may be because the protocol modifications were guided to foster a higher ability to generate immune system cells that have long term memory and ability to self-renew (termed T memory stem cells). The detection of these cells is one of the research projects in this grant, since there is no defined set of markers for them. We have been testing several strategies to detect these cells and these are ongoing studies that will continue to the next funding period.
  • In addition, we have continued to move forward to set up a follow up clinical trial where we will genetically modify patient’s blood stem cells, which we hypothesize will allow the continuous generation of TCR re-directed immune cells starting from the stem cells. This would provide means for immune system regeneration that would have applications to other cancers and non-cancer diseases like infectious diseases and autoimmune diseases. To this end, we have tested the performance of two candidate gene transfer vectors for optimal function in humanized animal models. The results of these studies have demonstrated that one of the vectors is better suited for continued testing and it is the one that we plan to take into clinical grade production with the pre-IND activities being completed during the next funding period.
  • This grant proposed the conduct of pre-clinical work to support the use of stem cells to regenerate a cancer-fighting immune system in mice and humans, and bedside-to-bench work to analyze populations of cells with potential ability to function as long term repopulating T lymphocytes obtained from patients treated within a phase 1 clinical trial. During this past year we have made progress to continue our study the biology of T cells with characteristics of long term memory immune cells, termed T memory stem cells (TMSC). We have recently studied the ability to use specific small molecule targeted inhibitors to increase the fraction of mature T cells with TMSC characgteristics, which will improve our ability to characterize them. We have also advanced our studies to test the transplantation of hematopoietic stem cells (HSC) genetically engineered to express T cell receptors (TCR) and provide a continuous progeny of TCR transgenic mature T cells in humanized mouse models. This work provides the rationale to allow us advancing our plans to conduct a clinical trial based on the transplantation of HSC genetically engineered to express TCR to regenerate a cancer-fighting immune system. We have successfully competed for a CIRM disease team award and have gone through a pre-IND meeting with the FDA to adequately plan for such a clinical trial to be started in approximately two years.
  • We have continued to make progress to reach the proposed goals of this grant:
  • We have further characterized immune cells that naturally express three transcription factors that transform normal cells into pluripotent stem cells. We are interested in determining if these immune cells with pluripotency transcription factors are long term memory cells able to maintain immune responses.
  • In parallel, we have continued to advance our studies to bring a new approach to the clinic based on the genetic modification of blood stem cells to regenerate a cancer-fighting immune system. In the past year we have discussed our plans with the Food and Drug Administration and we have proceeded to follow their recommendations on what needs to be provided to open such a clinical trial. This clinical trial will be further developed within a newly approved CIRM disease team grant.

Center of Excellence for Stem Cell Genomics

Funding Type: 
Genomics Centers of Excellence Awards (R)
Grant Number: 
GC1R-06673-C
ICOC Funds Committed: 
$40 000 000
Disease Focus: 
Brain Cancer
Cancer
Developmental Disorders
Cancer
Toxicity
Public Abstract: 
The Center of Excellence in Stem Cell Genomics will bring together investigators from seven major California research institutions to bridge two fields – genomics and pluripotent stem cell research. The projects will combine the strengths of the center team members, each of whom is a leader in one or both fields. The program directors have significant prior experience managing large-scale federally-funded genomics research programs, and have published many high impact papers on human stem cell genomics. The lead investigators for the center-initiated projects are expert in genomics, hESC and iPSC derivation and differentiation, and bioinformatics. They will be joined by leaders in stem cell biology, cancer, epigenetics and computational systems analysis. Projects 1-3 will use multi-level genomics approaches to study stem cell derivation and differentiation in heart, tumors and the nervous system, with implications for understanding disease processes in cancer, diabetes, and cardiac and mental health. Project 4 will develop novel tools for computational systems and network analysis of stem cell genome function. A state-of-the-art data management program is also proposed. This research program will lead the way toward development of the safe use of stem cells in regenerative medicine. Finally, Center resources will be made available to researchers throughout the State of California through a peer-reviewed collaborative research program.
Statement of Benefit to California: 
Our Center of Excellence for Stem Cell Genomics will help California maintain its position at the cutting edge of Stem Cell research and greatly benefit California in many ways. First, diseases such as cardiovascular disease, cancer, neurological diseases, etc., pose a great financial burden to the State. Using advanced genomic technologies we will learn how stem cells change with growth and differentiation in culture and can best be handled for their safe use for therapy in humans. Second, through the collaborative research program, the center will provide genomics services to investigators throughout the State who are studying stem cells with a goal of understanding and treating specific diseases, thereby advancing treatments. Third, it will employ a large number of “high tech” individuals, thereby bringing high quality jobs to the state. Fourth, since many investigators in this center have experience in founding successful biotech companies it is likely to “spin off” new companies in this rapidly growing high tech field. Fifth, we believe that the iPS and information resources generated by this project will have significant value to science and industry and be valuable for the development of new therapies. Overall, the center activities will create a game-changing network effect for the state, propelling technology development, biological discovery and disease treatment in the field.

Center of Excellence for Stem Cell Genomics

Funding Type: 
Genomics Centers of Excellence Awards (R)
Grant Number: 
GC1R-06673-A
ICOC Funds Committed: 
$40 000 000
Disease Focus: 
Brain Cancer
Cancer
Developmental Disorders
Heart Disease
Cancer
Genetic Disorder
Stem Cell Use: 
iPS Cell
Embryonic Stem Cell
Adult Stem Cell
Cancer Stem Cell
Cell Line Generation: 
iPS Cell
Public Abstract: 
The Center of Excellence in Stem Cell Genomics will bring together investigators from seven major California research institutions to bridge two fields – genomics and pluripotent stem cell research. The projects will combine the strengths of the center team members, each of whom is a leader in one or both fields. The program directors have significant prior experience managing large-scale federally-funded genomics research programs, and have published many high impact papers on human stem cell genomics. The lead investigators for the center-initiated projects are expert in genomics, hESC and iPSC derivation and differentiation, and bioinformatics. They will be joined by leaders in stem cell biology, cancer, epigenetics and computational systems analysis. Projects 1-3 will use multi-level genomics approaches to study stem cell derivation and differentiation in heart, tumors and the nervous system, with implications for understanding disease processes in cancer, diabetes, and cardiac and mental health. Project 4 will develop novel tools for computational systems and network analysis of stem cell genome function. A state-of-the-art data management program is also proposed. This research program will lead the way toward development of the safe use of stem cells in regenerative medicine. Finally, Center resources will be made available to researchers throughout the State of California through a peer-reviewed collaborative research program.
Statement of Benefit to California: 
Our Center of Excellence for Stem Cell Genomics will help California maintain its position at the cutting edge of Stem Cell research and greatly benefit California in many ways. First, diseases such as cardiovascular disease, cancer, neurological diseases, etc., pose a great financial burden to the State. Using advanced genomic technologies we will learn how stem cells change with growth and differentiation in culture and can best be handled for their safe use for therapy in humans. Second, through the collaborative research program, the center will provide genomics services to investigators throughout the State who are studying stem cells with a goal of understanding and treating specific diseases, thereby advancing treatments. Third, it will employ a large number of “high tech” individuals, thereby bringing high quality jobs to the state. Fourth, since many investigators in this center have experience in founding successful biotech companies it is likely to “spin off” new companies in this rapidly growing high tech field. Fifth, we believe that the iPS and information resources generated by this project will have significant value to science and industry and be valuable for the development of new therapies. Overall, the center activities will create a game-changing network effect for the state, propelling technology development, biological discovery and disease treatment in the field.

Clinical Investigation of a Humanized Anti-CD47 Antibody in Targeting Cancer Stem Cells in Hematologic Malignancies and Solid Tumors

Funding Type: 
Disease Team Therapy Development III
Grant Number: 
DR3-06965
ICOC Funds Committed: 
$12 726 396
Disease Focus: 
Cancer
Solid Tumor
Blood Cancer
Stem Cell Use: 
Cancer Stem Cell
oldStatus: 
Closed
Public Abstract: 
Most normal tissues are maintained by a small number of stem cells that can both self-renew to maintain stem cell numbers, and also give rise to progenitors that make mature cells. We have shown that normal stem cells can accumulate mutations that cause progenitors to self-renew out of control, forming cancer stem cells (CSC). CSC make tumors composed of cancer cells, which are more sensitive to cancer drugs and radiation than the CSC. As a result, some CSC survive therapy, and grow and spread. We sought to find therapies that include all CSC as targets. We found that all cancers and their CSC protect themselves by expressing a ‘don’t eat me’ signal, called CD47, that prevents the innate immune system macrophages from eating and killing them. We have developed a novel therapy (anti-CD47 blocking antibody) that enables macrophages to eliminate both the CSC and the tumors they produce. This anti-CD47 antibody eliminates human cancer stem cells when patient cancers are grown in mice. At the time of funding of this proposal, we will have fulfilled FDA requirements to take this antibody into clinical trials, showing in animal models that the antibody is safe and well-tolerated, and that we can manufacture it to FDA specifications for administration to humans. Here, we propose the initial clinical investigation of the anti-CD47 antibody with parallel first-in-human Phase 1 clinical trials in patients with either Acute Myelogenous Leukemia (AML) or separately a diversity of solid tumors, who are no longer candidates for conventional therapies or for whom there are no further standard therapies. The primary objectives of our Phase I clinical trials are to assess the safety and tolerability of anti-CD47 antibody. The trials are designed to determine the maximum tolerated dose and optimal dosing regimen of anti-CD47 antibody given to up to 42 patients with AML and up to 70 patients with solid tumors. While patients will be clinically evaluated for halting of disease progression, such clinical responses are rare in Phase I trials due to the advanced illness and small numbers of patients, and because it is not known how to optimally administer the antibody. Subsequent progression to Phase II clinical trials will involve administration of an optimal dosing regimen to larger numbers of patients. These Phase II trials will be critical for evaluating the ability of anti-CD47 antibody to either delay disease progression or cause clinical responses, including complete remission. In addition to its use as a stand-alone therapy, anti-CD47 antibody has shown promise in preclinical cancer models in combination with approved anti-cancer therapeutics to dramatically eradicate disease. Thus, our future clinical plans include testing anti-CD47 antibody in Phase IB studies with currently approved cancer therapeutics that produce partial responses. Ultimately, we hope anti-CD47 antibody therapy will provide durable clinical responses in the absence of significant toxicity.
Statement of Benefit to California: 
Cancer is a leading cause of death in the US accounting for approximately 30% of all mortalities. For the most part, the relative distribution of cancer types in California resembles that of the entire country. Current treatments for cancer include surgery, chemotherapy, radiation therapy, biological therapy, hormone therapy, or a combination of these interventions ("multimodal therapy"). These treatments target rapidly dividing cells, carcinogenic mutations, and/or tumor-specific proteins. A recent NIH report indicated that among adults, the combined 5-year relative survival rate for all cancers is approximately 68%. While this represents an improvement over the last decade or two, cancer causes significant morbidity and mortality to the general population as a whole. New insights into the biology of cancer have provided a potential explanation for the challenge of treating cancer. An increasing number of scientific studies suggest that cancer is initiated and maintained by a small number of cancer stem cells that are relatively resistant to current treatment approaches. Cancer stem cells have the unique properties of continuous propagation, and the ability to give rise to all cell types found in that particular cancer. Such cells are proposed to persist in tumors as a distinct population, and because of their increased ability to survive existing anti-cancer therapies, they regenerate the tumor and cause relapse and metastasis. Cancer stem cells and their progeny produce a cell surface ‘invisibility cloak’ called CD47, a ‘don’t eat me signal’ for cells of the native immune system to counterbalance ‘eat me’ signals which appear during cancer development. Our anti-CD47 antibody counters the ‘cloak’, enabling the patient’s natural immune system to eliminate the cancer stem cells and cancer cells. Our preclinical data provide compelling support that anti-CD47 antibody might be a treatment strategy for many different cancer types, including breast, bladder, colon, ovarian, glioblastoma, leiomyosarcoma, squamous cell carcinoma, multiple myeloma, lymphoma, and acute myelogenous leukemia. Development of specific therapies that target all cancer stem cells is necessary to achieve improved outcomes, especially for sufferers of metastatic disease. We hope our clinical trials proposed in this grant will indicate that anti-CD47 antibody is a safe and highly effective anti-ancer therapy that offers patients in California and throughout the world the possibility of increased survival and even complete cure.

Genetic Re-programming of Stem Cells to Fight Cancer

Funding Type: 
Disease Team Therapy Development - Research
Grant Number: 
DR2A-05309
ICOC Funds Committed: 
$19 999 563
Disease Focus: 
Melanoma
Cancer
Stem Cell Use: 
Adult Stem Cell
oldStatus: 
Closed
Public Abstract: 
Science has made great progress in the treatment of certain cancers with targeted and combination therapies, yet prolonged remissions or cures are rare because most cancer therapies only inhibit cell growth and/or reduce such growth but do not stop the cancer. The study investigators propose to develop an Investigational New Drug (IND) and fully enroll a phase I clinical trial within the grant period to genetically redirect the patient’s immune response to specifically attack the cancer starting from hematopoietic (blood) stem cells (HSC) in patients with advanced forms of the aggressive skin cancer malignant melanoma. Evaluation of immune system reconstitution, effectiveness and immune response during treatment will use imaging with Positron Emission Tomography (PET) scans. The HSC treatment approach has been validated in extensive studies in the laboratory. The investigators of this grant have recently initiated a clinical trial where adult immune cells obtained from blood are genetically modified to become specific killer cells for melanoma. These cells are administered back to patients. The early data from this study is encouraging in terms of the ability to generate these cells, safely administer them to patients leading to beneficial early clinical effects. However, the adult immune cells genetically redirected to attack cancer slowly decrease over time and lose their killer activity, mainly because they do not have the ability to self-renew. The advantage of the proposed HSC method over adult blood cells is that the genetically modified HSC will continuously generate melanoma-targeted immune killer cells, hopefully providing prolonged protection against the cancer. The IND filing with the FDA will use the modified HSC in advanced stage melanoma patients. By the end of year 4, we will have fully accrued this phase 1 clinical trial and assessed the value of genetic modification of HSCs to provide a stable reconstitution of a cancer-fighting immune system. The therapeutic principles and procedures we develop will be applicable to a wide range of cancers and transferrable to other centers that perform bone marrow and HSC transplants. The aggressive milestone-driven IND timeline is based on our: 1) Research that led to the selection and development of a blood cell gene for clinical use in collaboration with the leading experts in the field, 2) Wealth of investigator-initiated cell-based clinical research and the Human Gene Medicine Program (largest in the world with 5% of all patients worldwide), 3) Experience filing a combined 15 investigator initiated INDs for research with 157 patients enrolled in phase I and II trials, and 4) Ability to have leveraged significant institutional resources of on-going HSC laboratory and clinical research contributed ~$2M of non-CIRM funds to pursue the proposed research goals, including the resulting clinical trial.
Statement of Benefit to California: 
Cancer is the leading cause of death in the US and melanoma incidence is increasing fastest (~69K new cases/year). Treatment of metastatic melanoma is an unmet local and national medical need (~9K deaths/year) striking adults in their prime (20-60 years old). Melanoma is the second greatest cancer cause of lost productive years given its incidence early in life and its high mortality once it metastasizes. The problem is severe in California, with large populations with skin types sensitive to the increased exposure to ultraviolet light. Most frequently seen in young urban Caucasians, melanoma also strikes other ethnicities, i.e., steady increases of acral melanoma in Latinos and African-Americans over the past decades. Although great progress has been made in the treatment of certain leukemias and lymphomas with targeted and combination therapies, few options exist for the definitive treatment of late stage solid tumors. When cancers like lung, breast, prostate, pancreas, and melanoma metastasize beyond surgical boundaries, prolonged remissions or cures are rare and most cancer therapies only inhibit cell growth and/or reduce such growth but do not stop the cancer. Our proposal, the filing of an IND and the conduct of a phase 1 clinical trial using genetically modified autologous hematopoietic stem cells (HSC) for the immunotherapy of advanced stage melanoma allowing sustained production of cancer-reactive immune cells, has the potential to address a significant and serious unmet clinical need for the treatment of melanoma and other cancers, increase patient survival and productivity, and decrease cancer-related health care costs. The advantage of the proposed HSC methodology over our current work with peripheral blood cells is that genetically modified stem cells will continuously generate melanoma-targeted immune cells in the patient’s body providing prolonged protection against the cancer. The therapeutic principles and procedures developed here will be applicable to a wide range of cancers. Good Manufacturing Practices (GMP) reagents and clinical protocols developed by our team will be transferable to other centers where bone marrow and peripheral blood stem cell transplantation procedures are done.

CD61-driven stemness program in epithelial cancer

Funding Type: 
Basic Biology V
Grant Number: 
RB5-06978
ICOC Funds Committed: 
$1 161 000
Disease Focus: 
Solid Tumor
Cancer
Stem Cell Use: 
Cancer Stem Cell
oldStatus: 
Closed
Public Abstract: 
Tumors contain a heterogeneous mix of cancer cells with distinct features, including subsets of particularly aggressive stem-like cells. Since a single cancer stem cell can self-renew, divide, and differentiate to reconstitute the heterogeneity of an entire tumor, the ability of one cell to evade therapy or surgical resection could lead to tumor re-growth and disease relapse. Few, if any, individual markers have been capable of identifying cancer stem cells among distinct tumor types. It is therefore remarkable that we have detected enrichment of CD61 on stem-like cells within tumor biopsies from many different drug-resistant samples of lung, breast, pancreatic, and brain tumors from mice or humans. CD61 promotes a stem-like reprogramming event, since ectopic expression CD61 induces stemness, including self-renewal, tumor-forming ability, and resistance to therapy. CD61 drives these behaviors by activating a signaling pathway which can be inhibited to reverse stemness and sensitize tumors to therapy. Our project is focused on learning how CD61 drives this cancer stem cell program, and how the increase in CD61 could be prevented or reversed. If successful, our work will provide valuable new insight into a cancer stem cell program that is unexpectedly shared among a variety of solid tumor types.
Statement of Benefit to California: 
The American Cancer Society estimates 171,330 new cancer cases will be diagnosed in California this year, a 10th of the national total. As part of an NCI-designated comprehensive cancer, we are uniquely positioned to translate our basic science research into clinical impact for the cancer patients within our community. From a clinical perspective, the understanding gained from our proposed studies will broadly benefit patients in California who will be diagnosed with an epithelial cancer this year, including 25,360 new breast cancer patients and 18,720 new lung cancer patients. Gaining fundamental insight into how these cancers are reprogrammed to become more stem cell-like as they acquire resistance to therapy will facilitate development of new strategies to prevent or reverse this behavior to benefit these large numbers of patients who live in California. In addition, our work will also yield new diagnostic tools that could identify which patients might respond to certain therapies. At the basic science level, our project will also serve to elucidate the mechanisms by which cancer stem cells contribute to cancer progression and response to therapy. During the course of our project, we will be able to train more people in California to work on this cutting-edge research, and to establish a foundation for the logical design of anti-cancer therapies targeting this unique cancer stem cell population.

Therapeutic Eradication of Cancer Stem Cells

Funding Type: 
Disease Team Therapy Development III
Grant Number: 
DR3-06924
ICOC Funds Committed: 
$4 179 600
Disease Focus: 
Blood Cancer
Cancer
oldStatus: 
Closed
Public Abstract: 
Cancer is a leading cause of death in California. Research has found that many cancers can spread throughout the body and resist current anti-cancer therapies because of cancer stem cells, or CSC. CSC can be considered the seeds of cancer; they can resist being killed by anti-cancer drugs and can lay dormant, sometimes for long periods, before growing into active cancers at the original tumor site, or at distant sites throughout the body. Required are therapies that can kill CSC while not harming normal stem cells, which are needed for making blood and other cells that must be replenished. We have discovered a protein on the surface of CSC that is not present on normal cells of healthy adults. This protein, called ROR1, ordinarily is found only on cells during early development in the embryo. CSC have co-opted the use of ROR1 to promote their survival, proliferation, and spread throughout the body. We have developed a monoclonal antibody that is specific for ROR1 and that can inhibit these functions, which are vital for CSC. Because this antibody does not bind to normal cells, it can serve as the “magic bullet” to deliver a specific hit to CSC. We will conduct clinical trials with the antibody, first in patients with chronic lymphocytic leukemia to define the safety and best dose to use. Then we plan to conduct clinical trials involving patients with other types of cancer. To prepare for such clinical trials, we will use our state-of-the-art model systems to investigate the best way to eradicate CSC of other intractable leukemias and solid tumors. Finally, we will investigate the potential for using this antibody to deliver toxins selectively to CSC. This selective delivery could be very active in killing CSC without harming normal cells in the body because they lack expression of ROR1. With this antibody we can develop curative stem-cell-directed therapy for patients with any one of many different types of currently intractable cancers.
Statement of Benefit to California: 
The proposal aims to develop a novel anti-cancer-stem-cell (CSC) targeted therapy for patients with intractable malignancies. This therapy involves use of a fully humanized monoclonal antibody specific for a newly identified, CSC antigen called ROR1. This antibody was developed under the auspices of a CIRM disease team I award and is being readied for phase I clinical testing involving patients with chronic lymphocytic leukemia (CLL). Our research has revealed that the antibody specifically reacts with CSC of other leukemias and many solid-tumor cancers, but does not bind to normal adult tissues. Moreover, it has functional activity in blocking the growth and survival of CSC, making it ideal for directing therapy intended to eradicate CSC of many different cancer types, without affecting normal adult stem cells or other normal tissues. As such, treatment could avoid the devastating physical and financial adverse effects associated with many standard anti-cancer therapies. Also, because this therapy attacks the CSC, it might prove to be a curative treatment for California patients with any one of a variety different types of currently intractable cancers. Beyond the significant benefit to the patients and families that are dealing with cancer, this project will also strengthen the position of the California Institute of Regenerative Medicine as a leader in cancer stem cell biology, and will deliver intellectual property to the state of California that may then be licensed to pharmaceutical companies. In summary, the benefits to the citizens of California from the CIRM disease team 3 grant are: (1) Direct benefit to the thousands of patients with cancer (2) Financial savings through definitive treatment that obviates costly maintenance or salvage therapies for patients with intractable cancers (3) Potential for an anti-cancer therapy with a high therapeutic index (4) Intellectual property of a broadly active uniquely targeted anti-CSC therapeutic agent.

A Phase I dose escalation and expansion clinical trial in patients with advanced solid tumors

Funding Type: 
Disease Team Therapy Development III
Grant Number: 
DR3-07067
ICOC Funds Committed: 
$6 924 317
Disease Focus: 
Cancer
oldStatus: 
Closed
Public Abstract: 
Cancer is a major cause of morbidity and mortality worldwide. Many believe that progress in drug development has not been as rapid as one would have predicted based on the significant technological advancements that have led to improved molecular understanding of this disease. There are numerous explanations for the lag in clinical success with new therapeutics. However, work in the past decade has provided support for what has become known as the cancer stem cell hypothesis. This model suggests that there is a class of cells that are the main drivers of tumor growth that are resistant to standard treatments. In one model the cancer stem cells inhabit an anatomical “niche” that prevents drug efficacy. Another view is one in which tumors can achieve resistance by cell fate decisions in which some tumor cells are killed by therapeutics, while other cells avoid this fate by choosing to become cancer stem cells. These stem cells are thought to be capable of both cancer stem cell renewal and repopulation of the tumor. Our proposal aims to conduct a Phase I clinical trial of a first-in-class mitotic inhibitor. The target is a serine/threonine kinase that was originally selected because blocking this target affects both tumor cell lines and tumor initiating cells (TICs). Our data suggest that the target kinase functions at the intersection of mitotic regulation, DNA damage and repair, and cell fate decisions associated with stem cell renewal. Preclinical work has begun to segregate “sensitive” and “resistant” groups of tumor cell lines and TICs after treatment with the drug candidate as a single agent and in combination with standard-of-care therapeutics. Our data also support the model in which cancer stem cell resistance is likely to arise, at least in some cases, due to stem cell fate decisions that happen in response to therapeutic intervention. This grant is a natural progression of work partially funded by CIRM that enabled the isolation of Tumor Initiating Cells (TICs)from tumors in different tissue types. This facilitated the development and assessment of drug candidates that target both bulk tumor cells and TICs and has now led to the development of a potential anti-cancer drug which we are now preparing to test in humans. The goal of the Phase I trial is to determine the maximum tolerated dose, the recommended Phase II dose, and any dose-limiting toxicities. We will also characterize safety, pharmacokinetic, and pharmacodynamic profiles along with any antitumor activity. Once the maximum tolerated dose has been identified, a biomarker expansion cohort will be opened in order to determine whether appropriately selected biomarkers are associated with a predictable patient response. This will allow a rational approach to study single agent and combination studies that perturb this network and allow us the opportunity to facilitate a targeted clinical development plan.
Statement of Benefit to California: 
It has been estimated, by the California Department of Public Health, that in 2013 about 145,000 Californians will be diagnosed with cancer and more than 55,000 of these will ultimately succumb to their disease. Furthermore, more than 1.3 million Californians are living today with a history of cancer. Therefore, innovative research programs that are able to impact this devastating disease burden are likely to have a large potential benefit to the state of California and its residents. This grant application proposes a Phase I clinical trial for a first-in-class inhibitor of a target that has never been tested in patients. The aim of this trial is to determine the maximum tolerated dose in humans, the recommended dose for phase II trials, and evaluate any dose-limiting toxicities. The trial will also characterize safety, pharmacokinetics, and pharmacodynamic properties. It will also provide early insight into any antitumor activity. Our group has developed a comprehensive unbiased platform that facilitates the segregation of sensitive and resistant populations of cancer based on their molecular subtypes. This capability has the promise to improve the success rate and reduce the cost of oncology clinical trials by focusing on the subsets that are most likely to benefit while avoiding unnecessarily treating patients that would otherwise benefit from alternative treatments. Our preliminary pre-clinical work, funded by CIRM in the context of a Disease Team I award, suggests that this approach can be successfully applied to the networks associated with mitotic regulation, DNA repair, and stem-cell fate decisions. Our ongoing research has tested a number of chemical compounds that are able to block pathways that are critical to the growth and proliferation of many cancer models. These compounds have all been tested in multiple in vitro and in vivo systems and have been found to inhibit the ability of the cancer stem cell to repopulate. Now that our pre-clinical enabling studies have been completed, we have submitted an Investigational New Drug (IND) application to the FDA for a first-in-human phase I clinical trial. In the current proposal, we will be able to test our hypotheses in a clinical setting, which if successful will lead to confirmation of safety and the establishment of the appropriate dose with which to test in later stage trials. This trial will set the stage for a new class of agents that has not yet been tested in clinical settings. We believe that the proposal described herein has the promise to expand the reach of targeted therapies into mechanisms that in most cases have been resistant to innovation. Finally, it is reasonable to expect that our preclinical work and the proposed clinical trials will validate a number of potential biomarkers that will identify susceptible patient subpopulations.

Pages

Subscribe to RSS - Cancer

© 2013 California Institute for Regenerative Medicine