
 
 
 
 

 
To:  ICOC members 
From:  Jeanne Loring, Ph.D.  
January 24, 2014 

Request for consideration of the merits of the Center for Advanced Stem Cell Genomics; application number 
C1R-06709: Stem Cell Genomics Centers of Excellence RFA 12-06: application by Scripps Research Institute 
and Illumina, Inc. 

Dear members of the Independent Citizen's Oversight Committee: 

I am writing this letter to ask the ICOC to consider the unique merits of our proposal for a Stem Cell Genomics 
Center of Excellence.  The application was ranked in Tier 1, recommended for funding, by the Grants 
Working Group. 

The proposal is a joint program shared by the Scripps Research Institute and the San Diego genomics company, 
Illumina, Inc., with whom I have had long-term collaborations, and we have the goal of together developing 
cutting edge genomics technologies to support the California stem cell community in research and clinical studies.   

It may be of interest that my Scripps co-investigator, Dr. Nicholas Schork, has just moved to the new J. Craig 
Venter Institute, giving us even broader access to genomic expertise. 

Since I have attended many of the ICOC's meetings, I am sensitive to the time constraints of the committee 
members who devote a large part of their time to oversight of CIRM's activities, so I will keep this message brief. 

The ICOC has stewardship of CIRM's funds and is developing plans to maximize the long-term impact of 
CIRM's investments in stem cell research and development.  A key element of your future plans is to form 
partnerships with strong industrial organizations in order to sustain stem cell research and clinical development 
beyond CIRM's current time frame.  

I attended the January 22, 2014 meeting of the Citizens Financial Accountability Oversight Committee, the 
government committee headed by the State Controller's Office tasked with advising CIRM on its financial 
practices.  At that meeting, and at the prior meeting a year ago, the dominant theme was that CIRM must form more 
partnerships with stable organizations such as industry.  Specifically, last year CIRM was advised to "Establish a 
platform to enable grantees, industry, other government agencies, disease foundations, venture capitalists and 
others to continue to pursue CIRM’s mission upon the expiration of CIRM’s bond funding" 

My partnership with Illumina resonates with CIRM's mission to have long-term influence on human health.  
Illumina is the world leader in inventing and implementing genomics technologies.  The mission of Illumina's new 
Chief Medical Officer, Dr. Rick Klausner, who was director of NIH's National Cancer Institute and Director for 
Global Health at the Bill and Melinda Gates Foundation, is to improve human health by enabling researchers and 
medical centers to have access to Illumina's genomics technology and scientific talent.  Dr. Klausner 
enthusiastically supports our collaboration. Illumina is successful because it develops cutting edge genomics 
instruments and technologies and continually drives down the price of genomics tools; it recently announced a new 
instrument that can sequence a human genome for the landmark cost of $1,000. The goal of our partnership is for 
CIRM to have the greatest possible ability to participate in the future development of stem cell genomics.   

The practical value of the stem cell-genomics partnership with Illumina would be immense and swift.  
Genomics-based diagnostic tests are being developed at a rapid pace, replacing less informative tests, and 
Illumina's sequencer is the only one so far approved by the FDA for clinical diagnostics.  With Illumina as a 
partner, stem cell scientists in California would be able to access clinically relevant genomics tools in development 
that can have immediate impact on their translational and clinical studies, including diagnostics for cancers, heart 
disease, inherited diseases, and importantly, HLA typing that can be used for determining the transplant 

Jeanne F. Loring, Ph.D. 
Professor and Director 
Center for Regenerative Medicine 
Department of Chemical Physiology 
10550 North Torrey Pines Road MC SP30-3021 
La Jolla CA 92037 
Tel: 858-784-7767 
Fax: 858-784-7333 
E-mail: jloring@scripps.edu 



compatibility of cells in stem cell banks worldwide. We plan to use the same technology to develop stem cell-
specific assays that will enable standardized tests for qualifying cells through FDA approval. The single cell 
analysis methods we plan to develop will allow us for the first time to examine the heterogeneity of cell cultures 
that are used for transplantation. 

Our application was recommended for funding by the Grants Working Group in Tier 1.  The reviewers 
viewed the partnership of Scripps with Illumina positively: "The organization of the proposed Genomics Center is 
well conceived as a collaboration between highly qualified investigators from an academic institution and an 
industry partner, representing a diversity of competencies. The balance between expertise in stem cell biology and 
genomics technologies is a particular strength". 

Although our reviews were almost all positive, the wide range of reviewers' scores (70 to 88) indicates that some of 
the reviewers were far more impressed than others. The issues that concerned the lower scoring reviewers are 
specifically addressed in a fact-based appeal of the working group's review that I submitted to CIRM on January 20.   
Here, for your information, is a brief summary of the appeal; there were 4 concerns raised by the reviewers.  

1. I did not promise additional money from TSRI.  This was noted as the only serious concern for the reviewers; 
however, institutional contributions were not part of the evaluation criteria in the RFA. We believe that it was 
an inappropriate review criterion because it is not based in scientific merit. As CIRM staff emphasized in the 
review report: "the GWG's scores and recommendations were based solely on scientific merit" 
That issue aside, since Illumina has committed to supporting this project and currently has a market cap of $18 
billion, we are certain that we will not lack the infrastructure to carry out our proposed goals. 
2.  PluriTest, our user-friendly genomics-based diagnostic tool developed with CIRM funding, was praised by 
some reviewers as valuable for providing "objective standards for assessing cell fate and for quality control of 
cell populations."  But some reviewers claimed that it was not widely used.  In our appeal, we pointed out that 
PluriTest has been used more than 7,500 times by researchers in 29 countries and was the most highly cited 
pluripotency assay for iPSC lines in 2013, eclipsing the mouse teratoma assay. 
3.  Some reviewers were concerned that Illumina's tools would be too expensive or too difficult to use.  The 
separate letter from my Illumina co-PD explains that this is incorrect. 
4.  Some reviewers thought that the Program Directors are too committed to devote enough time to the Center.  
But both Dr. Ronaghi and I stated clearly that we would make the Center our highest priority.  My lab currently 
works almost entirely on stem cell genomics, and I stated that I would transfer my current grants to other PIs so 
that I could focus primarily on the Center.   

All other issues aside, we believe that our partnership with Illumina is critical at this point in CIRM's tenure.  If you 
do not support this joint project, you will be walking away from the best possible opportunity to rapidly propel stem 
cell technology and genomic medicine forward in California. Scripps' reputation for excellence in research and 
Illumina's stability and great track record would ensure the longevity of CIRM's investment. 

You are in the unusual position of having to select the program with the best value from the Tier 1 
applications recommended by the Grants Working Group.  I urge you to judge our academic-industry partnership 
on the basis of our history of strong collaboration and productivity, and its power to continue CIRM's legacy for 
many years into the future.   

I understand that the ICOC is able to consider other options, such as funding two complementary Centers in 
Northern California and Southern California. Or you may think that combining our program with another of the 
Center proposals would be the most expeditious choice. I know that you will thoughtfully determine the best 
opportunity possible. 

I know that the CIRM President is currently planning to recommend another application, a consortium of 7 
academic institutions and non-profits dispersed throughout the state. We deliberately kept our Center small to keep 
administration costs low and have an efficient decision process.  This strategy is designed to maximize the benefit 
to all California stem cell researchers who wish to use genomics technologies. I have not had the opportunity to 
discuss the value of industry partnership with the President, but I'm certain that he knows that it is a priority. 

I know that it is difficult for you to disagree with the recommendation of the President. But I ask you to 
independently consider what is best for California in the long term.  You have disagreed with the President in the 



past when you believed that you were acting for the greater good of Californians. You are the individuals who are 
accountable for CIRM's future, and I appreciate that you will make your decision in the best interest of California's 
citizens. 

The decision is in your hands, and I know that you will take your roles as independent judges and the guardians of 
CIRM's legacy very seriously. 

Thank you for your attention, and please do not hesitate to contact me if I can clarify any questions you may have. 

With best regards,  
 
 
 
 

Jeanne F. Loring, Ph.D.  
Professor and Director 



 
 
 
 
 
 
 
 
 
 
 
 

October 28, 2012 
 
 
January 20, 2014 
 
Dear Members of the Independent Citizen's Oversight Committee (ICOC): 
 
I am writing this letter to provide the ICOC with assurance that tools developed by Illumina as a 
partner in the Center for Advanced Stem Cell Genomics will be accessible, both in price and in 
support, to the stem cell community of California. Illumina is the global leader in genomics 
technologies, with 80% of the next generation sequencing market. Illumina has a strong track 
record of driving down the price of genomics tools; last week we announced new instrumentation 
that will allow the human genome to be completely sequenced for $1,000. Each machine can 
sequence about 20,000 genomes/year. We already have orders for 30 of these instruments. 

At Illumina, we are committed to provide integrated solutions to advance the understanding of 
genetics and human health. It is Illumina’s strong interest to make a contribution to this CIRM 
genome initiative and plan to have both stem cell researchers and Illumina succeed in this 
partnership.  

Instead of providing sequencing and other genomics platforms to researchers in the field through 
our regular sales channel, we chose to participate in this program more intimately, such that our 
latest developments in DNA sequencing and genetic analysis can have a significant impact even 
before they become commercial products. Through working with our collaborators and the CIRM 
community, we will also learn a great deal about the technology requirements for this fast-
developing field, which will in turn help us to develop the best products to serve the entire research 
community. We proposed to design new technologies specifically for the needs of stem cell 
scientists for preclinical research and clinical studies; these include stem-cell specific genomic 
diagnostic tools to measure genomic stability, epigenetic state, and cell lineage identification, as 
well as single cell technologies to analyze clinical stem cell preparations. 

We received a very positive review from the Grants Working Group, saying that our plans "are at 
the forefront of technical advances", and would "deliver technologies extremely valuable to 
the stem cell community. Another comment said: "the PI and team are exceptionally well 
qualified to deliver on this project."  
The reviewers praised our partnership with Scripps: "the balance between expertise in stem cell 
biology and genomics technologies is a particular strength" and "the teams from the two 
applicant institutions have a well-established, strong working relationship; reviewers 
considered this an important attribute of this proposal". They said that "the organization of 
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the proposed Genomics Center is well conceived as a collaboration between highly 
qualified investigators from an academic institution and an industry partner, representing a 
diversity of competencies," and "reviewers considered it a strength that... these projects 
will both create novel tools and technologies and validate them". 
Some comments made it clear that it was understood that Illumina would make their technologies 
accessible: One comment said: "The industry partner institution...is well positioned to 
develop novel cutting edge genomics technologies and make them accessible to 
customers". Another said: "...the Center is well designed to support collaborative research 
projects and to make relevant state-of-the-art genomics technologies readily accessible to 
investigators with primary expertise in stem cell biology or translational research". 

But we are concerned that some of the reviewers were still questioning the accessibility of our 
technology for stem cell researchers:  
There was some concern that some of the tools may not be made easily and widely 
available. 
Concern was expressed about whether potential collaborators who have limited experience 
in genomics would receive adequate assistance in designing their proposed studies. 
Concern was expressed about whether the new technologies would be specifically 
disseminated to California investigators and whether their cost might be prohibitive to 
many researchers. 
 
I would like to specifically address these concerns. We are successful because we make cutting 
edge genomic tools that customers can afford to use. We are committed to the stem cell 
community as we have been to cancer researchers and large-scale genomics efforts. In the past, 
Illumina has been a partner in many NIH-supported large scientific initiatives such as the 
International HapMap project, numerous GWAS studies and the 1000-Genome project.  

We specified in the grant application that more than 30% of the funds would be dedicated to grants 
for California researchers and physicians. Through the granting program Illumina and Scripps will 
provide help in planning experiments, the tools for both genomics and stem cell biology, and help 
with analysis.  

We are extremely enthusiastic about the opportunity to work with the CIRM community to build a 
first class stem cell genomics infrastructure that will help position California as the world leader in 
both basic and translational stem cell research.  

Please do not hesitate to contact me if you are interested in specific projects or Illumina's plans. 

 

With best regards, 

	
  

 
Mostafa Ronaghi 
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To:  CIRM President Alan Trounson, Ph.D., Gil Sambrano, Ph.D., and CIRM Scientific Staff 
From:  Jeanne Loring, Ph.D.  
January 20, 2014 
 
Appeal of GWG Review and Request for Consideration of the CIRM President's 
Recommendation for RFA 12-06, Stem Cell Genomics Centers of Excellence. 

Dear Dr. Trounson, Dr. Sambrano, and CIRM Scientific Staff:   

As Program Director for the proposed project, "Center for Advanced Stem Cell Genomics," from the Scripps 
Research Institute and Illumina, Inc., I request reconsideration of our application.  

Please note a change in status of one of our subcontractors: Nicholas Schork, Ph.D. has relocated from Scripps 
to the J. Craig Venter Institute, which adds JCVI as a member of our program's team. 

We want to point out that we are bringing up two types of issues: factual errors by some of the reviewers, and 
the basis for the recommendation by CIRM's President. 

First, we understand that the grounds for appeal of the GWG decision are strictly limited to a “material dispute 
of fact, which does not include disagreements over interpretation or analysis of facts by the GWG or b 
specialist reviewers."  Since our application was scored in Tier 1 and recommended for funding 
by the GWG, we are not appealing their positive decision, but rather in the section below we will 
raise factual errors that we believe had a negative effect on the scoring by individual reviewers. 
Second, four applications were recommended for funding in Tier 1. We are aware of the others, 
but will not mention them here.  In all other previous award competitions, all of the Tier 1 applications 
have been considered favorably for funding by the ICOC, which usually approves all or almost all of 
them.   
In this case, however, there will probably be only one awardee, and the CIRM's President will 
recommend his preferred applicant to the ICOC.  He has not chosen our application for his 
recommendation, but this does not mean that our application is inferior and should not be considered; 
if this were the case, it would have been placed in Tier 2 or 3.  
Because the decision is solely the President's, we must ask the President and the ICOC to carefully 
examine the pros and cons of choosing a particular applicant, and to consider the unique merits of our 
proposed Center. We will not discuss this further in this letter; we are separately asking the ICOC 
members to use their own judgment in this case rather than relying solely on the President's 
recommendation.   
Appeal of GWG scoring   

Our scores ranged from 70 to 88.  The positive reviews highlighted the tremendous track records of the PDs, our 
well-established strong working relationship, the balance between excellence in genomics technologies and stem 
cell biology, the inclusion of a well-established industry partner, and the expectation that the proposed Center 
would accomplish its goals.   

We believe that the lower scores were made by reviewers who were mistaken about some of the facts we 
presented.   
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We highlight 4 instances of factual misunderstanding: 

1. The only serious concern in our review was that the PD's institution did not contribute additional 
funds.  
" Although a letter from leadership indicates enthusiastic institutional support from the academic institution, no 
additional funds or specific dedicated space have been designated. Reviewers expressed serious concern about 
this lack of material commitment". 

However, there was no requirement in the RFA for the PD's institution to contribute additional funds. 

This comment in our review suggests that other applications did offer to provide extra money for their Centers.  
Since there was no written request for additional funds, and we were not informed that contributions would be 
expected or considered as a measure of scientific merit, we were put at a significant disadvantage.  

It is clear from our review that this additional funding was a scientific merit criterion for the GWG, not only 
because of their "serious concern" about our lack of additional money, but because as was stated in the message 
from CIRM to applicants, "the GWG's scores and recommendations were based solely on scientific merit." We 
question the motives of any institutions that offered additional monetary support and ask if they were informed 
privately that this would be considered positively in the scientific merit review. 

It seems appropriate to comment here that even without explicit promise of additional funds, Illumina, with its 
current market cap of $17.2 billion and its stated intention to provide access to stem cell tools, would be 
expected to be invested in the success of the joint project. 
 
2. Some reviewers thought that our web-based genomics-based pluripotency assay, PluriTest, has not 
been widely adopted and therefore was not useful.  

"Reviewers' opinions about the utility of an already existing analytical tool, to be further developed under this 
award, were divided. Some judged it positively as an important tool that has been made freely available in its 
current form and were enthusiastic about the plan for dissemination of the updated version. Conceptually, they 
considered the proposed approach to be very valuable, as it has the potential to provide objective standards for 
assessing cell fate and for quality control of cell populations. Other reviewers expressed concern that the 
current tool has not been widely adopted in the stem cell community, calling into question its usefulness." 

The statement about the current tool not being widely adopted is factually incorrect. 

PluriTest, our user-friendly genomics-based pluripotency diagnostic tool, was developed under a CIRM grant 
and became the most highly cited pluripotency assay for iPSC lines in 2013, used for more lines than the classic 
teratoma assay. Notably, publications in Nature, PNAS, and Cell Stem Cell used PluriTest as their sole 
pluripotency assay.  At the time of the review in October, there were 484 unique registered users and data 
from 7,428 microarray analyses had been uploaded to www.pluritest.org. As of January 20, 2014, there are 
518 unique registered users, and 7,851 files have been uploaded for analysis.  
A recent survey of the registered users shows that researchers in 29 countries use PluriTest: Australia, Brazil, 
Canada, China, Denmark, Finland, France, Germany, Greece, Hong Kong, India, Ireland, Israel, Italy, Japan, 
Korea, the Netherlands, Norway, Poland, Portugal, Russia, Scotland, Singapore, Spain, Sweden, Switzerland, 
Taiwan, the UK (Great Britain), and the US.   

Among the groups that have adopted PluriTest are the Wellcome Trust/Sanger Institute, 6 Australian 
institutions, 5 Japanese institutions, ATCC and Coriell cell banks, Max Planck Institutes, the Broad Institute, 
Harvard, MIT, Rutgers, and Yale universities, and multiple biotechnology and pharmaceutical companies. In 
California, all of the major institutions receiving CIRM funding for pluripotent cells use PluriTest. 

3.  Some reviewers thought that Illumina would not make novel technologies available to stem cell 
researchers.  

Most of the reviewers thought that having Illumina as a partner was a strongly positive aspect of the proposal, 
and that the stem cell genomic tools developed under the award would be available to the stem cell community:  
"(Illumina) is well positioned to develop novel cutting edge genomics technologies and make them accessible to 
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customers...The Center is well designed to support collaborative research projects and to make relevant state-
of-the-art genomics technologies readily accessible to investigators with primary expertise in stem cell biology 
or translational research". 

However, some of the reviewers thought that the tools would not be widely available, that those new to 
genomics would not receive adequate support, and that the new technologies might cost too much. 

"There was some concern that some of the tools may not be made easily and widely available."  "Concern was 
expressed about whether potential collaborators who have limited experience in genomics would receive 
adequate assistance in designing their proposed studies" and "...about whether the new technologies would be 
specifically disseminated to California investigators and whether their cost might be prohibitive to many 
researchers". 

These comments have no basis in fact. 

We explained, explicitly and multiple times, that Illumina would make the tools developed under this award 
available at reasonable cost to California researchers, and that in fact much of the 30% of the award devoted to 
the collaborative projects would be in the form of Illumina's products and services, which includes help with 
experimental design and interpretation.   

Illumina has been successful because it has not only invented new genomics technologies, but has focused on 
driving down the cost of genomic analysis, and this strategy has earned the company a current market value of 
$17.2 billion.   

Even in the cold-blooded logic of commerce, it is a well-known marketing strategy that successful collaborators 
often grow into successful customers. Illumina has promised to support the stem cell community and can afford 
to do so, and, indeed, expects us to become valued customers as the field blossoms. 

4.   The level of commitment of the PD and co-PD were questioned. 
"Some reviewers expressed concern that both the PD and co-PD are already heavily committed individuals and 
questioned whether they would have the capacity to fully provide a strong commitment to this project". 

It is NOT true that we are too committed to "fully provide a strong commitment to this project".   

We have all successfully managed large, multicenter projects.  We do this by working in teams, and our teams 
work together in a well-established effective collaboration. We are no different from other management-level 
academic and industry scientists who oversee large groups and multiple related projects.   

In this case, the most important fact is that we stated in our application that the Center would be our highest 
priority. I stated that I would reduce my effort on my other grants or transfer them to co-investigators so that I 
could devote all of my research efforts to the Center.  All of my lab's research is already focused on human stem 
cell genomics, so we are well prepared to expand these efforts to encompass the needs of the Center. 

In summary, we are grateful to the reviewers for providing an unusually thoughtful and useful critique of our 
application.  Of the many comments and suggestions, we found that only the four listed above were the result of 
factual misunderstanding by the reviewers. 

Thank you for your attention to this request, and for the hard work that you do to help us in our efforts to 
improve stem cell research and develop cures. 

With best regards, 
 

 
 
 

Jeanne F. Loring, Ph.D. 
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Analyses of transcriptomes through massively parallel sequencing of 
cDNAs (mRNA-Seq) generates millions of short sequence fragments 
that can be analyzed to accurately quantify expression levels1, assemble  
new transcripts2,3 and investigate alternate RNA processing4,5. 
These techniques have been consistently pushed toward devel-
opment of methods that require lower starting amounts of RNA, 
ideally as small as single cells. A protocol initially developed for 
single-cell microarray studies6 has been adapted for mRNA-Seq and 
used to generate transcriptome data for individual mouse oocytes 
and early embryonic cells7,8. Using the method, thousands of genes 
expressed in mouse oocytes had been detected, and it yielded 
increased sensitivity compared with microarrays7. However, this 
first single-cell mRNA-Seq experiment lacked technical controls,  
making it impossible to distinguish biological variation between dif-
ferent cells from the technical variation that is intrinsic to cDNA 
amplification protocols when starting with small amounts of RNA. 
Therefore, the question remained whether single-cell transcriptomes 
faithfully represent the RNA population before amplification and how 
technical variation limits the power to find differences in expres-
sion. This initial mRNA-Seq method also preferentially amplified 
the 3′ ends of mRNAs, and hence the data could only be used to 
identify distal splicing events. Recently, a method for multiplexed 
single-cell RNA-Seq has been introduced that quantifies transcripts 
through reads mapping to mRNA 5′ ends9. Neither of these methods 
generates read coverage across full transcripts. As most mammalian 
multi-exon genes are subject to alternative RNA processing4,5, there 

is a need for a single-cell transcriptome method that can be used to 
both quantify gene expression and provide the coverage for efficient 
detection of transcript variants and alleles.

Here we introduce a single-cell RNA-sequencing protocol with 
markedly improved transcriptome coverage, which samples cDNAs 
from more than just the ends of mRNAs. Using this protocol, we 
sequenced the mRNAs from many individual mammalian cells, as 
well as well-defined dilution series of purified total RNAs, to compre-
hensively assess how sensitivity, variability and detection of differing 
expression vary with different amounts of starting material. Our results 
demonstrate the power of single-cell RNA-Seq for both transcriptional 
and post-transcriptional studies, and provide valuable insights into the 
design of experiments that start from few or single cells. To demon-
strate the biological importance of this method, we applied this assay 
to putative circulating tumor cells (CTCs) captured from the blood of a 
melanoma patient to demonstrate how Smart-Seq enables high-quality 
transcriptome mapping in individual, clinically important cells.

RESULTS
Efficient and robust single-cell RNA sequencing
For Smart-Seq, first we lysed each cell in hypotonic solution and 
converted poly(A)+ RNA to full-length cDNA using oligo(dT) 
priming and SMART template switching technology, followed by 
12–18 cycles of PCR preamplification of cDNA. We used the ampli-
fied cDNA to construct standard Illumina sequencing libraries 
using either Covaris shearing followed by ligation of adaptors (PE)  

Full-length mrNA-seq from single-cell levels of rNA 
and individual circulating tumor cells
Daniel Ramsköld1,2,7, Shujun Luo3,7, Yu-Chieh Wang4, Robin Li3, Qiaolin Deng1, Omid R Faridani1,  
Gregory A Daniels5, Irina Khrebtukova3, Jeanne F Loring4, Louise C Laurent6, Gary P Schroth3 &  
Rickard Sandberg1,2

Genome-wide transcriptome analyses are routinely used to monitor tissue-, disease- and cell type–specific gene expression,  
but it has been technically challenging to generate expression profiles from single cells. Here we describe a robust mRNA-Seq  
protocol (Smart-Seq) that is applicable down to single cell levels. Compared with existing methods, Smart-Seq has improved  
read coverage across transcripts, which enhances detailed analyses of alternative transcript isoforms and identification of  
single-nucleotide polymorphisms. We determined the sensitivity and quantitative accuracy of Smart-Seq for single-cell 
transcriptomics by evaluating it on total RNA dilution series. We found that although gene expression estimates from single cells 
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Seq to circulating tumor cells from melanomas, we identified distinct gene expression patterns, including candidate biomarkers 
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genome-wide transcriptome profiling in rare cells.
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or Tn5-mediated ‘tagmentation’ using the Nextera technology (Tn5). 
Both of these library preparation methods enable random shot-
gun sequencing of cDNAs (Supplementary Fig. 1). We generated 
Smart-Seq libraries from 42 individual human or mouse cells, and in 
addition we generated 64 libraries from dilution series of total RNA 
derived from human brain (16 samples), mouse brain (28 samples)  
and universal human reference RNA (UHRR, 20 samples). We 
sequenced each sequencing library on the Illumina platform, typi-
cally generating >20 million uniquely mapping reads (Supplementary 
Table 1). For comparison, we also made several standard mRNA-Seq 
libraries from 100 ng to a few micrograms of total RNA.

Smart-Seq improves coverage across transcripts
In previous single-cell mRNA-sequencing studies7,8, the data suffered 
from a pronounced 3′-end bias that limited analysis across full-length 
transcripts. We sequenced single-cell transcriptomes from mouse 
oocytes to enable a direct comparison with published mouse oocyte 
single-cell data7. Analyses of read coverage across transcripts demon-
strated that Smart-Seq has considerably improved full-length cover-
age of all transcripts longer than 1 kb (Fig. 1a and Supplementary  
Fig. 2a–h). Smart-Seq analyses of mouse brain RNA at different dilu-
tions showed that even better coverage was obtained with increased 
starting amounts, with nanogram dilutions reaching close to the 
coverage observed using standard mRNA-Seq from 100 ng to 1 µg 
total RNA (Fig. 1b). From only 10 pg input amounts (the estimated 
amount of RNA in a small eukaryotic cell, Supplementary Table 2), 
we achieved close to 40% coverage at the 5′ end. Analyses of single-cell 
transcriptomes from cancer cell lines (four cells each from LNCaP, 
PC3 and T24) obtained equally good read coverage (Fig. 1c) and, 
indeed, for 25% of all expressed, multi-exon genes our read coverage 
enabled full-length transcript reconstruction (Supplementary Fig. 3). 
We conclude that Smart-Seq has substantially improved read coverage 
compared with previous single-cell transcriptome methods.

Quantitative assessment of single-cell transcriptomics
Analyses of gene expression from millions of cells using mRNA-Seq  
is highly reproducible and has low technical variation1,4. To our 
knowledge, no single-cell mRNA-Seq study has measured the tech-
nical variation intrinsic to the cDNA pre-amplification components 
of single-cell methods. We therefore diluted microgram amounts of 
reference total RNA down to nano- and picogram levels and applied 
Smart-Seq to assess sensitivity, technical variability and detection of 
differentially expressed transcripts of Smart-Seq on low amounts of 
total RNA. For comparison, we generated standard mRNA-Seq librar-
ies from 100 ng to microgram amounts of reference total RNA.

First, we addressed the sensitivity of the method in detecting tran-
scripts expressed at different levels. Starting with 10 ng or 1 ng of 
total RNA, we found no or minimal decline in sensitivity compared 
with standard mRNA-Seq. However, lowering the starting amounts 
to single-cell levels decreased the detection rate of less abundant 
transcripts (Fig. 2a). Analyses of the 12 cancer cell line cells (four 
cells each from the LNCaP, PC3 and T24 lines) showed that ~76% of 
transcripts expressed at 10 RPKM (reads per kilobase exon model and 
million mappable reads), which roughly equals the median expression 
for detected transcripts, were reproducibly detected in all single-cell 
profiles (Fig. 2b). We found that the sensitivity of gene detection for 
the individual cancer cells was similar to that obtained with ~20 pg 
of starting total RNA (Fig. 2b), with ~8,000 genes detected per cell 
and increasing with the number of analyzed cells (Supplementary 
Fig. 4a) Furthermore, we observed that the starting amount of total 
RNA had a larger impact on sensitivity than the number of PCR cycles 
used (Supplementary Fig. 5) and that the sequence depth had little 
effect on transcript detection at levels above a million uniquely map-
ping reads per cell, with expression levels stabilizing after 3 million 
uniquely mapped reads (Supplementary Fig. 4c,d). Comparisons of 
Smart-Seq and previous mouse oocyte data7 demonstrated similar 
sensitivity (Supplementary Fig. 2i,j). We conclude that transcript 
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detection sensitivity is affected by limiting starting amounts of RNA 
that lead to random loss of low-abundance transcripts, but still the 
majority of low-abundance and the vast majority of highly expressed 
transcripts are reliably detected even in single cells.

Second, we determined the reproducibility in expression levels 
generated from diluted RNA and individual cells. Comparison of 
Smart-Seq and previous mouse oocyte data7 demonstrated improved 
estimation of expression with Smart-Seq (lower variability in data 
from oocyte to oocyte) across the whole range of expression levels 
(Supplementary Fig. 2k). Correlation analyses between technical 
replicates of diluted RNA showed increasing concordance with larger 
amounts of RNA. Comparing data from the single cells against the 
RNA-dilution data, we observed higher correlations (Pearson cor-
relations of 0.75–0.85) among individual cells of the same type than 
among dilution replicates at 10 pg (Pearson correlations of 0.65–0.75) 
(Supplementary Fig. 6). As variability in measurements of expression 
depends on transcript expression levels, we computed the variability 
as a function of the expression level (Fig. 2c,d). This analysis showed 
that Smart-Seq on 10 ng total RNA had the same technical variability 
as standard mRNA-Seq and that Smart-Seq on 1 ng total RNA showed 

only a modest increase in technical noise (Fig. 2c). When lowering 
input amounts down to picogram levels, there was a clear increase 
in technical variability, particularly for less abundantly expressed 
transcripts (Fig. 2c). We compared technical variability at picogram 
levels of total RNA to the biological variation found in comparisons 
of human brain samples and UHRR using standard mRNA-Seq  
(Fig. 2c). Notably, analyses of gene-expression variation between indi-
vidual cancer cells of different origin revealed extensive biological 
variation in highly expressed genes (Fig. 2d).

Finally, we assessed whether single-cell expression profiles from 
preamplified material were representative of the original expression 
profiles. Comparing relative gene expression levels (UHRR minus 
brain) estimated using standard mRNA-Seq to those estimated from 
Smart-Seq with different amounts of input RNA, we again found a high 
concordance (Fig. 2e–g). Starting with 1 ng or 100 pg total RNA, the 
relative expression in Smart-Seq and standard mRNA-Seq, respectively, 
had Spearman correlations of 0.87 and 0.77 (Fig. 2e,f). Comparisons 
with 10 pg input RNA showed overall good correlation (Fig. 2g) but 
identified two populations of transcripts with distorted expression in 
Smart-Seq data from either human brain sample or UHRR, reflecting 
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stochastic losses, mostly of low-abundance transcripts when starting 
with such minute RNA amounts (Fig. 2a,g). Preamplification of cDNA 
could also lead to disproportionate amplification of short transcripts, 
but we found no systematic bias (Supplementary Fig. 7). A previous 
microarray study had analyzed PCR-amplified cDNA (from picogram 
starting amounts) and found the transcriptome overall preserved but 
skewed10. Our data from 1 ng and 100 pg total RNA showed no skew-
ing, that is, the loess slopes estimated from the data approximated 1 
(Fig. 2e–g). Together, these results demonstrated that transcriptome 
analyses from few or single cells, in general, preserved relative differ-
ences in expression for detected transcripts.

Transcriptional and post-transcriptional differences
Having demonstrated the improved performance of Smart-Seq on 
low amounts of RNA compared with previously published methods, 
we focused our analyses on single-cell transcriptomes from prostate 
(PC3 and LNCaP) and bladder (T24) cancer cell line cells. The global  
gene expression of 12 individual cells (four from each cell line) clus-
tered according to cell line of origin and we identified hundreds  
of differentially expressed genes among the three cell lines (Fig. 3a;  
q < 0.05 ANOVA; P < 0.05 post-hoc test).

The pronounced 3′-end bias of previous single-cell mRNA-Seq studies 
has hampered the ability to identify alternative splicing differences in single 
cells. We used the Bayesian mixture of isoforms framework (MISO)11 to 
infer exon inclusion levels for known alternatively spliced exons in the 12 
individual cells. The improved read coverage with Smart-Seq resulted in a 
twofold increase in the number of potential alternatively spliced exons that 
could be assessed, compared to previously published single-cell mRNA-
Seq data (Fig. 3b), substantially improving our ability to detect alternative 
splicing. Cell type–specific alternative splicing could be inferred from 
single-cell transcriptomes, as seen in read coverage across the differentially 
included exon 13 of the NEDD4L gene (Fig. 3c). This exon was frequently 
included in LNCaP cells (93% mean inclusion level) but was included at 
much lower levels in T24 cells (15% mean inclusion levels) whereas low 
expression of NEDD4L in PC3 cells precluded inclusion level estimation.  

In this comparison of three cancer cell lines, we found 100 exons with 
differential exon inclusion levels among the three cell lines, with a less 
than 1% false discovery rate (Fig. 3d and Supplementary Table 3).  
We conclude that Smart-Seq considerably improves our ability to detect 
alternative RNA processing in single cells.

Analyses of circulating tumor cell transcriptomes
Having demonstrated that Smart-Seq generates quantitative and repro-
ducible single-cell transcriptomes, we asked whether global transcriptome 
analyses of putative CTCs could reveal their tumor of origin and pro-
vide data to support the use of this method for unbiased cancer-specific 
biomarker identification. To this end, we generated transcriptomes from 
six single NG2+ putative melanoma CTCs isolated from peripheral blood 
drawn from a patient with recurrent melanoma using immunomagnetic 
purification with a MagSweeper instrument (Illumina)12. For comparison, 
we also generated Smart-Seq libraries from single cells derived from pri-
mary melanocytes (n = 2), melanoma cancer cell line (SKMEL5, n = 4 and 
UACC257, n = 3) cells and from human embryonic stem cells (ESCs, n = 8).  
As the NG2+ putative CTCs were isolated from blood, it was important 
to compare them to blood cells. The putative CTCs were distinct from 
lymphoma cell lines (BL41 and BJAB)13 and immune tissues (lymphn-
ode and white blood cell samples), as well as embryonic stem cells, and 
instead were highly similar to primary melanocytes and melanoma cell 
line cells. Unsupervised hierarchical clustering and correlation analyses 
of gene expression levels showed a clear clustering of cells according to 
cell type of origin (Fig. 4a and Supplementary Fig. 8), and separation 
from the human brain RNA samples that were previously analyzed with 
Smart-Seq or mRNA-Seq (data not shown). Additional support for the 
melanocytic origin of the putative melanoma CTCs came from analyses 
of melanocyte lineage–specific markers, as all NG2+ cells expressed high 
mRNAs levels for MLANA14, TYR15 and the melanocyte specific m-form 
of MITF16 but not immune markers such as PTPRC (Fig. 4b), in contrast 
to peripheral blood lymphocytes (Supplementary Fig. 9). Furthermore, 
NG2+ cells expressed high levels of melanoma-associated genes (based 
on our unbiased selection of the 100 transcripts most strongly associated 
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with melanoma; see Online Methods), but not immune cell–associated 
genes selected in a similar manner (Fig. 4c, P < 3.7 × 10−15, Wilcoxon 
rank sum test). Thus, both their global transcriptomes and expression 
patterns of melanoma-associated transcripts clearly support a melanoma 
CTC identity for the NG2+ cells.

We next investigated whether the NG2+ putative CTCs showed signs 
of originating from a melanoma tumor. Comparison of their gene 
expression profiles with those of individual primary melanocytes iden-
tified 289 genes with significantly (q < 0.05 ANOVA; P < 0.05 post-hoc 
test) higher expression in the putative CTCs than the primary melano-
cytes, and 436 genes with significantly (q < 0.05 ANOVA; P < 0.05 post-
hoc test) lower levels (Supplementary Table 4). The upregulated genes 
were significantly (Benjamini-Hochberg adjusted P < 0.05) enriched for 
melanoma-associated antigens (Fig. 4d and Supplementary Fig. 10)  
that have been repeatedly found to be upregulated in cancer17, mitotic 
cell cycle genes and additional categories (Supplementary Table 5). 
Downregulated genes were enriched for regulators of cell death and 

MHC class I genes. Notably, the preferentially expressed antigen in 
melanoma (PRAME) was highly expressed in NG2+ cells, which 
together with elevated expression of known melanoma tumor anti-
gens, provides strong support for the conclusion that the NG2+ cells 
were CTCs that originated from a melanoma.

In recent years, there has been a strong interest in identifying CTCs 
from different tumors using the a priori assumption that plasma- 
membrane proteins would be good diagnostic biomarkers. We used the 
CTC transcriptome analysis to screen for membrane proteins selec-
tively expressed in melanoma-derived CTCs compared to primary 
melanocytes and immune cells. We identified nine upregulated plasma 
membrane–associated transcripts in the CTCs compared to primary 
melanocytes (q < 0.05 ANOVA; P < 0.05 post-hoc test), many of 
which are not expressed in immune cells and have not been previously 
associated with melanomas (Fig. 4e). Similarly, screening for loss of 
expression of plasma-membrane proteins identified 37 genes with  
significantly (q < 0.05 ANOVA; P < 0.05 post-hoc test) lower expression 
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in the CTCs than primary melanocytes (Fig. 4f). Of note, epithelial 
Cadherin 1 (CDH1) showed no expression in the CTCs, and loss of 
CDH1 is thought to contribute to cancer progression by increasing 
proliferation, invasion and metastasis18. We also found downregula-
tion of genes associated with the escape from immune surveillance, 
including five HLA genes (Fig. 4f), and TRPM1, suggesting that 
these gene expression changes might enable the CTCs to escape from 
immune surveillance. Notably, low expression of TRPM1 has been 
shown to correlate with melanoma aggressiveness and metastasis19. 
Future studies of these membrane proteins will likely enhance our 
understanding of CTC migration and invasiveness, and these results 
highlight the utility of studying single CTC cells with RNA-Seq.

Lastly, we investigated whether Smart-Seq transcriptome data could 
be mined for single-nucleotide polymorphisms (SNPs) and other 
genetic variants associated with melanomas or other cancers. With 
the improved read coverage provided by the Smart-Seq method, we 
identified 4,312 high-confidence genomic sites with support for an 
alternative allele in at least two CTCs, whereas genotype calls only 
supported by a single cell showed an excess of previously unidentified, 
likely artifactual, sites (Supplementary Fig. 11) together with a smaller 
subset (9%) of A-to-G RNA editing sites (data not shown). Ninety-
two percent of the high-confidence sites coincided with documented 
SNPs, for example, the melanoma-associated SNP in the TYR gene 
(rs1126809)20 (Fig. 4g). We conclude that Smart-Seq enables screening 
for SNPs and mutations in transcribed regions using only few cells.

DISCUSSION
Generating high-coverage transcriptomes from single cells and small 
numbers of cells will have many applications for studying rare cells; such 
cells can be either individually picked or identified through cell sorting 
or laser-capture techniques. Our results showed that using Smart-Seq 
on 10 ng of total RNA was practically indistinguishable from a stand-
ard mRNA-Seq, whereas starting with 1 ng (corresponding roughly 
to 50–100 cells) showed only a minor (less than twofold) increase in 
expression-level variability. Therefore, this method could be applied 
to studies on homogeneous cell populations available in quantities of 
tens to hundreds of cells.

However, many biologically and clinically important cell types 
exist in rare quantities and often in heterogeneous milieus, which 
necessitates single-cell approaches. Smart-Seq generates robust and 
quantitative transcriptome data from single cells. We found hundreds 
of differentially expressed genes using only a few individual cells per 
cell type; for example, comparing only two primary melanocytes to six 
melanoma CTCs identified biologically meaningful differences. Even 
sequencing of a single cell yielded useful information, as we, in each 
cell, detected most of the genes active in a culture of LNCaP cells.

Smart-Seq is a robust method for single-cell RNA-Seq with 
improved read coverage across transcripts, which enables more 
detailed analyses of alternative splicing. Based on our CTC tran-
scriptome results, single-cell analyses using Smart-Seq are also highly 
informative for identifying candidate biomarkers, SNPs and muta-
tions. In conclusion, data sets obtained with the Smart-Seq protocol 
provide improved representation of the transcriptomes of individual 
cells, which should be useful for both basic and clinical studies.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Accession code. Gene Expression Omnibus: GSE38495 (sequencing 
read data).

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Generation and amplification of Smart-Seq cDNA. The Smart-Seq cDNA gen-
eration and amplification methods developed for this manuscript have recently 
become available in a kit marketed by Clontech called the SMARTer Ultra Low 
RNA Kit for Illumina sequencing. Although all the libraries in this manuscript 
were generated before the kit became commercially available, our protocol 
is reflected in the detailed instructions for generating cDNA from cell(s) or  
100 pg–10 ng of total RNA that is now included in the manual for this kit. For 
single cell applications, each cell (or control RNA) was added in max 1 µl of 
media to 4 µl of hypotonic lysis buffer consisting of 0.2% Triton X-100 and  
2 U/µl of ribonuclease (RNase) inhibitors (Clontech, 2313B) in RNase free water. 
The deposition of an intact cell in the hypotonic lysis buffer leads to immediate 
lysis and stabilization of the RNA through RNase inhibitors. Then, poly(A)+ 
RNA was reverse-transcribed through tailed oligo(dT) priming using the CDS 
primer (5′–AAGCAGTGGTATCAACGCAGAGTACT(30)VN–3′, where V 
represents A, C or G) directly in total RNA or a whole cell lysate using Moloney 
murine leukemia virus reverse transcriptase (MMLV RT). The first-strand 
cDNA generation was carried out with the addition of 5× First Strand Buffer 
(250 mM Tris-HCl pH 8.3, 375 mM KCl and 30 mM MgCl2), dithiothreitol  
(100 mM), dNTP mix (10 mM), RNAse inihibitor, oligos (CDS primer and 
SMARTer II A oligo) and SmartScribe Reverse Transcriptase in a total volume 
of 10 µl (see Clontech manual for details). Once the reverse transcription reac-
tion reaches the 5′ end of an RNA molecule, the terminal transferase activity 
of MMLV adds a few nontemplated C nucleotides to the 3′ end of the cDNA. 
The carefully designed SMARTer II A oligo (5′-AAGCAGTGGTATCAACGCA
GAGTACATrGrGrG-3′, where r indicate ribonucleotide bases) then base-pairs 
with these additional C nucleotides, creating an extended template. The reverse 
transcriptase then switches templates and continues transcribing to the end of the 
oligonucleotide. The resulting full-length cDNA contains the complete 5′ end of 
the mRNA as well as an anchor sequence that serves as a universal priming site for 
second-strand synthesis. The cDNA was then amplified using 12 cycles for 1 ng 
of total RNA, 15 cycles for 100 pg of total RNA, and 18 cycles for 10 pg total RNA 
or from single cells. The exact number of cycles used for each dilution replicate 
or single-cell is detailed in Supplementary Table 1. The PCR was performed in  
50 µl reaction volumes with Advantage 2 PCR Buffer (Clontech), dNTP mix, PCR 
primer (5′-AAGCAGTGGTATCAACGCAGAGT-3′), Advantage 2 Polymerase 
Mix (Clontech) and Nuclease-Free water, resulting in a few nanograms of ampli-
fied cDNA. The length distribution of amplified cDNA was monitored using 
High Sensitivity kits on a Bioanalyzer (Agilent), expecting a distinct peak around 
500–5,000 bp (although lengths of mRNAs differ between cell types).

Construction and sequencing of Smart-Seq sequencing libraries. Amplified 
cDNA (~5 ng cDNA) was used to construct Illumina sequencing libraries using 
either Illumina’s Ultra Low Input mRNA-Seq Guide (the ‘PE’ protocol) or a modi-
fication of Epicentre’s Nextera DNA sample preparation protocol (the ‘Tn5’ proto-
col). With the PE protocol, the amplified cDNA was fragmented using a Covaris 
acoustic shearing instrument. The resulting fragments were end-repaired, fol-
lowed by the addition of a single A base, ligation to Illumina PE adaptors, and 
then amplification in 12–18 cycles of PCR (depending on starting amounts of 
RNA, see Supplementary Table 1 for detailed instructions of all libraries gener-
ated). With the Tn5 protocol, the amplified cDNA was ‘tagmentated’ at 55 °C for 
5 min in a 20-µl reaction with 0.25 µl of transposase and 4 µl of 5× HMW Nextera 
reaction buffer. We added 35 µl of PB to the tagmentation reaction mix to strip 
the transposase off the DNA, and the tagmentated DNA was purified with 88 µl of 
SPRI XP beads (sample to beads ratio of 1:1.6). Purified DNA was then amplified 
by nine cycles of standard Nextera PCR. Library quality was confirmed using 
DNA 1000 kits on a Bioanalyzer (Agilent), and the libraries were then sequenced 
on either Illumina’s HiSeq 2000, GAIIx or MiSeq instruments, and all clusters 
that passed filter were exported into fastq files. Details on the sequence depth, 
sequencing platform and library construction method for each dilution replicate 
and single cell are included in Supplementary Table 1. All data shown in the 
figures of this manuscript were generated using the PE protocol unless otherwise 
specified in the figure legend.

Construction and sequencing of standard mRNA-Seq libraries. We gener-
ated mRNA-Seq transcriptome data following the Illumina mRNA-Seq kit 
from 100 ng and 1 µg of total RNA, as detailed in Supplementary Table 1.

Isolation of individual CTCs from peripheral blood. Ten milliliters of 
peripheral blood was collected from a male patient with recurrent, metastatic  
melanoma using K2 EDTA blood collection tubes (Becton Dickinson). 
Melanoma CTCs were collected under UCSD IRB #101330, ‘Detection and 
Molecular Characterization of Circulating Melanoma Cells’. The blood sample 
was processed within 3 h of collection. The erythrocytes in 4.5 ml of the blood 
sample were lysed with BD Pharm Lyse lysing solution (Becton Dickinson) for 
10 min at room temperature. The nucleated cells were pelleted, resuspended in 
HBSS containing 1% BSA and 5 mM EDTA, pelleted, resuspended in 1 ml of 
HBSS containing 1% BSA and 5 mM EDTA. The nucleated cells were stained 
with Phycoerythrin-conjugated anti-human CD45 IgG to label leukocytes. The 
cells were subsequently reacted with biotinylated anti-human CSPG4 (also 
known as NG2) mouse IgG at 4 °C for 2 h, washed with HBSS, and reacted 
with streptavidin-conjugated MG980A magnetic beads at 4 °C for 2 h. The 
cells were captured based on magnetic sweeping to harvest the beads from 
cell suspension using the MagSweeper instrument (Illumina) as previously 
described12. The collected cells were stained with 5 µg/ml Calcein AM (Life 
Technologies) in HBSS for 20 min to identify viable cells. Manual picking of 
viable cells showing desired Calcein-positive/CD45-negative/bead-attached 
profile was performed to isolate cells for molecular profiling. The individual 
cells were placed into 2.5 µl of Superblock (Thermo Scientific) containing 
4,000 unit/ml RNase inhibitor (New England Biolabs) and stored at −80 °C 
until preparation of Smart-Seq libraries.

Isolation of mouse oocytes and human lymphocytes. MII oocytes were 
isolated from 4-week old CAST/EiJ female mice. Mice were superovulated 
by injection of 5 IU PMSG, followed by injection of 5 IU of hCG 48 h later. 
MII oocytes were isolated 14–15 h after hCG treatment by dissection of the 
ampulla of the oviduct and cumulus cells were removed by hyaluronidase 
digestion. Single oocytes were manually picked, lysed in dilution buffer, and 
cDNA constructed as described above. Peripheral blood lymphocytes from 
healthy human volunteers were isolated on Ficoll gradients using LymphoPrep 
(Fresenius Kabi, Norway). Individual cells were manually picked into lysis 
buffer and cDNA constructed as described above.

Alignment of short reads to genome and transcriptome. Reads were inde-
pendently aligned using Bowtie21 against the respective genome assembly 
(hg19 or mm9) and transcriptome sequences (Ensembl, human and mouse 
annotations were downloaded 16 May 2011 and 13 December 2010, respec-
tively). Transcriptome mapped reads were converted from transcriptome 
 coordinates to genomic coordinates and thereafter compared with the genome 
mapped reads to identify reads that map to a unique genomic location. This 
procedure ensured that mapped reads were unique across both the genome 
and transcriptome, while allowing for reads to map to different transcripts of 
the same gene in the initial transcriptome mapping. The uniquely mapped 
reads were converted to binary BAM files using Samtools22. The resulting 
transcriptome data were visualized using the Integrated Genome Viewer (IGV, 
Broad Institute) using the histogram visualization for Supplementary Figure 3 
and heatmap visualization for Figure 3c.

Expression level estimation and technical comparisons of sensitivity and 
variation. Gene expression levels for Refseq transcripts were summarized 
as RPKM values and read counts using rpkmforgenes23. RefSeq annota-
tions for human and mouse were downloaded on the 31 August 2011 and 13 
December 2010, respectively. RPKM calculations only considered uniquely 
mappable positions for transcript length normalizations using the ENCODE 
Mappability track (wgEncodeCrgMapabilityAlign50mer.bigWig) for human 
and in-house–computed uniqueness files for mouse. Overlapping RefSeq 
transcripts were collapsed giving one expression value per gene locus. Only 
10 million randomly selected mapped reads were used per sample to compare 
sensitivity and variation in gene and exon levels. Samples with fewer than  
10 million uniquely mappable reads (a few ESCs8) were therefore discarded 
from analyses. Samples with 20 pg of total RNA (used in Fig. 2b,d) were simu-
lated by using 5 million reads each of two different 10 pg samples. Analyses of 
gene detection (Fig. 2a,b and Supplementary Fig. 4b,c) were calculated over 
pairs of technical replicates or individual cells. Genes were binned by the high-
est expression level of the two samples, and was considered detected if it had an 
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RPKM above 0.1 in both samples. The mean for all possible pairs of technical 
replicates within a group was used together with standard deviation using the 
adjusted Wald method. Analyses of variation (Fig. 2b,d) were also calculated 
on pairs of samples, binning genes by the mean of log expression, excluding 
genes below 0.1 RPKM in either sample. As gene expression levels across single 
cells are often log normally distributed24, we calculated absolute difference 
in log10 expression values and s.d. by multiplying mean variation in a bin 
with 0.886. Scatter plots were generated in R using smoothScatter (geneplotter 
package) and loess nonlinear regression using the graphics package. Pearson 
and Spearman correlations were computed using absolute or relative expres-
sion levels as log2 RPKM values. We included publicly available human UHRR, 
brain and LNCaP data for comparison4,25–27. To analyze how sensitivity and 
variation improve with a larger numbers of cells, we used Smart-Seq data gen-
erated from 10 LNCaP cells (Supplementary Table 1). To obtain estimates for 
the effect of using larger numbers of cells (used in Fig. 2b,d), we created two 
combined samples using 25, 10 and 3 cell samples from picked LNCaP cells, 25, 
10 and 5 cell samples from LNCaP cells spiked into healthy donor’s blood and 
isolated using the EPCAM marker, and 2 single-cell LNCaP samples, achieving 
a total of 80 cells per each of the two sample pools. These were sequence-depth 
matched to 10 millions reads, by using 125,000 random reads from single-cell 
samples, 375,000 from 3-cell samples and so on.

Analyses of read coverage across transcriptome. The read coverage analyses 
were based on human and mouse RefSeq transcripts. Reads were mapped to 
RefSeq transcripts directly rather than to the genome, using Bowtie allowing 
for up to 10 hits per read. Each transcript was divided into 40 equally sized 
bins, and the number of reads was counted for each bin and gene. The read 
count per bin for each gene was divided by total read count for that gene 
before the bins for all the different genes were summed up. The calculated 
read coverage per bin was later normalized through the division by the bin 
with the largest read coverage. The mean and s.d. over replicates were shown 
in Figure 1 and Supplementary Figure 2, including all transcripts with at 
least ten mapped reads. Analyses of full-length transcript reconstructions were 
based on RefSeq annotations, and we defined full-length reconstructed genes 
as those for which we obtained correct exon-intron structure throughout all 
annotated exons of at least one isoform. We limited the analyses to expressed 
(≥0.1 RPKM) and multi-exon (≥2 exons) genes.

Singular value decomposition. The global transcript expression values for 
cancer cells were analyzed using singular value decomposition (SVD) to 
determine the fundamental patterns in the transcriptomes. The expression 
levels in RPKM were normalized to unit length and the SVD computed using 
SVDMAN28. Each cell was then projected onto the two strongest SVD compo-
nents to visualize the overall similarity in gene expression (Fig. 3a).

Analyses of differential expression. One-way analysis of variance (ANOVA) 
was performed on expression levels (RPKM, log2) followed by Tukey  
post-hoc test in R/Bioconductor. Only genes significant after multiple testing 
corrections (5% FDR, Benjamini-Hochberg) were evaluated with post-hoc 
test (P < 0.05). Lists of significantly differently expressed genes are available 
in Supplementary Table 4 for CTC, primary melanocyte and melanoma cell 
line comparisons, and in Figure 3a for comparisons between prostate and 
bladder cancer cell line cells.

Selection of marker genes for melanoma and immune cells. To identify the 
100 transcripts most strongly associated with melanoma and immune cells, 
respectively, we initially calculated the difference in mean gene expression 
between melanoma samples29 and a combination of monocytes30, T cells31, 
white blood cells and lymph node samples (Fig. 4a). The differences were 
divided by the highest expression value in any of the samples, to avoid dif-
ferences driven by outlier expression values in one replicate only. We ranked 
genes according to this metric and selected the 100 strongest markers for the 
melanoma and for the immune cell combination. We then evaluated the mean 
expression values of each gene in the individual putative CTCs. To include the 
monocyte SAGE data, we converted 1.5 RPM to 1 RPKM, assuming an average 
transcripts length of 1.5 kb (ref. 23).

Detection of alternatively spliced exons. We analyzed exon inclusion levels 
for a collection of alternatively skipped exons previously identified from EST 
and cDNA data4. We used the mixture of isoforms (MISO) framework11 to 
calculate exon inclusion levels with confidence intervals. We used the default 
MISO settings, which require at least 20 reads mapping to the alternative 
exon or the immediate upstream or downstream exon or exon-exon junctions 
between them. For a fair assessment of read coverage across exons (Fig. 3b), 
we matched the sequence depth by randomly sampling 10 million uniquely 
mapped reads per sample.

Hierarchical clustering analyses. Genes with average expression above  
20 RPKM (3,690 genes) were clustered by Spearman correlation and complete 
linkage using python scipy (hcluster). To evaluate the significance (or robust-
ness) of each branchpoint, we generated thousand bootstrap gene set replicates 
that were independently clustered, and from these we counted the percentage 
of times each branch was recovered.

Analyses of differential exon inclusion. To find significant differences in 
inclusion levels of alternative exons we applied a t-test with variance shrinkage, 
known to counteract false positives in microarray analyses32. A variance was 
calculated for each alternative exon based on the exon inclusion levels across 
biological replicates. For each sample group (cell line) the 90th percentile of 
the variation was included in the variance term ((90th percentile variation + 
gene variation)/2) when calculating the t statistic. The null distribution of the 
t statistic was calculated by shuffling the sample labels (cell-to-cell line map-
ping) repeatedly and for each shuffle compute the t statistics, thus allowing 
the conversion of t statistics to P values for the cancer-cell comparison. To 
estimate false discovery rates, the sample groups were randomly split in half 
and combined with half from the other sample group, and the number of sig-
nificant exons was counted using the t statistics introduced above (repeatedly, 
to vary the random splitting of sample groups). The false discovery rate was 
then estimated as the number of significant exons in random shuffles divided 
by the number of significant events with correct sample groups. The numbers of 
significant exons at different false discovery rates are presented in Figure 3d.

SNP and mutation detection. CTC RNA-Seq Fastq files were mapped to tran-
scriptome (Ensembl, annotations downloaded 16 May 2011) and genome with 
BWA33, allowing for no indels and removing multi-mapping reads. Samtools 
rmdup22 was used to filter PCR duplicates, and BAM files were reordered by 
Picard (http://picard.sourceforge.net/). Variant sites were called by the Genome  
Analysis Toolkit34 jointly on reads from all six CTC samples, with a quality 
score threshold for sites of 500 and requiring detection in two or more samples 
(see Supplementary Fig. 11 for more detailed information on varying these 
threshold). We limited the analyses to transcribed regions using RefSeq gene 
models, and the last 35 base pairs of transcripts were not considered to remove 
false positives arising from mapping of reads with partial poly(A) tail. Analyses 
of overlap with known SNPs were based on dbSNP build 132 (ref. 35).
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