Preclinical Development of iPSC Therapies

September 11, 2014

Autologous Cell Product Issues

- Cell Quality –Effect of donor
 - Disease state of donor
 - Donors can be heavily treated
 - Age of donor
- Impact of donor variability on product consistency
- Cell/tissue collection and manipulation
 - "Artful" Requires specialized training
- Timing urgency for patient vs time to produce product

Logistics of iPSC-Derived Therapies

Autologous iPSC Products: The Process

Generation of Starting Material: iPSCs

Generation of iPSCs: Comparability

Clonal variation can effect:

- Phenotype
- Stability
- Differentiation

Generation of iPSCs: Variation

The iPSC-Derived Product: Reproducibility

In Vivo Evaluation of Cell Product

iPSC Therapies: Safety

- Tumorigenicity
- Stability
 - Functional stability
 - Genetic & epigenetic stability
- Immunogenicity
- Toxicity
- Biodistribution
- Adventitious Agents

Tumorigenicity of Pluripotent Stem Cell Products

- Does your cell product contain undifferentiated cells?
 - How many is too many?
 - Influenced by site of implantation?
- Is your differentiated cell population stable?
 - Influenced by site of implantation?
 - Proliferative capacity of cell product?

Tumorigenicity: What is the Appropriate Assay?

- How many undifferentiated cells does it take to make a teratoma?
 - Is there an absolute number of cells required?
 - Is there a frequency required (percentage of cells)?
 - Needs to be measured for each cell line, each product?
- How long does it take to make a teratoma?
- What is the effect of implant site on teratoma formation?
 - Are some sites more permissive?
 - Do the neighboring cells (from graft or from implant site) influence teratoma formation?
- Are other cell types tumorigenic?
- Does the immune status of the recipient affect teratoma formation?
- What does a negative result mean?

Stability of Cell Product

- How long do cells continue to survive after implant?
 - If cells die, does this affect dose?
 - Are the cells proliferative?
- Genomic integrity after implant?
- How long do cells continue to function after implant?

Assessment of Immunogenicity of Human Pluripotent Cells

- Assessment of human cells in "xeno setting" is problematic
- Possible solutions to this:
 - Assessment of MHC / HLA expression
 - In vitro assessment using mixed lymphocyte reaction
 - Assess using "comparable" animal models
 - Mouse cells into mouse
 - Nonhuman primate cells into nonhuman primate

Are iPSCs Immunogenic?

- iPSCs <u>are</u> immunogenic
 - Zhai et al 2011
 - iPSCs generated using retroviruses
 - Immune rejection of teratomas in syngeneic recipients
- iPSCs are not immunogenic
 - Guha et al 2013
 - iPSCs generated using plasmids and lentiviruses
 - Assessed terminally differentiated cells
 - Araki et al 2013
 - iPSCs generated using plasmids
 - Kamao et al 2014
 - Autologous implantation of iPSC-RPE in nonhuman primates

Generating Autologous Cell Products from iPSCs

NATURE | NEWS

Next-generation stem cells cleared for human trial

Japanese team will use 'iPS' cells to treat patient with degenerative eye disease.

David Cyranoski

10 September 2014

Next-generation stem cells cleared for human trial

<u>Published reports:</u>

- Kuroda et al (2012) PLOS One 7(5):e37342.
- Kanemura et al (2014) PLOS One 9(1):e85336.
- Kamao et al (2014) Stem Cell Reports 2(2):205-18.
- Assawachanananont et al (2014) Stem Cell Reports 2(5):662-74.

Characterization of hiPSC-RPE Clinical Product

- Assessment of phenotype
 - Pigmentation
 - Markers
 - RPE
 - Undifferentiated hiPSCs qRT-PCR assay that detects 0.002% residual iPSCs (LIN28A)
- Demonstration of Reproducibility
 - Assessment of gene expression in hiPSC-RPE from 12 patients
- Functional assessment
 - Growth factor secretion
 - Tight junction formation in vitro
 - Efficacy in animal model of disease (RCS rats)

Safety Testing of hiPSC-RPE Clinical Product

Immunogenicity

- Assessment of MHC I & II (+/- gamma interferon)
- Mixed lymphocyte reaction
- Assessment using implantation in monkeys
 - Allogeneic implants rejected (n=3)
 - Autologous implant persisted for 1 year (n=1)

Tumorigenicity

- Assessed hiPSCs from 6 patients
- Quality control testing performed on hiPSCs and hiPSC-RPE
- Subcutaneous implantation (NOG mice)
 - Tested hiPSC-RPE from 3 patients
 - Implanted 1 x 10e6 hiPSC-RPE cells in Matrigel
 - Tumor formation monitored up to 70 weeks
- Subretinal implantation (Nude rats)
 - 0.8-1.5 x 10e4 hiPSC-RPE cells in sheets
 - Tested hiPSC-RPE from 5 patients
 - Tumor formation monitored up to 82 weeks

Development of iPSC-Derived Therapies

- Manufacturing Issues
 - Reproducibility of iPSC generation
 - Donor, tissue and clone variability
 - Reproducibility of differentiation
 - Consistency of cell product is critical
- Preclinical Safety & Efficacy Testing
 - Development of predictive tests
 - Tumorigenicity
 - Efficacy
 - Immunogenicity testing of final cell product

Melissa K. Carpenter, PhD

President

o: 360.886.5144 | c: 858.352.8817 melissa@carpentergroupstrategy.com carpentergroupstrategy.com

carpenter