TASK FORCE ON M INDEPENDENT CALIFORNIA INS ORG CALIFORNIA S	BEFORE THE NEUROSCIENCE AND MEDICINE OF THE CITIZENS' OVERSIGHT COMMITTEE TO THE STITUTE FOR REGENERATIVE MEDICINE ANIZED PURSUANT TO THE TEM CELL RESEARCH AND CURES ACT
	REGULAR MEETING
LOCATION:	VIA ZOOM
DATE:	MARCH 22, 2024 10 A.M.
REPORTER:	BETH C. DRAIN, CA CSR CSR. NO. 7152
FILE NO.:	2024-15

1			
2	TNDEX		
3			
4	ITEM DESCRIPTION	PAGE NO.	
5	OPEN SESSION		
6	1. CALL TO ORDER	3	
7	2. ROLL CALL	3	
8 0	3. EXTERNAL EXPERT ON ALS: JEFFREY D. ROTHSTEIN, MD, PHD	61	
10	4. EXTERNAL EXPERT ON PARKINSON'S: LORENZ STUDER, MD	27	
11 12	5. CIRM NEURODEGENERATION PORTFOLIO PRESENTATION	4	
12	6. PUBLIC COMMENT	98	
13 14	7. ADJOURNMENT	100	
14 15			
15 16			
17			
12			
10 10			
20			
20 21			
21			
22			
24			
25 25			
	2		

	BETH C. DRAIN, CA CSR NO. 7152
1	MARCH 22, 2024; 10 A.M.
2	
3	(THE MEETING WAS DULY CALLED TO ORDER BY
4	CHAIRMAN GOLDSTEIN, AND THE ROLL CALLED AS FOLLOWS:)
5	MS. MANDAC: LEONDRA CLARK-HARVEY.
6	DR. CLARK-HARVEY: HERE.
7	MS. MANDAC: MARIA BONNEVILLE.
8	MARK-FISCHER-COLBRIE. FRED FISHER.
9	DR. FISHER: HERE.
10	MS. MANDAC: JUDY GASSON.
11	DR. GASSON: HERE.
12	MS. MANDAC: LARRY GOLDSTEIN.
13	CHAIRMAN GOLDSTEIN: HERE.
14	MS. MANDAC: DAVID HIGGINS.
15	DR. HIGGINS: HERE.
16	MS. MANDAC: VITO IMBASCIANI.
17	CHAIRMAN IMBASCIANI: HERE.
18	MS. MANDAC: STEVE JUELSGAARD. PAT
19	LEVITT. LAUREN MILLER-ROGEN. MARV SOUTHARD.
20	DR. SOUTHARD: HERE.
21	MS. MANDAC: THANK YOU SO MUCH, MARV.
22	LARRY, BACK TO YOU.
23	CHAIRMAN GOLDSTEIN: OKAY. GREAT. THANK
24	YOU. SO LET ME JUST GIVE A COUPLE OF BRIEF REMARKS
25	BEFORE WE GET GOING, AND THEN I'LL TURN IT OVER TO
	3
	5

133 HENNA COURT, SANDPOINT, IDAHO 83864

208-920-3543 DRAIBE@HOTMAIL.COM

1	ROSA. WE'RE JUST COMING BACK FROM A BRIEF HIATUS.
2	OUR NEXT TOPIC IS NEURODEGENERATION. AND SO WE'LL
3	PROCEED BY GETTING A HANDLE ON WHAT WE CURRENTLY
4	HAVE IN OUR PORTFOLIO, WHICH IS WHAT ROSA WILL COVER
5	THIS MORNING. AND THEN THIS MONTH WE'LL HEAR FROM
6	ALS EXPERT JEFF ROTHSTEIN AND PARKINSON EXPERT
7	LORENZ STUDER, BOTH PATHFINDERS AND RESEARCHERS AT
8	THE CUTTING-EDGE OF THEIR FIELDS SCIENTIFICALLY AND
9	MEDICALLY. AND THEN NEXT MONTH WE'LL HEAR, I HOPE,
10	FROM ALISON GOATE ON ALZHEIMER'S DISEASE AND SARAH
11	TABRIZI ON POLYGLUTAMINE DISEASES, IN PARTICULAR
12	HUNTINGTON, AND WE'LL HAVE SOME TIME TO BEGIN
13	DISCUSSING WHAT OUR NEXT STEPS MIGHT BE IN THIS
14	AREA.
15	SO WITHOUT FURTHER ADO, LET ME GIVE YOU
16	ROSA. ROSA, YOU'VE GOT ABOUT 25 MINUTES TO WORK ON
17	THE NEURODEGENERATIVE REVIEW PLEASE.
18	DR. CANET-AVILES: OKAY. THANK YOU,
19	LARRY. KELLY, CAN YOU SHARE THE SLIDES PLEASE. WE
20	HAVE A TANDEM SITUATION SO THAT I COULD ACCESS MY
21	SCREEN. THANK YOU, KELLY. FANTASTIC.
22	SO THANK YOU, DR. GOLDSTEIN, MEMBERS OF
23	THE NEURO TASK FORCE, DR. STUDER AS WELL, IT IS AN
24	HONOR TO HAVE YOU WITH US, AND THE PUBLIC. I WILL
25	BE PROVIDING A COMPREHENSIVE OVERVIEW OF OUR
	Λ
	т

1	NEURODEGENERATION PORTFOLIO ANALYSIS THAT HAS BEEN
2	DEVELOPED THROUGH CONCERTED EFFORTS FROM DR.
3	CREASEY, MYSELF, AND OUR DEDICATED PROGRAM TEAMS.
4	BEFORE WE DIVE INTO THE SPECIFICS, I
5	ACTUALLY WOULD LIKE TO TAKE A MOMENT TO ACKNOWLEDGE
6	THE WORK OF OUR COLLEAGUES, DR. JANIE BYRUM,
7	DR. KELLY SHEPARD, DR. SARA TAYLOR, DR. LISA
8	MCGINLEY, FOR THEIR METICULOUS WORK IN PUTTING ALL
9	OF THIS TOGETHER OVER THE PAST MONTH AND FOR THEIR
10	COMPILATION OF THE ANALYSIS. I'D ALSO LIKE TO GIVE
11	A SPECIAL THANKS TO DR. SHYAM PATEL FOR PROVIDING
12	THE PARTNERING DATA IN THE LAST SLIDE WHICH HELPS US
13	EMPHASIZE THE IMPACT OF SOME OF OUR WORK.
14	SO WITHOUT FURTHER ADO, LET'S GET THIS
15	STARTED. NEXT SLIDE.
16	THIS IS ONE OF THREE SLIDES, AND I'M GOING
17	TO FOCUS ON THIS ONE. THE TWO OTHERS ARE BASICALLY,
18	THIS ONE REPRESENTS PROPOSITION 14 AND PROPOSITION
19	71 NUMBERS, AND THE NEXT ONE IS JUST PROP 14 AND THE
20	OTHER IS PROP 71. SO I'LL BE GOING QUICK THROUGH
21	THOSE ESPECIALLY AS WE HAVE ONLY 25 MINUTES.
22	SO THIS SLIDE REPRESENTS THE SCOPE OF
23	CIRM'S INVESTMENT IN NEURODEGENERATION, COMBINING
24	THE EFFORTS OF BOTH PROPOSITIONS WITH THE YEARS FROM
25	2007 TO 2023. WE HAVE DIVIDED THIS THESE IN THREE
	5

1	MAIN COLUMNS, THE DISEASES LEFT, THE NUMBER OF
2	AWARDS GIVEN ON THE LEFT, AND THE FUNDS ALLOCATED AS
3	DENOTED IN MILLIONS OF DOLLARS ON THE RIGHT.
4	THE COLOR CODING, WHICH IS GOING TO BE
5	CONSISTENT ACROSS THE PRESENTATION FOR BETTER
6	VISUALIZATION, SHOWS DISCOVERY AWARDS IN
7	YELLOW-GREEN, TRANSLATION IN ORANGE, AND CLINICAL
8	AWARDS ARE IN BLUE.
9	SO TO THE LEFT WITH THE NUMBER OF AWARDS,
10	WHAT THAT HIGHLIGHTS IS THAT PARKINSON'S DISEASE HAS
11	RECEIVED A TOTAL OF 28 AWARDS WITH DISCOVERY BEING
12	THE FOCUS. ALZHEIMER'S FOLLOWS WITH 17 AWARDS, ALSO
13	HEAVILY FOCUSED ON DISCOVERY AND SOME TRANSLATION,
14	NO CLINICAL. ALS HAS A NOTABLE NUMBER OF 29 AWARDS,
15	AGAIN WITH A FOCUS ON DISCOVERY, BUT ALSO WITH A
16	SIGNIFICANT PORTION IN CLINICAL TRIALS. AND THEN WE
17	HAVE HUNTINGTON'S AND SPINAL MUSCULAR ATROPHY WHICH
18	HAVE RECEIVED A COMBINED NUMBER OF 23 AND 4 AWARDS
19	RESPECTIVELY.
20	LOOKING AT THE NUMBER OF FUNDS, ALS HAS
21	THE HIGHEST INVESTMENT WITH OVER \$106 MILLION,
22	EMPHASIZING THE FOCUS ON BOTH EQUALLY, MORE OR LESS,
23	DISCOVERY AND CLINICAL TRIALS. PARKINSON'S HAS ALSO
24	RECEIVED A CONSIDERABLE AMOUNT OF FUNDING WITH A
25	TOTAL OF \$63.9 MILLION WHERE 44.6 IS DIRECTED TOWARD
	6

1	DISCOVERY RESEARCH AND 15.3 TO CLINICAL.
2	ALZHEIMER'S DISEASE HAS \$50.2 MILLION IN
3	FUNDING WITH A BALANCE DISTRIBUTION BETWEEN
4	DISCOVERY AND TRANSLATIONAL RESEARCH. AND
5	HUNTINGTON'S DISEASE HAS BEEN ALLOCATED 49.1
6	MILLION, AGAIN, WITH A STRONG CLINICAL TRIAL
7	INVESTMENT.
8	THE LOWER SECTION OF THE SLIDE IDENTIFIES
9	A FOCUS ON RARE DISEASES, SUCH AS TAY-SACHS, PML,
10	AND LYSOSOMAL STORAGE DISEASES. MOST OF THEM HAVE
11	ONE TO TWO AWARDS EACH AND CORRESPONDING FUNDING.
12	AND THIS INDICATES THAT, WHILE THESE CONDITIONS ARE
13	LESS COMMON, THEY ARE ALSO A FOCUS OF CIRM'S
14	EFFORTS, AS WE ALL KNOW.
15	SOME OF THE INVESTMENT ON
16	NEURODEGENERATIVE DISEASE, AS YOU CAN SEE, IS IN
17	DISCOVERY RATHER THAN CLINICAL; FOR EXAMPLE,
18	ALZHEIMER'S DISEASE VERSUS ALS. AND THIS IS DUE TO
19	SOME OF THE FACTORS. BUT ALZHEIMER'S DISEASE
20	COMPARED TO ALS, ALS HAS SEEN MORE SIGNIFICANT
21	ADVANCES IN CELL AND GENE THERAPY APPROACHES GIVEN
22	ITS CLEARER GENETIC COMPONENTS IN SOME OF THE CASES
23	WHICH HAS ALLOWED MORE TARGETED THERAPIES. AND WE
24	WILL HEAR ABOUT THESE TODAY FROM DR. ROTHSTEIN LATER
25	ON, I'M SURE.

7

1	BUT, IN ESSENCE, THIS SLIDE PROVIDES A
2	COMPREHENSIVE OVERVIEW OF OUR STRATEGIC FUNDING
3	DISTRIBUTION ACROSS A RANGE OF NEURODEGENERATIVE
4	DISEASES ACROSS A 16-YEAR PERIOD WITH SIGNIFICANT
5	INVESTMENTS IN BOTH EARLY STAGE AND CLINICAL
6	RESEARCH, WHICH HIGHLIGHTS OUR COMMITMENT TO
7	NEURODEGENERATIVE DISEASES. NEXT SLIDE, KELLY.
8	THANK YOU.
9	SO THESE SLIDE REPRESENTS NO. 2 AND 3,
10	AS I SAID EARLIER ON, IS THE CIRM NEURODEGENERATION
11	PORTFOLIO OF AWARDS DATA UNDER PROP 71 IN THIS CASE.
12	AND THE MAIN OBSERVATION IS THAT THE UNDERLYING
13	TRENDS IN FUNDING AND AWARD DISTRIBUTION REMAIN
14	CONSISTENT ACROSS BOTH TIMEFRAMES AND WITH THE
15	PREVIOUS THAT WAS THE OVERALL FEATURE BETWEEN BOTH
16	PROPOSITIONS.
17	SO LET'S GO PAST, AGAIN, THE NEXT SLIDE.
18	THIS IS PROP 14, AND AGAIN SHOWING THAT THE
19	UNDERLYING TRENDS IN FUNDING AND AWARD DISTRIBUTION
20	REMAIN CONSISTENT AS WELL RIGHT NOW. GIVEN THAT WE
21	ARE ONLY A COUPLE OF YEARS ON THIS PROPOSITION, WE
22	HAVE LESS NUMBER OF AWARDS AND LESS AMOUNT OF
23	FUNDING INVESTED. NEXT SLIDE.
24	ON THIS SLIDE WE ARE LOOKING AT THE CIRM
25	NEURODEGENERATION PORTFOLIO SPENDING BY DISEASE,
	8

1	COMPARING PROPOSITIONS, CONTRASTING THE ALLOCATIONS
2	UNDER PROP 71 ON THE LEFT AND PROP 14 ON THE RIGHT.
3	THIS SLIDE HIGHLIGHTS THE DISTRIBUTION OF FUNDS
4	ACROSS THE SPECTRUM OF NEURODEGENERATIVE DISEASES
5	WITH A FOCUS ON HOW FINANCIAL RESOURCES HAVE BEEN
6	DIRECTED TOWARDS EITHER DISCOVERY, TRANSLATION, AND
7	CLINICAL RESEARCH. AND, AGAIN, IT'S YELLOW-GREEN,
8	DISCOVERY; ORANGE, TRANSLATION; AND BLUE IS
9	CLINICAL.
10	SO ON THE LAST UNDER THE PROPOSITION 71,
11	YOU CAN SEE THAT PARKINSON'S DISEASE RECEIVED THE
12	HIGHEST FUNDING IN DISCOVERY WITH A SIGNIFICANT
13	PORTION CHANNELED INTO CLINICAL RESEARCH AS WELL,
14	DEMONSTRATING CIRM'S COMMITMENT TO TRANSLATING ALSO
15	THE DISCOVERY OF EVENTUAL TREATMENTS.
16	ALZHEIMER'S DISEASE ALSO SAW A SUBSTANTIAL
17	INVESTMENT, ESPECIALLY IN DISCOVERY AND
18	TRANSLATIONAL RESEARCH, WHICH REFLECTS THE STRATEGIC
19	EMPHASIS ON UNRAVELING THE COMPLEXITIES OF THE
20	DISEASE.
21	AND ALS HAS A NEARLY EQUAL DISTRIBUTION OF
22	FUNDS ACROSS DISCOVERY AND CLINICAL STAGES, WHICH
23	RECEIVED AND ALS RECEIVED THE HIGHEST AMOUNT OF
24	FUNDING. THE EQUAL DISTRIBUTION UNDERSCORES A
25	BALANCED APPROACH TOWARDS DEVELOPING AS WELL AS
	۵
	5

1	UNDERSTANDING THE DISEASE MECHANISMS AND PUSHING THE
2	PROMISING TREATMENT INTO THE CLINICAL. AND A
3	SIGNIFICANT CLINICAL INVESTMENT IS LIKELY A RESPONSE
4	OF THE URGENT NEED TO FIND THERAPEUTIC OPTIONS FOR
5	THIS RAPIDLY PROGRESSING CONDITION, I WOULD SAY.
6	SO MOVING ON TO PROPOSITION 14, THE
7	FUNDING PATTERN HERE SHOWS THE CONTINUED FOCUSED
8	BOOST IN CLINICAL RESEARCH FOR ALS. AND TO NOTE, WE
9	ARE COMPARING 17 YEARS VERSUS 2 YEARS. SO PROP 71
10	VERSUS PROP 14. SO WE CANNOT REALLY MAKE ANY
11	CONCLUSIONS YET. NEXT SLIDE.
12	AND FEEL FREE IF ANYBODY HAS A QUESTION,
13	WANTS TO CLARIFY, PLEASE STOP ME. WE ARE GOING TO
14	MOVE INTO FUNDING. THE NEXT THREE SLIDES ARE GOING
15	TO BE ABOUT PROP 71 AND PROP 14 TOGETHER. SO THIS
16	SLIDE DISPLAYS CIRM'S R&D FUNDING IN
17	NEURODEGENERATIVE PORTFOLIO AS A PERCENTAGE OF THE
18	TOTAL IN EACH PILLAR UNDER BOTH PROPOSITIONS OVER
19	THE LAST 17 YEARS AND SHOWCASES THE ALLOCATION
20	ACROSS DISCOVERY. SO 43 PERCENT OF THE FUNDING OF
21	NEURO FOR DISCOVERY HAS BEEN IN NEURODEGENERATION,
22	26 PERCENT HAS BEEN FOR TRANSLATIONAL, AND 23
23	PERCENT OF THE FULL NEURO FUNDING IN CLINICAL HAS
24	BEEN IN NEURODEGENERATION.
25	DISCOVERY SHOWS THE LARGEST SHARE OF THE
	10

1	NEURODEGENERATION-SPECIFIC FUNDING AT \$169.8
2	MILLION, WHICH EMPHASIZES THE IMPORTANCE OF
3	FOUNDATIONAL RESEARCH, AND I COULD GO FURTHER AND
4	SAY THIS MECHANISM DISCOVERY OF NEURODISEASE
5	MECHANISMS THAT ARE VERY NEEDED FOR ALL THESE
6	DISEASES, COMPLEX DISEASES.
7	TRANSLATIONAL EFFORTS HAVE RECEIVED 61.8
8	MILLION, WHICH BRIDGES THE LAB FINDINGS INTO THE
9	CLINICAL APPLICATIONS, WHILE CLINICAL RESEARCH IS
10	THE MOST RESOURCE INVESTMENT SPACE, AND IT HAS
11	ALLOCATED 96.2 MILLION, REFLECTING THE SIGNIFICANT
12	COST OF BRIDGING THERAPIES TO PATIENTS.
13	LET'S MOVE TO THE NEXT SLIDE. THE NEXT
14	SLIDE SHOWS SHIFTS OUR FOCUS FROM FUNDING TO THE
15	DISTRIBUTION OF AWARDS WITHIN CIRM'S R&D
16	NEURODEGENERATION PORTFOLIO FROM THE DURATION OF THE
17	LAST PROPOSITIONS OF 17 YEARS. IT OUTLINES THE
18	NUMBERS OF AWARDS GIVEN IN THE THREE CATEGORIES
19	AGAIN. AND THIS IS WHAT WE HAVE SPENT IN TOTAL
20	NEURO.
21	YOU CAN SEE THAT IN THE DISCOVERY
22	CATEGORY, THERE HAVE BEEN 90 AWARDS SPECIFICALLY
23	TARGETING NEURODEGENERATION, WHICH COMBINED WITH
24	OTHER NEUROLOGICAL AWARDS TOTALS 218 AWARDS. THIS
25	HIGHLIGHTS CIRM'S STRONG EMPHASIS ON FOUNDATIONAL

1	RESEARCH IN NEURODEGENERATION. TRANSLATIONAL
2	RESEARCH HAS SEEN 11 AWARDS DEDICATED TO
3	NEURODEGENERATION OUT OF 37 TOTAL NEURO AWARDS AND
4	REFLECTS THE FOCUSED EFFORTS TO BRIDGE THE GAP
5	BETWEEN LEVEL OF FINDINGS AND POTENTIAL CLINICAL
6	APPLICATIONS, BUT IT ALSO SHOWS THAT MANY OF THE
7	DISCOVERY MIGHT NOT BE SUCCESSFUL, NOT BECAUSE WE
8	ARE NOT TRANSLATING THEM, OR THEY MIGHT BEING THE
9	RISK SOMEWHERE ELSE IN FOR-PROFIT INDUSTRY.
10	IN THE CLINICAL SPACE THERE ARE TEN
11	NEURODEGENERATION-SPECIFIC AWARDS FROM A TOTAL OF
12	41, AND THIS SHOWS THE STRATEGIC PUSH TOWARDS
13	BRINGING THE THERAPIES FROM THE LAB INTO THE
14	CLINICAL TESTING PHASE. AND THIS AWARD
15	DISTRIBUTION, I THINK, COMPLEMENTS THE FUNDING
16	PATTERN THAT WE DISCUSSED EARLIER, DEMONSTRATING
17	CIRM'S BALANCED INVESTMENT IN EACH RESEARCH STAGE TO
18	ADVANCE THE UNDERSTANDING OF THESE DEVASTATING
19	DISEASES.
20	LET'S MOVE TO THE NEXT SLIDE. THE NEXT
21	SLIDE IS AN ALTERNATIVE WAY TO VISUALIZE THE NO. 5.
22	AND INSTEAD OF PERCENTAGES, IT'S BY AMOUNT SPENT
23	RELATIVE TO EACH OTHER. SO IT'S ALL THE SAME AS THE
24	FIRST SLIDE ON THIS TREND. NEXT SLIDE.
25	THIS SLIDE PROVIDES AN ANALYSIS OF THE
	12

1	PERCENTAGES OF NEURODEGENERATION SPENDING COMPARED
2	TO THE OTHER NEUROLOGICAL AREAS IN THE MOST RECENT
3	FUNDING PHASE UNDER PROP 14. SO THE LAST THREE
4	SLIDES WERE BOTH PROPOSITIONS. THIS IS JUST SO WE
5	CAN SEE WHAT PROP 14 WHAT'S HAPPENING WITH PROP
6	14. AND HERE WE OBSERVE THAT THE STRATEGIC
7	ALLOCATION OF FUNDS PARALLELS THE TRENDS OF BOTH
8	PROPS TOGETHER. NEXT SLIDE.
9	THIS IS THE NUMBER OF AWARDS, AND THE
10	DISTRIBUTION ALSO PARALLELS THE TRENDS THAT WE HAD
11	UNDER PROP 71 AND PROP 14 TOGETHER. NEXT SLIDE.
12	AND THIS IS BY SPENDING, ANOTHER
13	ALTERNATIVE WAY TO VISUALIZE SLIDE 8 INSTEAD OF
14	PERCENTAGES BY AMOUNT OF SPEND RELATIVE TO EACH
15	OTHER.
16	NOW, ANY QUESTIONS SO FAR? OKAY.
17	CHAIRMAN GOLDSTEIN: ACTUALLY ONE
18	QUESTION, ROSA. WHAT FRACTION OR APPROXIMATE
19	FRACTION OF THE CLIN AWARDS ARE PARTNERED WITH
20	INDUSTRY?
21	DR. CANET-AVILES: WE WILL SEE THAT AT THE
22	END. YOU ARE GOING TO SEE THAT AT THE END. SO WE
23	ARE GOING TO SEE A COUPLE THINGS. THANK YOU, LARRY,
24	FOR THE QUESTION. SO ONE OF THEM, WE ARE GOING TO
25	SEE THE PROGRESSION. SO THOSE AWARDS THAT HAVE
	13

1	STARTED WITH FUNDING FROM CIRM AT THE STAGE OF
2	DISCOVERY OR TRANSLATIONAL AND THEY'VE MOVED TO THE
3	NEXT STAGE ALSO FUNDED BY CIRM. AND ANOTHER SET OF
4	DATA IS GOING TO BE ABOUT PARTNERING ACTIVITIES.
5	AND THAT'S WHAT DR. PATEL PROVIDED AND WE WILL BE
6	DISCUSSING.
7	SO LET'S MOVE ON TO THE NEXT SLIDE PLEASE.
8	IT'S A BUSY SLIDE.
9	DR. YAMAMOTO: ROSA.
10	DR. CANET-AVILES: YEAH.
11	DR. YAMAMOTO: THIS IS KEITH. I'M SORRY
12	TO BE LATE, SO YOU MAY HAVE ALREADY TALKED ABOUT
13	THIS. BUT WHAT FRACTION I ASSUME THAT THE
14	CLINICAL AWARDS INCLUDE TRIALS.
15	DR. CANET-AVILES: CORRECT.
16	DR. YAMAMOTO: AND SO WHAT FRACTION OF THE
17	EXPENDITURE ON THE CLIN SIDE IS SPECIFICALLY FOR
18	SUPPORTING CLINICAL TRIALS?
19	DR. CANET-AVILES: SO WE COULD BE LET
20	ME SEE. UNDER CLINICAL. ABLA, CAN YOU MOVE
21	TO KELLY, CAN YOU MOVE TO SLIDE NO. 5. AND,
22	ABLA, I WILL DEFER TO YOU BECAUSE I COULD SAY THAT
23	IT'S 23 PERCENT. NO. 5, SLIDE NO. 5, KELLY. THIS
24	ONE.
25	ABLA, WOULD YOU LIKE TO ANSWER THE
	14
	± 1

1	QUESTION? I COULD SAY IT'S 23 PERCENT, BUT I DON'T
2	KNOW EXACTLY. ABLA, YOU MIGHT BE MUTED, ABLA.
3	DR. CREASEY: I'M NO LONGER MUTED. YES,
4	AS REPRESENTED ON THAT SLIDE, IT'S 23 PERCENT IN
5	CLINICAL TRIALS.
6	MR. JUELSGAARD: I THINK SAYING THEY'RE IN
7	CLINICAL TRIALS IS JUST A LITTLE MISLEADING BECAUSE
8	THE CLIN AWARDS INCLUDE THE STUDIES LEADING UP TO AN
9	IND FILING. SO YOU HAVE TO HAVE AN IND IN ORDER TO
10	ACTUALLY BEGIN CLINICAL TRIALS. IF YOU GO TO THOSE
11	SLIDES BEFORE, YOU WILL SEE THAT THERE ARE TWO \$4
12	MILLION AMOUNTS. THOSE WERE ALL STUDIES LEADING TO
13	AN IND. THERE'S ONLY ONE YEAH, SO THAT SLIDE,
14	FOR EXAMPLE, THE BLUE ONES. THE TWO BLUE FOURS HAVE
15	TO BE TRIALS LEADING UP TO AN IND. SO WHETHER THEY
16	GET THE IND OR NOT IS STILL AN OPEN ISSUE.
17	SO THEN THERE'S ONE FOR 12 MILLION, WHICH
18	SUGGESTS, UNLESS THERE'S MORE THAN ONE INVOLVED
19	THERE, THAT THAT'S PROBABLY A CLIN AWARD, PROBABLY A
20	PHASE 1.
21	DR. CANET-AVILES: YES, YOU ARE CORRECT,
22	STEVE. I THINK WE DID THAT ANALYSIS. I WOULD NEED
23	TO GO INTO OTHER SLIDES, BUT WE COULD FOLLOW UP WITH
24	PROVIDING THIS INFORMATION.
25	MR. JUELSGAARD: OKAY.
	15

1	DR. CANET-AVILES: BUT I DON'T THINK
2	WE SOMEBODY IS SPEAKING. SORRY.
3	CO-CHAIRMAN FISHER: I THINK THE FOCUS OF
4	THIS TASK FORCE IS ON PROP 14. SO ARE YOU GOING TO
5	BE FOCUSING WHAT WE'VE DONE SO FAR RELATED TO PROP
6	14, OR ARE WE LOOKING AT A COMBINATION AND THEN WE
7	HAVE TO PARSE OUT HOW MUCH IS PROP 14 AND HOW MUCH
8	IS PROP 71, WHICH IS NOT REALLY PART OF THE SCOPE OF
9	WHAT OUR TASK FORCE IS CHARGED WITH. I'M WONDERING
10	HOW WE'RE GOING TO GET TO THAT WHEN ALL OF THESE
11	NUMBERS ARE COMBINED.
12	DR. CANET-AVILES: THANK YOU, FRED, FOR
13	YOUR COMMENT. ACTUALLY THE NUMBERS ARE SEPARATED.
14	WE'VE DONE THE THREE ANALYSES. WE'VE DONE COMBINED
15	AND ONE BY ONE SO THAT WE COULD SEE, A, WHAT HAS
16	HAPPENED SO FAR, WHAT HAPPENED DURING PROP 71, AND
17	WHAT'S HAPPENING DURING PROP 14 SO WE CAN SEE
18	WHETHER THE TRENDS ARE STILL THE SAME. AND FOR NOW
19	WE CAN SEE WHAT WE ARE CONCLUDING IS THAT THE
20	TRENDS ARE THE SAME DURING PROP 14.
21	CO-CHAIRMAN FISHER: OKAY. THANK YOU SO
22	MUCH.
23	DR. CANET-AVILES: OF COURSE. OF COURSE.
24	AND I THINK THAT'S A VERY RELEVANT QUESTION. SO
25	YOU'RE ABSOLUTELY ON THE SPOT. THE THING IS THIS IS
	16

1	A LOT OF INFORMATION. THAT'S WHY IT WAS POSTED SO
2	THAT PEOPLE COULD DIGEST IT BEFORE THE MEETING
3	BECAUSE GOING THROUGH ALL THESE SLIDES IS KIND OF A
4	LITTLE BIT TOO MUCH INFORMATION, RIGHT.
5	SO I AM GOING TO GO WE WERE GOING TO GO
6	TO SLIDE NO. 11 WHERE WE ARE PRESENTING. SO, AGAIN,
7	THE QUESTION THAT WAS ASKED IN TERMS OF THE
8	PROPORTION BY KEITH YAMAMOTO AND STEVE JUELSGAARD,
9	IN TERMS OF CLINICAL, WE CAN SAY THAT WE HAVE FUNDED
10	23 PERCENT OF THE WHOLE NEURO PORTFOLIO WITH THE
11	CORRESPONDENCE OF \$96.2 MILLION HAVE BEEN INVESTED
12	IN CLINICAL. AND OF THOSE, ABOUT HALF HAVE BEEN IN
13	ALS.
14	SO WE CAN THAT'S WHAT WE CAN SAY. AND
15	THEN WE WILL HAVE IN TERMS OF ALS, FOR EXAMPLE,
16	WE CAN SEE HERE THAT IN TERMS OF NUMBER OF AWARDS,
17	WE HAVE THREE IN THE CLINICAL. THIS SLIDE IS
18	ACTUALLY SHOWING BY APPROACHES. IT'S
19	PROBABLY AND IT'S A COMPREHENSIVE OVERVIEW OF THE
20	NEURODEGENERATION PORTFOLIO OF AWARDS BY APPROACH
21	UNDER PROP 71. WE ALSO HAVE PROP 14. AND WE HAVE
22	CATEGORIZED THESE IN FOUR COLUMNS REPRESENTING
23	DISEASE ON THE LEFT AND THEN THE THREE STAGES:
24	DISCOVERY, TRANSLATIONAL, AND CLINICAL.
25	
23	AND IT BREAKS DOWN, THE CHART BREAKS DOWN

1	THE NUMBER OF AWARDS GIVEN TO VARIOUS
2	NEURODEGENERATIVE DISEASES. FOR EXAMPLE, WE CAN SEE
3	THAT FOR PARKINSON'S DISEASE, THEY HAD, I THINK, 23
4	AWARDS IN THE DISCOVERY PHASE, ONE IN THE
5	TRANSLATIONAL PHASE, AND THEN WE HAD TWO IN THE
6	CLINICAL PHASE.
7	AND THEN WE HAVE THE COLOR-CODED LEGEND
8	AT THE BOTTOM SHOWS THE DIFFERENT RESEARCH
9	MODALITIES, SUCH AS ALLOGENEIC, AUTOLOGOUS,
10	GENE-MODIFIED, SMALL MOLECULES, CELL FREE GENE
11	THERAPY, FOUNDATIONAL RESEARCH, AND AUTOLOGOUS,
12	BIOLOGIC. AND THESE MODALITIES WILL HELP US
13	UNDERSTAND WHERE THE FOCUS OF OUR RESEARCH ALSO HAS
14	BEEN.
15	I WOULD LIKE TO DRAW ATTENTION TO ALS. IT
16	HAS 13 AWARDS IN DISCOVERY PHASE, WHICH ARE
17	HIGHLIGHTED IN NOT 13 17 AWARDS IN THE
18	DISCOVERY PHASE, AND WE ALSO HAVE THREE IN THE
19	CLINICAL. BUT GIVEN THAT IT HAS SO THOSE ARE
20	PROBABLY CLINICAL TRIALS BECAUSE OF THE NUMBER OF
21	AWARDS AND THE AMOUNT THAT WE'VE SPENT IN ALS
22	CLINICAL.
23	DR. CREASEY: CAN I COMMENT HERE? WHEN
24	YOU TALK ABOUT THE CLINICAL, IT'S ACTUALLY JUST
25	PHASE 1. AND SO IT IS A LIKE UNCONTROLLED CLINICAL
	18

1	RESEARCH IN ALS. THERE ARE NO PLACEBOS, WHATEVER.
2	SO WHENEVER YOU CALL A TRIAL, I THINK IT'S FAIR TO
3	SAY THAT YOU NEED A COMPARATOR. AND IN OUR
4	SITUATION WITH ALS, OTHER THAN BRAINSTORM
5	THERAPEUTICS, THE OTHER TWO WERE ONLY RESEARCH, OPEN
6	LABEL TRIALS, OPEN LABEL RESEARCH.
7	DR. CANET-AVILES: GREAT. THANK YOU FOR
8	THE CLARIFICATION, ABLA.
9	SO THE NEXT SLIDE ACTUALLY SHOWS, INSTEAD
10	OF NUMBER OF AWARDS, IT REPRESENTS THE PORTFOLIO BY
11	FUNDING BY APPROACH. AND THIS IS THE STAGE AND,
12	AGAIN, ALSO THE DIFFERENT COLOR-CODED MODALITIES.
13	AND AS YOU CAN SEE, THIS KIND OF PARALLELS THE
14	AMOUNT OF FUNDING THAT YOU WERE TALKING ABOUT IN
15	CLINICAL. WE CAN SEE THAT WE'VE SPENT MOST OF OUR
16	FUNDING IN CLINICAL IN PARKINSON'S, ALS, AND
17	HUNTINGTON'S DISEASE IN PROP 71. NEXT SLIDE.
18	THIS SLIDE IS THE SAME, BUT JUST FOR PROP
19	14. SO FOR PROP 14, WE CAN SEE THAT SO FAR WE HAVE
20	HAD QUITE A BIT OF INVESTMENT IN CLINICAL AS WELL.
21	SO PARKINSON'S DISEASE, WE HAVE ONE AWARD IN
22	CLINICAL, WE HAVE ONE IN ALS, AND WE HAVE ONE IN
23	TAY-SACHS. WE HAVE SOME TRANSLATIONAL APPROACHES
24	FOR PARKINSON'S AGAIN AND FRIEDREICH'S ATAXIA, AND
25	THEN WE HAVE IN DISCOVERY ONE AWARD FOR ALZHEIMER'S,

1	MULTIPLE SCLEROSIS, A LOT OF FUNDING OR A LOT OF
2	AWARDS IN ALS. SO IT'S LIKE IT'S ONE OF THE
3	CANDIDATE NEURODEGENERATIVE DISEASES THAT WE HAVE
4	INVESTED THE MOST. IT'S ACTUALLY THE ONE THAT WE'VE
5	INVESTED THE MOST, ALSP AND PML. AND YOU CAN SEE
6	THE DIFFERENT APPROACHES WITH THE CODE AT THE
7	BOTTOM.
8	THE NEXT SLIDE SHOWS THE SAME INFORMATION,
9	BUT BY FUNDS SPENT. AND WE CAN AGAIN SEE THAT ALS
10	IS THE ONE THAT HAS RECEIVED THE MOST FUNDING, AND
11	IT'S FOCUSED ON EARLY RESEARCH, FOUNDATIONAL, OR
12	SMALL MOLECULE, BIOLOGIC, AND GENE THERAPY, CELL
13	FREE GENE THERAPY. SO THESE TWO AWARDS ARE TRYING
14	TO DEVELOP NEW CANDIDATES THAT WILL MOVE INTO
15	TRANSLATION AND CLINICAL, NOT SO MUCH FOUNDATIONAL
16	DISCOVERY. AND IN THE CLINICAL WE HAVE 12 MILLION,
17	AND I THINK IT'S ALLOGENEIC, CORRECT, ALLOGENEIC,
18	GENE-MODIFIED THERAPY. AND I THINK WE WILL SEE AN
19	EXAMPLE SOON IN THE SLIDES. ANY QUESTIONS?
20	CHAIRMAN GOLDSTEIN: ROSA, YOU'RE GETTING
21	TIGHT ON TIME.
22	DR. CANET-AVILES: OKAY. SO I WILL
23	JUST GO THANK YOU. NEXT SLIDE, KELLY.
24	THIS SLIDE PROVIDES AN OVERVIEW. I'M NOT
25	GOING TO GO THROUGH THIS ONE. I'M GOING TO GO
	20

1	THROUGH THE NEXT, BUT WHAT I WANT TO PRESENT IS WHAT
2	THIS SLIDE AND THE NEXT REPRESENT. THESE ARE THE
3	OVERALL NEURO PORTFOLIO PROGRESSION OF EVENTS FOR
4	BOTH PROPOSITIONS.
5	WHAT A PROGRESSION EVENT IS IS A MEASURE
6	OF THE SUCCESS OF OUR PROGRAMS AND FUNDING AND
7	MOVING TO THE NEXT STAGES. NOW, WHAT WE CAPTURE
8	HERE IS WHAT MOVES TO THE NEXT STAGE WITHIN OUR CIRM
9	PORTFOLIO OF FUNDING. SO WHAT WE HAVEN'T CAPTURED
10	HERE, WHICH WE WILL TRY TO CAPTURE NEXT, IS WHAT
11	MIGHT BE THE RISK AND IS FUNDED THROUGH INDUSTRY,
12	RIGHT.
13	SO A PROGRESSION EVENT IS WHEN THE CIRM
14	AWARD COMPLETES ONE STAGE OF RESEARCH AND IS
15	SUCCESSFUL AND GETS CIRM FUNDING TO MOVE ON TO THE
16	NEXT STAGE TO DEVELOP EITHER A SECOND GENERATION OF
17	THE SAME DEVICE OR THERAPY.
18	SO IN HERE I WOULD LIKE TO HIGHLIGHT A
19	CASE STUDY TO DEMONSTRATE HOW OUR FUNDING WHEN IT
20	APPLIES TO PROGRAMS SUCH AS THE ONE PIONEERED BY
21	UCSF UNDER DR. KRIEGSTEIN AND DR. RUBENSTEIN THAT
22	MOVED TO DR. CORY NICHOLAS AND NEURONA THERAPEUTICS.
23	THEY DEVELOP THROUGH FIVE BASIC AND DISCOVERY
24	AWARDS, THEY DEVELOPED THE PROTOCOLS FOR DERIVATION,
25	CHARACTERIZATION, SELECTION, AND PRODUCTION OF

21

1	INTRAMURAL PRECURSORS. AND THEY GOT A TRAN AWARD
2	WHERE THEY DEVELOPED THE INHIBITORY NEURONS AS A
3	THERAPEUTIC FOR FOCAL EPILEPSY, AND THEN THEY MOVE
4	ON TO PHASE $1/2$ TRIAL TO TEST SAFETY AND EFFICACY OF
5	THE POTENTIAL TREATMENT FOR DRUG RESISTANT
6	UNILATERAL MEDIAL TEMPORAL LOBE EPILEPSY.
7	SO THIS IS A VERY NICE EXAMPLE OF HOW
8	SUCCESSFUL SOME OF OUR NEUROTHERAPIES HAVE BEEN
9	EVOLVING THROUGH OUR PORTFOLIO.
10	NEXT SLIDE IS A FOCUS ON OUR
11	NEURODEGENERATION, AND I WILL SAY WE HAVE MADE A
12	MISTAKE THAT WE RECTIFIED. WE HAD MISSED A COUPLE,
13	AND WE ADDED THEM. SO THAT WAS WHAT THE REVISION OF
14	THE SLIDES WAS.
1 -	AND WE CAN SEE HERE THAT WE HAVE A FATR
T2	AND WE CAN SEE HERE THAT WE HAVE A TAIK
15 16	AMOUNT OF PARKINSON'S DISEASE. WE HAVE THREE
15 16 17	AMOUNT OF PARKINSON'S DISEASE. WE HAVE THREE PROJECTS THAT HAVE MOVED FROM DISCOVERY EITHER TO
15 16 17 18	AMOUNT OF PARKINSON'S DISEASE. WE HAVE THREE PROJECTS THAT HAVE MOVED FROM DISCOVERY EITHER TO TRAN OR TO CLIN OR THAT THEY ARE MOVING FROM
15 16 17 18 19	AMOUNT OF PARKINSON'S DISEASE. WE HAVE THREE PROJECTS THAT HAVE MOVED FROM DISCOVERY EITHER TO TRAN OR TO CLIN OR THAT THEY ARE MOVING FROM DISCOVERY FOUNDATIONAL TO A DEVELOPMENT CANDIDATE
15 16 17 18 19 20	AMOUNT OF PARKINSON'S DISEASE. WE HAVE THREE PROJECTS THAT HAVE MOVED FROM DISCOVERY EITHER TO TRAN OR TO CLIN OR THAT THEY ARE MOVING FROM DISCOVERY FOUNDATIONAL TO A DEVELOPMENT CANDIDATE AND SO ON. SO THIS IS JUST FOR REFERENCE.
15 16 17 18 19 20 21	AMOUNT OF PARKINSON'S DISEASE. WE HAVE THREE PROJECTS THAT HAVE MOVED FROM DISCOVERY EITHER TO TRAN OR TO CLIN OR THAT THEY ARE MOVING FROM DISCOVERY FOUNDATIONAL TO A DEVELOPMENT CANDIDATE AND SO ON. SO THIS IS JUST FOR REFERENCE. I JUST WANT TO MOVE TO THE LAST SLIDE
15 16 17 18 19 20 21 22	AMOUNT OF PARKINSON'S DISEASE. WE HAVE THREE PROJECTS THAT HAVE MOVED FROM DISCOVERY EITHER TO TRAN OR TO CLIN OR THAT THEY ARE MOVING FROM DISCOVERY FOUNDATIONAL TO A DEVELOPMENT CANDIDATE AND SO ON. SO THIS IS JUST FOR REFERENCE. I JUST WANT TO MOVE TO THE LAST SLIDE BECAUSE I'M SHORT ON TIME. AND THIS LAST SLIDE
15 16 17 18 19 20 21 22 23	AMOUNT OF PARKINSON'S DISEASE. WE HAVE THREE PROJECTS THAT HAVE MOVED FROM DISCOVERY EITHER TO TRAN OR TO CLIN OR THAT THEY ARE MOVING FROM DISCOVERY FOUNDATIONAL TO A DEVELOPMENT CANDIDATE AND SO ON. SO THIS IS JUST FOR REFERENCE. I JUST WANT TO MOVE TO THE LAST SLIDE BECAUSE I'M SHORT ON TIME. AND THIS LAST SLIDE PROVIDES A COMPREHENSIVE OVERVIEW OF THE
15 16 17 18 19 20 21 22 23 24	AMOUNT OF PARKINSON'S DISEASE. WE HAVE THREE PROJECTS THAT HAVE MOVED FROM DISCOVERY EITHER TO TRAN OR TO CLIN OR THAT THEY ARE MOVING FROM DISCOVERY FOUNDATIONAL TO A DEVELOPMENT CANDIDATE AND SO ON. SO THIS IS JUST FOR REFERENCE. I JUST WANT TO MOVE TO THE LAST SLIDE BECAUSE I'M SHORT ON TIME. AND THIS LAST SLIDE PROVIDES A COMPREHENSIVE OVERVIEW OF THE NEURODEGENERATION PARTNERING ACTIVITIES FROM 2007 TO
15 16 17 18 19 20 21 22 23 24 25	AMOUNT OF PARKINSON'S DISEASE. WE HAVE THREE PROJECTS THAT HAVE MOVED FROM DISCOVERY EITHER TO TRAN OR TO CLIN OR THAT THEY ARE MOVING FROM DISCOVERY FOUNDATIONAL TO A DEVELOPMENT CANDIDATE AND SO ON. SO THIS IS JUST FOR REFERENCE. I JUST WANT TO MOVE TO THE LAST SLIDE BECAUSE I'M SHORT ON TIME. AND THIS LAST SLIDE PROVIDES A COMPREHENSIVE OVERVIEW OF THE NEURODEGENERATION PARTNERING ACTIVITIES FROM 2007 TO 2024. AND BY PARTNERING, WHAT WE MEAN HERE IS THAT

1	A PROGRAM THAT HAD STARTED WITH CIRM FUNDING HAS
2	EITHER RAISED MONEY THROUGH A VC, SPUN OUT OF
3	ACADEMIA INTO A FOR-PROFIT, AND/OR RAISED VC FUNDING
4	OR LICENSED OR BEING ACQUIRED.
5	THIS IS A MEASURE OF THE IMPACT OF CIRM
6	FUNDING. THESE PARTNERSHIPS, I THINK, ARE VITAL FOR
7	ADVANCING RESEARCH FROM THE LAB TO THE CLINIC,
8	EMPHASIZING THE IMPORTANCE OF COLLABORATION BETWEEN
9	PUBLIC INSTITUTIONS AND PRIVATE ENTITIES IN TACKLING
10	THESE DEVASTATING NEURODEGENERATIVE DISEASES. AND I
11	THINK IT WAS I CAN'T REMEMBER WHO ASKED THE
12	QUESTION, BUT YOU CAN SEE THAT, YES, IN THE CLINICAL
13	WE HAVE SOME PROGRAMS THAT STARTED IN THE CLINICAL
14	AND THAT HAVE HAD PARTNERING ACTIVITIES. SO YOU CAN
15	SEE IN HUNTINGTON'S, PARKINSON'S, ALS, PARKINSON'S
16	DISEASE WE HAVE DETAILS, BUT WE HAVE SOME IN EACH.
17	STEPHEN.
18	MR. JUELSGAARD: YEAH. SO SOME OF THESE
19	DESCRIPTIONS OF WHERE THINGS STAND ARE A LITTLE
20	MISLEADING. I DID MY OWN INDEPENDENT RESEARCH ON
21	ALL OF THESE COMPANIES.
22	I WANT TO START WITH BRAINSTORM BECAUSE
23	ACTUALLY THEY COMPLETED A PHASE 3 CLINICAL TRIAL,
24	BUT HAD AN FDA ADVISORY COMMITTEE MEETING WHICH
25	VOTED 17 TO 1 NOT TO PROCEED, FOR THE FDA NOT TO

1	PROCEED WITH APPROVAL BASED ON THEIR PHASE 3 TRIAL.
2	SO THEY'RE BACK TO THE DRAWING BOARD.
3	THE ACUREX I'M SORRY. LET'S DO THIS.
4	ASPEN NEUROSCIENCE, THEY HAVE AN IND APPROVED, BUT
5	THEY'RE NOT IN CLINICAL TRIALS YET EVEN THOUGH IT
6	SAYS CLINICAL TRIALS ONGOING. THEY'RE NOT THERE
7	YET.
8	THERE'S ANOTHER ONE THAT SAYS THAT THEY'RE
9	IN CLINICAL TRIALS. SO THAT'S THE ACUREX, THE
10	SECOND ONE DOWN, SAYS CLINICAL TRIALS ONGOING.
11	THAT'S NOT QUITE THE CASE. THEY'RE TRYING TO RAISE
12	MONEY RIGHT NOW TO GET INTO THEIR FIRST CLINICAL
13	TRIAL.
14	ANYWAY, MY POINT IS THAT I DON'T THINK
15	WE'RE NEARLY AS FAR ALONG WITH RESPECT TO INDUSTRY
16	PARTNERS AS THIS SLIDE MIGHT SUGGEST. WE'RE STILL
17	WAY, WAY BACK AT THE VERY BEGINNING OF THINGS. AND
18	THE ONE THAT WAS THE FURTHEST ALONG ACTUALLY FAILED
19	IN TERMS OF ITS PHASE 3 CLINICAL TRIAL. SO WE HAVE
20	A LONG WAYS TO GO IN THE CLINICAL AREA, WHETHER IT'S
21	WITH ACADEMIA OR PARTNERS, BEFORE WE'RE GOING TO GET
22	ANYWHERE IN THIS ENTIRE AREA.
23	DR. CREASEY: CAN I ANSWER STEPHEN?
24	STEPHEN, YOU'RE ABSOLUTELY CORRECT. BRAINSTORM, THE
25	PHASE 3 TRIAL FAILED. THEY'RE STILL DISCUSSING
	24

1	THEY ARE GETTING A SPECIAL KIND OF MANAGEMENT OF A
2	NEW TRIAL WITH THE FDA. SO YOU'RE RIGHT. THERE ARE
3	NO CLINICAL TRIALS ONGOING REGARDING THAT. I THINK
4	THAT MAY THE CLINICAL TRIALS ONGOING WAS FOR MS.
5	MAYBE THE WORD "MS" WAS MISSED.
6	THE ASPEN NEUROSCIENCE HAS APPLIED FOR A
7	CIRM GRANT AND WAS APPROVED. IT'S ALREADY IT'S
8	STARTING A CLINICAL TRIAL WITH US, AND THAT'S
9	PUBLIC.
10	SO JUST TO CORRECT THOSE TWO. SO, AGAIN,
11	ASPEN IS, AGAIN, WITHIN STARTED THEIR PHASE 1
12	CLINICAL TRIAL WITH CIRM FUNDING.
13	MR. JUELSGAARD: WELL, THEY'VE OPENED THE
14	PHASE 1 CLINICAL TRIAL, ABLA, BUT THEY HAVEN'T
15	RECRUITED ANY PATIENTS YET. THAT'S THE ISSUE THERE.
16	DR. CREASEY: STEVE, THE DESIGN THERE IS
17	THESE ARE IPS CELLS WHERE THEY ALREADY HAVE
18	IDENTIFIED THE PATIENTS. THEY HAVE ALREADY BANKED
19	THEIR IPSC CELLS, AND THEY ARE GOING THEN TO TREAT
20	THEM PER SO IT'S AUTOLOGOUS. AND THAT'S WHAT'S
21	GOING ON. SO THE RECRUITMENT OF THE PATIENTS IS
22	PART OF THE MODALITY BY WHICH THEY'RE WORKING WITH.
23	CHAIRMAN GOLDSTEIN: SO GIVEN THE TIME,
24	I'M GOING TO ASK THAT ABLA AND STEVE GET ON THE SAME
25	PAGE BETWEEN NOW AND THE NEXT MEETING, AND WE'LL

25

1	HAVE TIME AT THE NEXT MEETING FOR FURTHER DISCUSSION
2	OF THE PORTFOLIOS. BUT UNLESS SOMEBODY HAS A
3	BURNING QUESTION, I'D LIKE TO MOVE ON TO OUR
4	PRESENTATION FROM LORENZ STUDER SO WE DON'T GET TOO
5	FAR BEHIND ON OUR SCHEDULE.
6	SO ANYTHING BURNING, GUYS? OKAY. GOOD.
7	ROSA, THANK YOU VERY MUCH. THAT WAS A VERY
8	COMPREHENSIVE PRESENTATION, AND I WOULD ENCOURAGE
9	FOLKS TO WORK OUT SOME OF THE DIFFERENCES BEHIND THE
10	SCENES, AND THEN WE'LL HAVE ANOTHER DISCUSSION OF
11	THIS PERHAPS MORE IN-DEPTH AT OUR NEXT MEETING
12	IN LET'S SEE. WHAT MONTH ARE WE IN, MARCH SO
13	APRIL.
14	OKAY. SO OUR NEXT PRESENTER IS LORENZ
15	STUDER, WHO I'M SURE IS KNOWN TO MOST OF THE MEMBERS
16	OF THIS GROUP. LORENZ HAS WORKED ON DIFFERENTIATION
17	OF DOPAMINERGIC CELLS AND NEURONS FOR MANY YEARS
18	THROUGH ALL PHASES OF HIS TRAINING. OF NOTE, HE'S
19	RECEIVED A MACARTHUR FELLOWSHIP, IS A CO-FOUNDER OF
20	BLUE ROCK THERAPEUTICS, AND HAS DONE A GREAT DEAL OF
21	WORK ON THE DEVELOPMENT OF DOPAMINERGIC NEURONS FOR
22	TREATMENT OF PARKINSON'S DISEASE.
23	I'VE ALSO ASKED HIM AT THE END TO COVER
24	SOME AREAS OTHER THAN DOPAMINERGIC TREATMENT FOR
25	PARKINSON'S DISEASE WHERE HE THINKS THERE ARE
	26

1	OPPORTUNITIES THAT ARE UNDERRECOGNIZED AND
2	UNDERRESOURCED FOR US TO THINK ABOUT.
3	SO, LORENZ, I HOPE I GOT MOST OF THAT
4	RIGHT, AND I'LL TURN THE MICROPHONE AND PRESENTATION
5	OVER TO YOU.
6	DR. STUDER: THANKS SO MUCH FOR THE
7	INVITATION. I HOPE YOU CAN SEE MY SLIDES. IS THAT
8	ΟΚΑΥ?
9	CHAIRMAN GOLDSTEIN: PERFECT.
10	DR. STUDER: OKAY. EXCELLENT.
11	WHAT I WOULD LIKE TO DO WITH THE NEXT 30
12	MINUTES, IF I HAVE THIS CORRECT, FOLLOWED BY 15
13	MINUTES OF DISCUSSION, GIVE YOU A LITTLE BIT OF AN
14	UPDATE ON CELL THERAPY DEVELOPMENT, FOCUSING, AS AN
15	EXAMPLE, OBVIOUSLY ON OUR OWN WORK, BUT ALSO BROADER
16	STATUS OF THE FIELD. AND AS LARRY MENTIONED, GO A
17	LITTLE BIT BEYOND JUST DOPAMINE NEURON REPLACEMENT
18	TOWARDS THE END.
19	SO JUST TO GET STARTED, I HAVE TO PUT UP
20	MY DISCLOSURE SLIDES BECAUSE WE DID ACTUALLY SPIN
21	OUT A COMPANY, WHICH IS BLUE ROCK THERAPEUTICS. IT
22	WAS ACQUIRED BY BAYER A COUPLE OF YEARS AGO AND THAT
23	SPONSORS THE WORK AND NOW MOVING FORWARD, INCLUDING
24	THE CLINICAL WORK.
25	SO THIS IS, AGAIN, THE BROADER OUTLINE OF
	27

1	WHAT I WANT TO DO. SO REALLY SPEND MAYBE ABOUT TEN
2	MINUTES OR 15 MINUTES REALLY ON KIND OF THE CORE OF
3	WHERE WE STAND WITH CLASSIC DOPAMINE NEURON CELL
4	REPLACEMENT THERAPY, BUT THEN TALK ABOUT SOME OF THE
5	REMAINING CHALLENGES OF THAT APPROACH, POSSIBLE NEXT
6	GENERATION PRODUCTS, SOME OF THE LIMITATIONS OF THE
7	FIELD, LIKE ANIMAL MODELS, AND THEN, AGAIN, GO
8	HOPEFULLY A LITTLE BIT INTO THE NON-DOPAMINERGIC
9	FEATURES THAT POTENTIALLY COULD BE TREATED BY CELL
10	THERAPY APPROACHES.
11	I ALSO WANT TO STATE FROM THE BEGINNING
12	THAT I REALLY FOCUS PRETTY MUCH EXCLUSIVELY ON
13	CELL-BASED APPROACHES. AND I'M NOT GOING TO DISCUSS
14	DISEASE MODELING NOW USING STEM CELLS AND SO FORTH,
15	WHICH IS AN AREA WE'RE ALSO VERY MUCH INVOLVED.
16	HAPPY TO DISCUSS, BUT FOR TODAY I'M GOING TO BE
17	FOCUSED ON CELL-BASED THERAPIES.
18	JUST FOR AN INTRODUCTION, I'M NOT GOING TO
19	SPEND MUCH TIME HERE. NOW, THE RATIONALE IS PRETTY
20	CLEAR, THAT WHAT YOU WANT TO DO IS YOU WANT TO
21	REPLACE THE DOPAMINE NEURONS THAT ARE LOST IN THE
22	DISEASE. AND THE REASON WHY IT'S A WIDELY DISCUSSED
23	APPROACH IS BECAUSE YOU ACTUALLY HAVE RELATIVELY FEW
24	OF THOSE IN A HEALTHY PERSON. YOU HAVE ABOUT HALF A
25	MILLION ROUGHLY ON EACH SIDE OF THE BRAIN. ONCE YOU

1	LOSE HALF OF THEM, YOU START GETTING SOME OF THOSE
2	MOVEMENT-RELATED SYMPTOMS. AND YOU ALL KNOW IT'S A
3	VERY COMMON DISEASE. IT'S A BIG SOCIOECONOMIC
4	BURDEN ON THE SOCIETY.
5	IT'S IMPORTANT TO SAY, AND THAT'S LISTED
6	HERE, THAT IT'S NOT A PURELY DOPAMINERGIC DISEASE.
7	AND, AGAIN, THAT'S WHY I WANT TO DISCUSS MAYBE WHAT
8	YOU CAN DO THERE. IT'S ALSO IMPORTANT HOW TO STATE
9	WHAT THE DOPAMINE NEURON REPLACEMENT THERAPY COULD
10	ACHIEVE. AND, AGAIN, THAT'S WHY I WANT TO DISCUSS
11	MAYBE WHAT YOU CAN DO THERE. IT'S ALSO IMPORTANT
12	HOW TO STATE WHAT A DOPAMINE NEURON REPLACEMENT
13	THERAPY COULD ACHIEVE IN PARKINSON'S DISEASE. EVEN
14	IN THE BEST DREAM SCENARIO, IT WOULD BE BASICALLY A
15	CURE, QUOTE, OF THE MOVEMENT DISORDER; BUT IT WOULD
16	NOT BE A CURE OF PARKINSON'S DISEASE BECAUSE, AGAIN,
17	PARKINSON'S HAS SOME OF THOSE OTHER SYMPTOMS SHOWN
18	HERE THAT CAN OFTEN PRECEDE MOVEMENT
19	DISORDER-RELATED SYMPTOMS BY MANY YEARS ACTUALLY.
20	AND SOME OF THEM ARE OBVIOUSLY VERY
21	FEARED. HAPPENS NOT IN ALL THE PATIENTS, BUT QUITE
22	A FEW OF THE PATIENTS ACTUALLY DEVELOP MAJOR
23	COGNITIVE PROBLEMS AT LATER STAGES OF THE DISEASE.
24	SO THIS FIELD REALLY STARTED MANY, MANY
25	YEARS BACK OF AN ID, WHICH IS THE CELL REPLACEMENT
	20

29

1	IDEA, WHICH IS THE CELL REPLACEMENT IDEA. AND IT
2	WAS VERY IMPORTANT PIONEERING BASIC WORK DONE USING
3	AT THAT TIME FETAL DOPAMINE NEURONS, WORK IN THE
4	LATE '80S, '90S. THOSE STUDIES ARE IMPORTANT
5	BECAUSE IT KIND OF SHOWS THE PARADIGM THAT WE REALLY
6	WANT TO PURSUE. THEY SHOWED THAT YOU CAN HAVE FETAL
7	DOPAMINE NEURONS ISOLATED FROM FETAL TISSUE. THEY
8	SHOW THAT THOSE CELLS CAN SURVIVE IN A PARKINSON'S
9	BRAIN. AND THESE RED BLOBS HERE IS A TRACER THAT
10	LABELS THE DOPAMINES CELLS. AND IMPORTANTLY, EVEN
11	THOUGH, THIS PATIENT FOR 23 YEARS OF THE LIFE OF THE
12	GRAFTING DID NOT RECEIVE ANY IMMUNE SUPPRESSION.
13	YOU CAN SEE A VERY NICE SURVIVING GRAFT AT A VERY
14	LATE STAGE OF THAT PATIENT'S LIFE.
14 15	LATE STAGE OF THAT PATIENT'S LIFE. SO THE POINT THAT I'M TRYING TO MAKE,
14 15 16	LATE STAGE OF THAT PATIENT'S LIFE. SO THE POINT THAT I'M TRYING TO MAKE, UNLIKE MANY ORGAN TRANSPLANTATION APPROACHES, IN THE
14 15 16 17	LATE STAGE OF THAT PATIENT'S LIFE. SO THE POINT THAT I'M TRYING TO MAKE, UNLIKE MANY ORGAN TRANSPLANTATION APPROACHES, IN THE BRAIN YOU'RE PROBABLY GOING TO GET AWAY WITH VERY
14 15 16 17 18	LATE STAGE OF THAT PATIENT'S LIFE. SO THE POINT THAT I'M TRYING TO MAKE, UNLIKE MANY ORGAN TRANSPLANTATION APPROACHES, IN THE BRAIN YOU'RE PROBABLY GOING TO GET AWAY WITH VERY LITTLE IMMUNOSUPPRESSION. AND THAT MAKES IT
14 15 16 17 18 19	LATE STAGE OF THAT PATIENT'S LIFE. SO THE POINT THAT I'M TRYING TO MAKE, UNLIKE MANY ORGAN TRANSPLANTATION APPROACHES, IN THE BRAIN YOU'RE PROBABLY GOING TO GET AWAY WITH VERY LITTLE IMMUNOSUPPRESSION. AND THAT MAKES IT ACTUALLY, AGAIN, ALSO A GOOD TARGET.
14 15 16 17 18 19 20	LATE STAGE OF THAT PATIENT'S LIFE. SO THE POINT THAT I'M TRYING TO MAKE, UNLIKE MANY ORGAN TRANSPLANTATION APPROACHES, IN THE BRAIN YOU'RE PROBABLY GOING TO GET AWAY WITH VERY LITTLE IMMUNOSUPPRESSION. AND THAT MAKES IT ACTUALLY, AGAIN, ALSO A GOOD TARGET. NOW, MANY OF YOU PROBABLY HAVE HEARD OF
14 15 16 17 18 19 20 21	LATE STAGE OF THAT PATIENT'S LIFE. SO THE POINT THAT I'M TRYING TO MAKE, UNLIKE MANY ORGAN TRANSPLANTATION APPROACHES, IN THE BRAIN YOU'RE PROBABLY GOING TO GET AWAY WITH VERY LITTLE IMMUNOSUPPRESSION. AND THAT MAKES IT ACTUALLY, AGAIN, ALSO A GOOD TARGET. NOW, MANY OF YOU PROBABLY HAVE HEARD OF FETAL TISSUE, AND CLEARLY IT'S NOT SOMETHING THAT'S
14 15 16 17 18 19 20 21 22	LATE STAGE OF THAT PATIENT'S LIFE. SO THE POINT THAT I'M TRYING TO MAKE, UNLIKE MANY ORGAN TRANSPLANTATION APPROACHES, IN THE BRAIN YOU'RE PROBABLY GOING TO GET AWAY WITH VERY LITTLE IMMUNOSUPPRESSION. AND THAT MAKES IT ACTUALLY, AGAIN, ALSO A GOOD TARGET. NOW, MANY OF YOU PROBABLY HAVE HEARD OF FETAL TISSUE, AND CLEARLY IT'S NOT SOMETHING THAT'S ROUTINELY USED IN THE CLINIC. AND IT HAS TO SOME
14 15 16 17 18 19 20 21 22 23	LATE STAGE OF THAT PATIENT'S LIFE. SO THE POINT THAT I'M TRYING TO MAKE, UNLIKE MANY ORGAN TRANSPLANTATION APPROACHES, IN THE BRAIN YOU'RE PROBABLY GOING TO GET AWAY WITH VERY LITTLE IMMUNOSUPPRESSION. AND THAT MAKES IT ACTUALLY, AGAIN, ALSO A GOOD TARGET. NOW, MANY OF YOU PROBABLY HAVE HEARD OF FETAL TISSUE, AND CLEARLY IT'S NOT SOMETHING THAT'S ROUTINELY USED IN THE CLINIC. AND IT HAS TO SOME EXTENT FAILED ONCE IT CAME TO PLACEBO CONTROLLED
14 15 16 17 18 19 20 21 22 23 24	LATE STAGE OF THAT PATIENT'S LIFE. SO THE POINT THAT I'M TRYING TO MAKE, UNLIKE MANY ORGAN TRANSPLANTATION APPROACHES, IN THE BRAIN YOU'RE PROBABLY GOING TO GET AWAY WITH VERY LITTLE IMMUNOSUPPRESSION. AND THAT MAKES IT ACTUALLY, AGAIN, ALSO A GOOD TARGET. NOW, MANY OF YOU PROBABLY HAVE HEARD OF FETAL TISSUE, AND CLEARLY IT'S NOT SOMETHING THAT'S ROUTINELY USED IN THE CLINIC. AND IT HAS TO SOME EXTENT FAILED ONCE IT CAME TO PLACEBO CONTROLLED TRIALS. HAPPY TO GO INTO MORE DETAIL IF ANYONE IS
14 15 16 17 18 19 20 21 22 23 24 25	LATE STAGE OF THAT PATIENT'S LIFE. SO THE POINT THAT I'M TRYING TO MAKE, UNLIKE MANY ORGAN TRANSPLANTATION APPROACHES, IN THE BRAIN YOU'RE PROBABLY GOING TO GET AWAY WITH VERY LITTLE IMMUNOSUPPRESSION. AND THAT MAKES IT ACTUALLY, AGAIN, ALSO A GOOD TARGET. NOW, MANY OF YOU PROBABLY HAVE HEARD OF FETAL TISSUE, AND CLEARLY IT'S NOT SOMETHING THAT'S ROUTINELY USED IN THE CLINIC. AND IT HAS TO SOME EXTENT FAILED ONCE IT CAME TO PLACEBO CONTROLLED TRIALS. HAPPY TO GO INTO MORE DETAIL IF ANYONE IS INTERESTED, BUT A BIG PART OF IT IS THAT THE WAY THE

1	CLINICAL TRIALS WERE DESIGNED, THEY HAD THE READOUT
2	PROBABLY TOO EARLY BECAUSE THIS IS, LIKE CALL IT
3	LIKE A LIVING DRUG. THE CELLS, THEY'RE ALIVE, AND
4	THEY ACTUALLY GET THEIR FULL FUNCTIONALITY ONLY BY
5	TWO TO THREE YEARS AFTER WE INJECT THOSE. SO IT'S
6	VERY, VERY SLOWLY BECOMING FULLY FUNCTIONAL.
7	AND SOME PATIENTS ALSO DEVELOP SIDE
8	EFFECTS, AND THAT REALLY WHAT KILLS THE APPROACH,
9	SO-CALLED GRAFT-INDUCED DYSKINESIA. SO THE
10	COMBINATION OF THOSE QUESTIONABLE EFFICACY AND
11	POTENTIAL SIDE EFFECTS KIND OF STOPPED THE FIELD,
12	BUT NOT COMPLETELY BECAUSE NEUROLOGISTS FOLLOWED
13	THOSE PATIENTS STILL LONG TIME AND FOUND AT LEAST A
14	SUBSET OF THOSE SEEM TO BE DOING VERY UNUSUALLY
15	WELL.
16	NOW, ADMITTEDLY, THIS WERE A VERY FEW
17	PATIENTS, BUT THERE ARE SOME PATIENTS WHERE CONTACT
18	WOULD STOP THE DOPAMINE THERAPY FOR MANY YEARS. AND
19	THAT'S SOMETHING THAT'S VERY RARE IN A DISEASE
20	THAT'S CONSTANTLY PROGRESSING.
21	NOW, WE SHOULD SOON HEAR FROM A STUDY THAT
22	WAS DONE BY ROGER BARKER THAT ACTUALLY WENT BACK AND
23	SAY, OKAY, DID WE LEARN FROM THOSE EARLY STUDIES
24	REFORE 20002 CAN WE SELECT THE DATTENTS RETTER?
	BEFORE 2000: CAN WE SEEECT THE FATIENTS BETTER:
25	AND THEN SHOW, NO, THAT THIS WAS REALLY THE PROBLEM

1	WHY THE STUDY FAILED, MAYBE DIFFERENT CLINICAL TRIAL
2	DESIGN. AND, AGAIN, THIS IS STILL UNPUBLISHED DATA,
3	SO I CANNOT GO INTO TOO MUCH DETAIL, BUT I DON'T
4	THINK, AGAIN, THAT THE STUDY IS GOING TO RESOLVE IT
5	BECAUSE I THINK EVEN THERE IT'S KIND OF UNCLEAR HOW
6	COULD IT REALLY WORK. IT'S STILL AN UNCONTROLLED
7	STUDY. AND THEY HAD ALSO NUMBER OF CHALLENGES THAT
8	HAD TO DO WITH DEVICES, WITH CONSISTENCY OF THE
9	FUNCTION, AND SO FORTH. SO I DON'T THINK THIS IS A
10	RESOLVED ISSUE. AND I THINK THE MAIN THING WE
11	LEARNED, AND ROGER COULD SPEAK MORE TO THAT, IS THAT
12	IT'S REALLY CURRENTLY NEARLY IMPOSSIBLE TO DO WITH
13	THIS FETAL TISSUE. BECAUSE YOU APPLY SIMILAR
14	STANDARDS OF QUALITY CONTROL TO FETAL TISSUE, IT'S
15	VERY, VERY DIFFICULT TO DO THAT IN A WAY TO
16	ROUTINELY TREATING PATIENTS.
17	SO THAT'S WHY WE AND OTHERS TRIED TO
18	DEVELOP PLURIPOTENT-BASED APPROACHES. THAT GOES TEN
19	YEARS BACK WHERE WE SHOWED WE COULD MAKE THOSE
20	DOPAMINE CELLS IN A WAY THAT THEY CAN RESCUE AND
21	SURVIVE IN A MOUSE BRAIN, IN A RAT BRAIN, OR IN A
22	MONKEY BRAIN. THEY CAN DO THAT IN QUITE LARGE
23	NUMBERS. THEY CAN RESTORE SOME OF THE BEHAVORIAL
24	ASSAYS. WE COME BACK TO A LITTLE BIT WHAT'S THE
25	PROBLEM WITH SOME OF THOSE MODELS. BUT THERE'S ONE

1	MODEL WHERE THE MOUSE HAS KIND OF PARKINSON'S,
2	THEY'RE GOING TO CALL IT, ON ONE SIDE OF THE BRAIN,
3	AND THEN IT SPINS AROUND ITS OWN AXIS IF YOU
4	STIMULATE IT, AND WE CAN USE THAT AS A READOUT. SO
5	THEN ON THE ONE SIDE THAT HAS THE DISEASE GETS
6	GRAFTED, IT BECOMES SYMMETRIC.
7	THIS IS A RAT WHERE YOU SEE ON THE LEFT OF
8	THAT IF YOU LOOK AT THIS SIDE, YOU CANNOT REALLY
9	PROPERLY INITIATE MOVEMENT IN THIS PAW; BUT AFTER
10	GRAFTING, IT CAN DO THAT AGAIN.
11	AND FINALLY, I'M NOT GOING TO SPEND TOO
12	MUCH TIME ON THAT BECAUSE IT'S A BIT TECHNICAL, BUT
13	WE ALSO KNOW EXACTLY HOW THESE CELLS FUNCTION. SO
14	IT'S NOT JUST SOME KIND OF A WEIRD CELL WHERE WE
15	HOPE THAT IT'S POSITIVELY INFLUENCING THE BRAIN. WE
16	CAN ACTUALLY PUT THE CELLS IN WITH LIKE A LIGHT
17	SWITCH WHERE THE CELLS GO INTO THE BRAIN. THEY
18	RESCUE ALL THOSE BEHAVIORS, BUT THEN THEY CAN
19	LITERALLY FLIP THE LIGHT SWITCH AND SWITCH THEM OFF.
20	AND THEY SHOWED THAT THE ANIMAL IS AGAIN FULLY
21	PARKINSONIAN.
22	SO THOSE STUDIES SHOW IN THIS CASE IT'S
23	REALLY THE NERVE CELLS THAT INTEGRATE INTO THE
24	BRAIN, THEY SECRETE DOPAMINE, AND THEY SECRETE IT TO
25	THE RIGHT CELL. AND SO THAT'S, AGAIN, ONE OF THE

1	FEW DISEASES WHERE WE ACTUALLY HAVE A LOT OF THIS
2	MECHANISM WHERE WE KNOW EXACTLY HOW THE CELLS
3	FUNCTION.
4	FROM THERE IT TOOK US ABOUT ANOTHER TEN
5	YEARS TO REALLY GET THAT PROTOCOL THAT WORKED IN
6	THOSE MOUSE, RAT, AND MONKEY IN A WAY THAT WE CAN
7	USE IT IN PATIENTS. BUT THERE'S ALL THESE
8	MANUFACTURING ISSUES THAT WE RESOLVED. WE GOT AN
9	AWARD FROM THE NEW YORK STATE PROGRAM, WHICH IS A
10	\$15 MILLION AWARD TO REALLY MAKE A CLINICAL GRADE
11	PRODUCT. WE CALLED IT MSK-DA01. AND AS YOU
12	PROBABLY ALL KNOW, YOU HAVE TO DO A LOT OF TESTING
13	IN ANIMALS. YOU DO TUMORIGENICITY TESTING,
14	BIODISTRIBUTION, TOXICOLOGY, HUNDREDS OF ANIMALS.
15	SO THIS IS MILLION DOLLARS OF STUDIES.
16	WE DO IT IN THE RAT WHERE WE HAD SOMETHING
17	LIKE 50 RATS WHERE WE HAD TO SHOW THAT WE CAN RESCUE
18	THE BEHAVIOR. AND WE DID ALSO A NUMBER OF MONKEYS
19	TO SHOW THAT THE DEVICE WE'RE GOING TO USE IN THE
20	PATIENT ACTUALLY CAN RELIABLY DELIVER THE CELLS IN A
21	LARGE BRAIN SUCH AS IN A MONKEY.
22	AND I'LL SHOW YOU JUST ONE PICTURE HERE
23	BECAUSE IT'S VERY EASY TO UNDERSTAND. SO IT'S,
24	AGAIN, THIS MODEL WHERE YOU HAVE PARKINSON'S-LIKE
25	ISSUES FOR MOVEMENT ON ONE SIDE OF THE BRAIN. SO

1	YOU LACK THIS BROWN COLOR WHICH IS THE DOPAMINE
2	FIBERS. BUT ONCE YOU GRAFT OUR CELLS THAT WERE
3	COMPLETELY GENERATED IN A DISH, HUMAN-DERIVED CELLS,
4	YOU CAN SEE NOT ONLY THE CELLS HERE, THIS DARK AREA
5	ARE THE CELLS, BUT THEN THEY RECONNECT WITH THE
6	WHOLE BRAIN. AND, AGAIN, WE DO THAT EFFECTIVELY
7	HERE IN MANY, MANY MALE OR FEMALE PARKINSONIAN
8	ANIMALS.
9	SO THAT LED US, THEN, IN 2021 TO REALLY
10	GRAFT THE FIRST PATIENT. IN LATE 2020 WE GOT
11	APPROVAL FROM THE FDA THAT SHOWS YOU JUST HOW THAT
12	WORKS. SO THEY COME FROM THE GMP FACILITY WHERE
13	THEY ARE PREPARED, THEY'RE BROUGHT INTO THE SURGERY
14	ROOM, THEY ARE LOADED INTO A DEVICE THAT WE ADJUST
15	AND OPTIMIZE FOR DELIVERY OF THOSE CELLS BY
16	DR. TABAR, WHO'S THE NEUROSURGEON IN THIS STUDY AND
17	ALSO DID MOST OF THE PRECLINICAL WORK. YOU HAVE TO
18	CAREFULLY CHECK THAT THE CELLS ARE PROPERLY
19	DELIVERED, AND EVENTUALLY INJECT IT DIRECTLY INTO
20	THE BRAIN.
21	SO YOU ACTUALLY HAVE TO INJECT IT INTO THE
22	BRAIN PARENCHYMA VERY, VERY CAREFULLY OBVIOUSLY TO
23	MAKE SURE YOU DON'T CAUSE ANY BLEEDING AND SO FORTH.
24	AND YOU INJECT BASICALLY IN EACH PATIENT ON EACH
25	SIDE OF THE BRAIN THREE TRACTS. AND EACH OF THOSE

35

1	TRACTS ARE THREE DEPOSITS OR NINE DEPOSITS ON EACH
2	SIDE AND 18 DEPOSITS THEN IN TOTAL PER PATIENT. WE
3	DID THAT IN TOTAL OF 12 PATIENTS, SO IT'S SOMETHING
4	LIKE MORE THAN 200 DEPOSITS WERE DONE IN THIS
5	CLINICAL TRIAL. AND I'M HAPPY TO SAY THAT WE DIDN'T
6	GET ANY COMPLICATION WITH REGARD TO BLEEDING,
7	HEMORRHAGING, OR ANYTHING LIKE THAT.
8	NOW, THIS MSK-DA01 PRODUCT HAS NOW THIS
9	LITTLE BIT UNPRONOUNCEABLE NAME, BEMDANEPROCEL.
10	THAT'S NOW THE PRODUCT NAME THAT BLUE ROCK TAKES IT
11	FORWARD. AND WHAT I CAN TELL YOU, AND AGAIN I'M NOT
12	GOING TO SPEND MUCH TIME ON THAT, THESE ARE SOME OF
13	THE RESULTS FROM THIS PHASE 1 STUDY THAT IS NOT
14	PUBLISHED, BUT THEY HAVE BEEN PUBLICLY RELEASED BY
15	THE COMPANY SHOWING JUST THAT IT GENERALLY WAS SAFE
16	AND WELL TOLERATED IN ALL 12 PATIENTS. FIVE OF
17	THOSE PATIENTS RECEIVED THE LOWER DOSE, SEVEN A
18	SLIGHTLY HIGHER DOSE. WE COULD SHOW THAT THIS
19	DELIVERY CAN BE DONE SAFELY, I MENTIONED AGAIN, WITH
20	NO BLEEDING. IT TRANSIENTLY IMMUNOSUPRESSED THE
21	PATIENT, BUT, AGAIN, ONLY TRANSIENTLY; AND IT WAS,
22	AGAIN, VERY WELL TOLERATED.
23	WE HAVE EVIDENCE THAT THE CELLS SURVIVED.
24	REMEMBER THIS RED COLOR ON THE FETAL GRAFTING, SO WE
25	HAVE SIMILAR DATA FOR THOSE FOR THOSE SHOWING THAT
	36
	JU JU
1	THEY CAN INCREASE THIS DOPAMINE SIGNAL. AND WE HAVE
--	---
2	SOME SUGGESTION, THIS IS A PHASE 1 STUDY, SMALL
3	GROUPS, BUT YOU HAVE SUGGESTION THAT THERE MIGHT BE
4	ACTUALLY AN EFFECT ON CLINICAL IMPACT, AND IT MADE A
5	GREATER EFFECT IN THE PATIENTS THAT GOT MORE CELLS.
6	I'LL SHOW YOU ONE SLIDE AFTER THAT TO
7	ILLUSTRATE THAT THEY DIDN'T SEE THE SIDE EFFECTS
8	THAT WERE SEEN IN THOSE FETAL GRAFTS IN THE PAST.
9	AND, AGAIN, THE CAVEAT, THIS IS STILL A SMALL SAMPLE
10	SIZE, THE PRIMARY GOAL WAS SAFETY AND FEASIBILITY.
11	AND, IN FACT, IN THIS REGARD, THE STUDY HAS ALREADY
12	MET, SO-CALLED TECHNICALLY MET ITS PRIMARY ENDPOINT
13	AND CAN NOW MOVE ON TO A LATER STAGE STUDY.
14	AGAIN, I'LL SHOW YOU TWO SLIDES WITH
14 15	AGAIN, I'LL SHOW YOU TWO SLIDES WITH REGARD TO THE EARLY SIGNS OF POTENTIAL EFFICACY.
14 15 16	AGAIN, I'LL SHOW YOU TWO SLIDES WITH REGARD TO THE EARLY SIGNS OF POTENTIAL EFFICACY. COHORT A IS THE LOWER DOSE GROUP, THE COHORT B THE
14 15 16 17	AGAIN, I'LL SHOW YOU TWO SLIDES WITH REGARD TO THE EARLY SIGNS OF POTENTIAL EFFICACY. COHORT A IS THE LOWER DOSE GROUP, THE COHORT B THE HIGHER DOSE GROUP. AND THIS IS ONE OF THOSE
14 15 16 17 18	AGAIN, I'LL SHOW YOU TWO SLIDES WITH REGARD TO THE EARLY SIGNS OF POTENTIAL EFFICACY. COHORT A IS THE LOWER DOSE GROUP, THE COHORT B THE HIGHER DOSE GROUP. AND THIS IS ONE OF THOSE MEASURES, SO THESE ARE PATIENTS RELATIVELY SEVERE.
14 15 16 17 18 19	AGAIN, I'LL SHOW YOU TWO SLIDES WITH REGARD TO THE EARLY SIGNS OF POTENTIAL EFFICACY. COHORT A IS THE LOWER DOSE GROUP, THE COHORT B THE HIGHER DOSE GROUP. AND THIS IS ONE OF THOSE MEASURES, SO THESE ARE PATIENTS RELATIVELY SEVERE. AND EVEN WITH THE BEST TREATMENT, THEY SPEND ABOUT
14 15 16 17 18 19 20	AGAIN, I'LL SHOW YOU TWO SLIDES WITH REGARD TO THE EARLY SIGNS OF POTENTIAL EFFICACY. COHORT A IS THE LOWER DOSE GROUP, THE COHORT B THE HIGHER DOSE GROUP. AND THIS IS ONE OF THOSE MEASURES, SO THESE ARE PATIENTS RELATIVELY SEVERE. AND EVEN WITH THE BEST TREATMENT, THEY SPEND ABOUT FOUR, FIVE HOURS OF THE DAY SO-CALLED OFF. SO THEY
14 15 16 17 18 19 20 21	AGAIN, I'LL SHOW YOU TWO SLIDES WITH REGARD TO THE EARLY SIGNS OF POTENTIAL EFFICACY. COHORT A IS THE LOWER DOSE GROUP, THE COHORT B THE HIGHER DOSE GROUP. AND THIS IS ONE OF THOSE MEASURES, SO THESE ARE PATIENTS RELATIVELY SEVERE. AND EVEN WITH THE BEST TREATMENT, THEY SPEND ABOUT FOUR, FIVE HOURS OF THE DAY SO-CALLED OFF. SO THEY CANNOT PROPERLY DO THEIR ACTIVITY OF DAILY LIFE,
14 15 16 17 18 19 20 21 22	AGAIN, I'LL SHOW YOU TWO SLIDES WITH REGARD TO THE EARLY SIGNS OF POTENTIAL EFFICACY. COHORT A IS THE LOWER DOSE GROUP, THE COHORT B THE HIGHER DOSE GROUP. AND THIS IS ONE OF THOSE MEASURES, SO THESE ARE PATIENTS RELATIVELY SEVERE. AND EVEN WITH THE BEST TREATMENT, THEY SPEND ABOUT FOUR, FIVE HOURS OF THE DAY SO-CALLED OFF. SO THEY CANNOT PROPERLY DO THEIR ACTIVITY OF DAILY LIFE, PROPERLY MOVE AROUND, AND SO FORTH, SO THEY ARE OFF.
14 15 16 17 18 19 20 21 22 23	AGAIN, I'LL SHOW YOU TWO SLIDES WITH REGARD TO THE EARLY SIGNS OF POTENTIAL EFFICACY. COHORT A IS THE LOWER DOSE GROUP, THE COHORT B THE HIGHER DOSE GROUP. AND THIS IS ONE OF THOSE MEASURES, SO THESE ARE PATIENTS RELATIVELY SEVERE. AND EVEN WITH THE BEST TREATMENT, THEY SPEND ABOUT FOUR, FIVE HOURS OF THE DAY SO-CALLED OFF. SO THEY CANNOT PROPERLY DO THEIR ACTIVITY OF DAILY LIFE, PROPERLY MOVE AROUND, AND SO FORTH, SO THEY ARE OFF. BUT YOU CAN SEE THEY GOT NEARLY AN
14 15 16 17 18 19 20 21 22 23 24	AGAIN, I'LL SHOW YOU TWO SLIDES WITH REGARD TO THE EARLY SIGNS OF POTENTIAL EFFICACY. COHORT A IS THE LOWER DOSE GROUP, THE COHORT B THE HIGHER DOSE GROUP. AND THIS IS ONE OF THOSE MEASURES, SO THESE ARE PATIENTS RELATIVELY SEVERE. AND EVEN WITH THE BEST TREATMENT, THEY SPEND ABOUT FOUR, FIVE HOURS OF THE DAY SO-CALLED OFF. SO THEY CANNOT PROPERLY DO THEIR ACTIVITY OF DAILY LIFE, PROPERLY MOVE AROUND, AND SO FORTH, SO THEY ARE OFF. BUT YOU CAN SEE THEY GOT NEARLY AN ADDITIONAL THEY COULD REDUCE THAT FOUR TO FIVE
14 15 16 17 18 19 20 21 22 23 24 25	AGAIN, I'LL SHOW YOU TWO SLIDES WITH REGARD TO THE EARLY SIGNS OF POTENTIAL EFFICACY. COHORT A IS THE LOWER DOSE GROUP, THE COHORT B THE HIGHER DOSE GROUP. AND THIS IS ONE OF THOSE MEASURES, SO THESE ARE PATIENTS RELATIVELY SEVERE. AND EVEN WITH THE BEST TREATMENT, THEY SPEND ABOUT FOUR, FIVE HOURS OF THE DAY SO-CALLED OFF. SO THEY CANNOT PROPERLY DO THEIR ACTIVITY OF DAILY LIFE, PROPERLY MOVE AROUND, AND SO FORTH, SO THEY ARE OFF. BUT YOU CAN SEE THEY GOT NEARLY AN ADDITIONAL THEY COULD REDUCE THAT FOUR TO FIVE HOURS BY ABOUT TWO HOURS IN THE HIGHER DOSE. AND

37

1	THIS IS THE CONVERSE ONE SO-CALLED ON TIME.
2	OBVIOUSLY IF THEY'RE NOT OFF, THEY'RE ON, BUT
3	THEY'RE ON NOW WITHOUT ANY OF THOSE DYSKINESIA THAT
4	YOU SOMETIMES SEE IF YOU GET ON WITH A DRUG.
5	WHAT'S ALSO EXCITING IS THAT TREND SEEMS
6	TO CONTINUE. SO THESE ARE THE DATA JUST RELEASED
7	ABOUT A MONTH OR A FEW WEEKS ACTUALLY, LESS THAN A
8	MONTH AGO, FROM THE 18 TH MONTHS DATA. AND NOW IT'S
9	ACTUALLY 2.7 HOURS IN THE HIGH DOSE TO OFF IMPROVED
10	AND 2.7 HOURS IN THE ON. AND SO THAT'S REALLY
11	IMPORTANT BECAUSE BY 12 MONTHS WE REMOVE THE
12	IMMUNOSUPPRESSION. BUT THAT SUGGESTS, AGAIN, IF YOU
13	BELIEVE THIS IS A REAL MEANINGFUL EFFECT, GOES IN
14	THE RIGHT DIRECTION, CELLS CONTINUE TO MATURE, SEEMS
15	TO HAVE BETTER EFFECT ON THE IMMUNOSUPPRESSION, DID
16	NOT IMPACT THE LOSS OF IMMUNOSUPPRESSION.
17	THAT'S ANOTHER SCORE. AGAIN, MANY OF YOU
18	MIGHT NOT KNOW EXACTLY PARKINSON'S SCORE, BUT IT'S
19	THE MOST WIDELY USED PARKINSON'S SCORE. ON THE
20	SCALE, THESE PATIENTS HAVE TYPICALLY ABOUT 40 TO 50
21	POINTS. THE MORE POINTS YOU HAVE, THE MORE SEVERE
22	YOU ARE. YOU SEE THAT BY 12 MONTHS, PARTICULARLY IN
23	THE HIGH DOSE GROUP, THERE SEEMS TO BE A TREND THAT
24	THIS GETS BETTER BY 13 POINTS. AND EVEN THE WORST
25	PATIENT SHOWN HERE WAS GOING A LITTLE BIT DOWN.

38

1	AND, AGAIN, USUALLY AS THE DISEASE PROGRESSES, YOU
2	SLOWLY INCREASE THE SCORE.
3	BUT WHAT'S REALLY EXCITING IS BY 18 MONTHS
4	THE HIGH DOSE COHORT WENT ALL THE WAY TO MINUS 23
5	POINTS, WHICH IS A QUITE A BIG POINT CHANGE. AGAIN,
6	WE HAVE TO BE VERY CAREFUL BECAUSE IT'S A SMALL
7	GROUP OF PATIENTS, BUT IT'S AT LEAST AS GOOD AS WE
8	COULD HAVE EXPECTED FROM A PHASE 1 STUDY. AND SO
9	WE'RE REALLY EXCITED TO SEE HOW THAT MOVES FORWARD.
10	SO THE WAY IT'S SUPPOSED TO MOVE FORWARD
11	IS THAT WE'RE NOW MOVING TO NEXT PHASE OF STUDY,
12	WHICH IS SUPPOSED TO START IN Q3 OF THIS YEAR, AND
13	THAT WILL BE A PLACEBO CONTROLLED STUDY. AND
14	THERE'S, AGAIN, SOME CHALLENGES HOW YOU ACTUALLY DO
15	THAT FOR A SURGICAL TRIAL, PUTTING CELLS INTO THE
16	BRAIN AND SO FORTH. SO HAPPY TO DISCUSS THAT, BUT
17	THIS WILL, AGAIN, START VERY, VERY SOON ON A LARGE
18	SET OF PATIENTS AND MANY MORE CENTERS THAN THE EARLY
19	STUDY.
20	HERE WE GET, THEN AGAIN, HOW THIS COMPARED
21	TO OTHER ONGOING EFFORTS IN THE FIELD, AND I THINK
22	YOU DISCUSSED A LITTLE BIT WHAT CIRM ALREADY FUNDED.
23	SO THERE HAS BEEN A TRIAL STARTED IN JAPAN ACTUALLY
24	QUITE A LONG TIME AGO, BUT THEY HAVE A SLIGHTLY
25	DIFFERENT APPROACH. SO UNLIKE OUR GROUP WHERE WE

39

1	MAKE SOMETHING LIKE TEN BILLION CELLS OFF THE SHELF,
2	THEN WE JUST GO BACK TO THE FREEZER AND TAKE CELLS
3	FOR EVERY PATIENT, THEY HAD TO PREPARE THE CELLS FOR
4	INDIVIDUAL PATIENTS BECAUSE THEY COULDN'T FREEZE THE
5	CELLS AT THE ENDPOINT. SO THEY HAVEN'T REALLY
6	REPORTED THEIR RESULTS YET, BUT THEY HAVE THOSE
7	SEVEN PATIENTS. AND I THINK THEY'RE AT THE ONE- OR
8	TWO-YEAR MARK. SO HOPEFULLY SOON WE'LL HEAR FROM
9	THEM. AND THEY ACTUALLY WANT TO DO A SIMILAR EARLY
10	STAGE, I THINK A PHASE 1 TRIAL, THEY APPLIED FOR FDA
11	DOING THAT IN THE U.S.
12	THERE'S ANOTHER GROUP IN LUND, AND
13	ACTUALLY THOSE THREE GROUPS TOGETHER WITH OUR GROUP,
14	SO-CALLED FOUNDER OF GFORCE-PD, WHERE AS A COMMUNITY
15	WE TRIED TO HELP EACH OTHER NOW MOVING THE FIELD
16	FORWARD IN KIND OF A NONCOMPETITIVE, COLLABORATIVE
17	MANNER EVEN THOUGH WE ALL STARTED OUR OWN COMPANIES
18	IN ORDER TO TAKE THIS WORK FORWARD.
19	SO THIS HAVE SO FAR GRAFTED TWO PATIENTS,
20	AND THEY USE A VERY SIMILAR TYPE PRODUCT, WHICH IS
21	ALSO OFF THE SHELF, LARGE-SCALE. THERE WAS ONE
22	PATIENT REPORTED IN THE PAST THAT WAS BASICALLY
23	TREATED IN A WAY THAT DIDN'T REALLY REQUIRE THE
24	STANDARD FDA APPROVAL BECAUSE THEY'RE A ONE-OFF
25	CASE, NOT A REAL CLINICAL TRIAL. BUT IT'S NOT CLEAR

40

1	HOW MUCH THE PATIENT REALLY BENEFITED, BUT IT WAS
2	THE FIRST AUTOLOGOUS STUDY. SIMILAR TO WHAT ASPEN
3	WANTED TO DO IN CALIFORNIA, WAS MENTIONED BEFORE, I
4	DON'T THINK THEY GRAFTED ANY PATIENT YET, BUT THEY
5	HAVE CLEARANCE.
6	THERE'S ANOTHER GROUP IN SOUTH KOREA THAT
7	HAS, I THINK, BY NOW DOSED 12 PATIENTS. BUT, AGAIN,
8	THEY'VE JUST FINISHED THE DOSING. SO THEY'RE NOW
9	MAYBE ABOUT ROUGHLY TWO YEARS BEHIND OUR STUDY TO
10	REPORT ON THEIR DATA.
11	AND THEN THERE ARE ADDITIONAL TRIALS
12	PLANNED. I THINK WE HEARD ABOUT KENAI WAS MENTIONED
13	BEFORE. OLE ISAACSON AT HARVARD RECENTLY GOT
14	APPROVAL FOR ANOTHER AUTOLOGOUS TRIAL.
15	SO THE POINT I'M TRYING TO MAKE HERE IS
16	THAT OBVIOUSLY THERE'S A HIGH LEVEL OF SATURATION
17	ALREADY IN THE FIELD, NOT TO SAY THERE SHOULDN'T BE
18	MORE, BUT I THINK IT'S IMPORTANT THAT NEW TRIALS, I
19	THINK, GO A LITTLE BIT BEYOND WHAT HAS BEEN ALREADY
20	DONE. AND I THINK THAT'S GOING TO BE NOW ON A MUCH
21	QUICKER PACE, SOME OF THE OTHER TOPICS I WANT TO
22	TOUCH UPON.
23	SO WHAT ARE THE CHALLENGES OF THE
24	APPROACH, KIND OF THE APPROACH THAT I MENTIONED FOR
25	OURSELVES, FOR EXAMPLE? SO I SHOWED YOU THAT MAYBE
	41
	12

1	THE HIGHER DOSE OF PATIENTS DOES BETTER, BUT IS THIS
2	REALLY THE BEST DOSE? HOW DO YOU FIGURE IT OUT IS
3	ACTUALLY QUITE CHALLENGING. I MENTIONED ALSO SOME
4	TRIALS ARE ALLOGENEIC, OFF THE SHELF, SOME ARE
5	AUTOLOGOUS PATIENT BY PATIENT. SOME GROUPS WANT TO
6	MAKE IMMUNE-COMPATIBLE CELLS, UNIVERSAL CELLS,
7	SO-CALLED HYPER-IMMUNE CELLS. BUT THERE'S
8	QUESTIONS. RIGHT NOW ALL THE GROUPS PUT THE CELLS
9	INTO THE TARGET REGION WHERE THE DOPAMINE IS
10	MISSING, BUT THEY DON'T PUT THEM EXACTLY AT THE
11	PLACE WHERE THEY NORMALLY ARE. SHOULD THAT BE DONE?
12	IT'S AN INTERESTING QUESTION.
13	THEY ARE ALSO DIFFERENT STAGES OF CELLS
14	THAT ARE USED THAT MIGHT HAVE DIFFERENT POTENCY.
15	AND THERE'S ALSO STILL THIS ISSUE OF GRAFT SURVIVAL,
16	THAT MANY CELLS ACTUALLY DIE WHEN YOU INJECT THEM,
17	AND THAT CAN LEAD TO VARIABILITY EVEN IF YOU JUST
18	SIMPLY ADD MORE CELLS TO COMPENSATE FOR THAT.
19	THERE'S ALSO AN IMPORTANT ISSUE. NOW, IF
20	YOU THINK ABOUT ACTUAL TRANSLATION, I WANT TO DO
21	THAT ROUTINELY, HUNDREDS OF THOUSANDS OF PATIENTS ON
22	THE THERAPY, WHAT IS THE DEVICE YOU ARE GOING TO
23	USE? YOU'RE NOT ALWAYS GOING TO HAVE AN EXPERT LIKE
24	VIVIANE WHO WORKED ON THAT FOR MANY YEARS IN ANIMAL
25	MODELS AND CAN LOAD THIS COMPLICATED WAY THE NEEDLE.

1	SO A LOT OF EFFORT BY MANY WHO SAY THEY NEED TO
2	INVEST INTO DEVICES TO MAKE THAT KIND OF FOOLPROOF.
3	AND SO I THINK THAT'S AN AREA THAT'S GOING TO BE
4	QUITE IMPORTANT, BUT THAT'S GOING TO BE SPONSORED BY
5	ORGANIZATIONS LIKE CIRM OR DONE IN THE INDUSTRY.
6	WE'LL HAVE TO SEE.
7	THERE'S ALSO NEW WAYS TO TRACK PATIENTS.
8	RIGHT NOW WE DO UPDRS TIME OFF. THESE ARE VERY
9	CRUDE MEASURES. AND SO YOU CAN IMAGINE THAT A LOT
10	OF INFORMATION THAT YOU CAN GET FROM WEARABLES,
11	APPLE WATCHES; FITBITS, AND SO FORTH. THERE'S A
12	SYSTEM THAT ACTUALLY BLUE ROCK OR BAYER IS USING
13	CALLED EMERALD WHERE YOU DON'T NEED TO EVEN WEAR A
14	DEVICE. YOU CAN INSTALL IT AT HOME, AND THEY CAN
15	REMOTELY KEEP TRACK OF THE MOVEMENT OF PATIENTS.
16	AND THEN THERE'S ALSO THE QUESTION OF
17	PATIENT STRATIFICATION. WE KNOW SO MUCH MORE ABOUT
18	THE DISEASE. MICHAEL J. FOX FOUNDATION TOGETHER
19	WITH OTHERS INVEST HUNDREDS OF MILLIONS TO REALLY DO
20	THIS TRACKING OF PATIENTS. AND SO WE CAN NOW ASK
21	WHAT ARE THE BEST PATIENTS THAT MIGHT BENEFIT FROM
22	THIS APPROACH? WHAT ARE THE ONES MAYBE THAT ARE
23	LESS SUITED? AND HOW CAN WE HAVE MAYBE BIOMARKERS
24	THAT HELP US TO STUDY THAT?
25	WHAT ABOUT ON THE CELL SIDE? WHAT'S THE
	43

1	NEXT GENERATION CELLS? SO THERE IS ALWAYS YOU
2	CAN MAKE CELLS ALWAYS BETTER, NO? YOU CAN ALWAYS
3	MAKE THEM MORE POTENT. WE THINK MAYBE IT COULD MAKE
4	THEM FULLY MORE MATURE WHEN YOU INJECT THEM. MAYBE
5	THEY NEED LESS CELL TO MATURE. THERE WOULD BE
6	REALLY NO RISK AT ALL THAT THE CELLS COULD FORM
7	TUMORS IF THEY'RE ALL POSTMITOTIC.
8	SO THESE ARE AREAS WHERE YOU COULD
9	DEVELOP, BUT SOME PEOPLE WILL SAY WHY DO YOU NEED IT
10	IF THE OTHER STUFF ALREADY WORKS. BUT THAT'S AN
11	AREA THAT CONTINUES TO BE DEVELOPED, PARTICULARLY IF
12	YOU GET SOME OF THE RIGHT SUBTYPES.
13	THIS ISSUE OF SURVIVAL, WE MADE ACTUALLY
14	SOME MAJOR PROGRESS. THERE'S A PAPER COMING OUT
15	SOON WHERE WE FIGURED OUT SOME OF THE MECHANISM WHY
16	CELLS DIE WITHIN ACTUALLY THE FIRST FEW DAY AFTER
17	GRAFTING. AND WE HAVE A VERY SIMPLE FIX THAT HAS TO
18	DO WITH TNF ALPHA SIGNALING THAT CAN BASICALLY
19	OVERCOME THAT THAT COULD BE ADDED TO SUCH GRAFT,
20	MAYBE MAKE THEM MORE RELIABLE AND REQUIRING LESS
21	CELLS.
22	AND THEN, FINALLY THAT'S REALLY A BIG
23	TOPIC, NO, FOR THE FIELD. CAN WE DO CELL PLUS GENE?
24	SO CAN WE ADD A GENE THAT HELPS THE CELLS TO BE EVEN
25	BETTER THAN THE NATURAL VERSION?

1	SO I ALREADY MENTIONED, FOR EXAMPLE, YOU
2	COULD MAKE THEM SUCH THAT MAYBE DON'T EVEN NEED
3	INITIAL 12 MONTHS OF IMMUNE SUPPRESSION.
4	TECHNICALLY YOU CAN DO IT, BUT YOU MAKE CELLS THAT
5	ARE IMMUNE EVASIVE, BUT THEY HAVE THEIR OWN RISKS.
6	THE OTHER OPTION IS YOU GRAFT THE CELLS
7	INTO A PATIENT THAT HAS AN ONGOING DISEASE, AND
8	THERE ARE WAYS YOU MIGHT ACTUALLY BE ABLE TO PROTECT
9	THOSE CELLS MORE EFFECTIVELY. AND, AGAIN, WE DON'T
10	GO TOO MUCH IN TECHNICAL DETAILS, BUT (CORRUPTED
11	TRANSMISSION) THAT'S GOING TO BE REQUIRED TO
12	TRANSMIT THE DISEASE TO THE GRAFT.
13	BUT THERE'S ALSO THE IDEA THAT YOU CAN
14	INTRODUCE CERTAIN GENE MUTATIONS THAT ARE ACTUALLY
15	NOT ONLY NOT CAUSING THE DISEASE, BUT MIGHT
16	PROTECTIVE IN THOSE NEURONS. YOU MAKE A SPLIT OF
17	THE NEURONS THAT MIGHT DO MUCH, MUCH BETTER IN THE
18	DISEASE CONTEXT.
19	YOU COULD ALSO USE GLIAL CELLS. THESE ARE
20	VERY INTERESTING AREAS THAT COULD BE PURSUED FOR THE
21	NEXT GENERATION. THERE'S ALSO CLINICIAN T HAT COMES
22	THERE AND HAS TO DO, AS I SAID BEFORE, IF IT ALREADY
23	WORKS, HOW DO YOU KNOW IT WORKS BETTER? AND SO
24	SOMETIMES YOU CAN JUST GO TO LARGER ANIMAL MODELS.
25	AND ONE AREA, FOR EXAMPLE, THAT YOU WANT TO STUDY:

	46
25	MIMIC THE DISEASE A LITTLE BIT BETTER. THIS IS AN
24	AND THESE ARE OTHER ANIMALS THAT MAYBE
23	FORTH.
22	FUNCTION OR FUNCTIONS RELATED TO LEARNING AND SO
21	IMPORTANT TO LOOK AT MUCH MORE FINE BEHAVIORAL
20	TASKS AND SO FORTH. SO IT'S GOING TO BE VERY
19	MOUSE BEHAVIOR, BUT THEY HAVE THE ANIMALS DOING
18	DEVELOP. FOR EXAMPLE, THEY USE DEEP LEARNING IN THE
17	TO THINK MORE SENSITIVE ASSAYS THAT PEOPLE TRY TO
16	WAY. THEY'RE ALREADY FULLY RECOVERED. SO WE NEED
15	MORE POTENT, THEY'RE STILL GOING TO RECOVER THE SAME
14	EASILY. IF YOU HAVE NOW A CELL THAT'S THREE TIMES
13	ANIMAL ROTATE ON THEIR AXIS. THEY RECOVER VERY
12	SENSITIVE TO POTENCY. SOME OF THOSE ASSAYS IN THE
11	THE OTHER POINT IS, AGAIN, NOT VERY
10	CAN WORK OVER VERY LARGE DISTANCES.
9	LARGE ANIMAL MODEL TO SHOW THAT THIS APPROACH REALLY
8	THEY ARE NORMALLY LOCATED. BUT WE NEED TO HAVE A
7	LIKE IN THE CLINICAL TRIAL, BUT ANOTHER SITE WHERE
6	ONE SITE WHERE THE CELLS ARE IMPLANTED CURRENTLY
5	SO THE IDEA WOULD BE TO MAKE TWO SITES.
4	VERY LONG CONNECTIONS BACK TO THE TARGET REGION.
3	MIDBRAIN? BUT FROM THERE THEY NEED TO MAKE VERY,
2	THE LOCATION WHERE THEY NORMALLY ARE IN THE
1	IS IT A GOOD IDEA TO PUT THE CELLS ALSO BACK INTO

1	ANIMAL MODEL FROM JIM SURMEIER THAT'S VERY CHRONIC
2	PROGRESSIVE. FIRST YOU LOSE THE DOPAMINE FIBERS
3	WHERE THEY CONNECT IN THE BRAIN AND ONLY LATER THE
4	CELL BODIES. AND THAT'S EXACTLY WHAT HAPPENS
5	NORMALLY IN THE DISEASE UNLIKE THE MODELS THAT WE'VE
6	USED FOR OUR CLINICAL DEVELOPMENT WHERE WE JUST WIPE
7	OUT THE DOPAMINE CELLS IN ONE SHOT.
8	THERE'S ANOTHER ANIMAL THAT NOW VIVIANE
9	TABAR, I MENTIONED HER NAME BEFORE, WE WORK A LOT
10	WITH HER. SHE USES AN ANIMAL MODEL THAT ACTUALLY
11	HAS KIND OF A TREMOR-LIKE SYMPTOM SIMILAR TO THE
12	PATIENTS AND THAT HAS ALSO DISEASE SYMPTOMS, THIS
13	ALPHA-SYNUCLEIN IN THE BRAIN. AND TO SEE HOW THE
14	CELLS BEHAVE IN THIS DISEASE ENVIRONMENT WILL BE
15	VERY INTERESTING. BUT, AGAIN, AN AREA I THINK THAT
16	IS INTERESTING TO ACTUALLY BETTER UNDERSTAND
17	INTERACTION OF THE CELLS IN SUCH A BRAIN.
18	NOW, THAT LEADS ME THEN TO THE NEXT POINT,
19	WHICH IS WHAT CAN WE DO MAYBE BEYOND DOPAMINE? SO
20	EVERYTHING THAT I TALKED TO YOU ABOUT HAS BEEN TO
21	MAKE THE DOPAMINE APPROACH BETTER, MAYBE MAKE IT
22	MORE POTENT, MAYBE DOESN'T REQUIRE IMMUNE
23	SUPPRESSION, AND SO FORTH. I THINK THESE ARE ALL
24	IMPORTANT AREAS.
25	AND, AGAIN, THIS IS GOING TO BE VERY SHORT
	47

1	BECAUSE, AGAIN, WE DON'T REALLY KNOW TOO MUCH YET,
2	BUT I LISTED WHEN I GAVE YOU THE PICTURE NOW WITH
3	THE PATIENT AND WITH THE SYMPTOMS, IT HAD SOME OF
4	THOSE POINTS, LOSS OF SMELL, SLEEP DISORDERS,
5	GASTROINTESTINAL DISORDER. AND IF YOU TALK TO SOME
6	OF THE PATIENTS, THEY CAN ACTUALLY BE QUITE
7	DEBILITATING, PARTICULARLY THE GI COMPONENT. THEY
8	OFTEN REALLY COMPLAIN QUITE SEVERELY. IT'S NOT JUST
9	A LITTLE BIT BEING DISCOMFORT WHERE IT CAN BE REALLY
10	QUITE DEBILITATING. BUT OBVIOUSLY EVEN MORE
11	DEBILITATING EVENTUALLY IS THE COGNITIVE LOSS OF
12	FUNCTION.
13	AND SO, AGAIN, RIGHT NOW WE DON'T HAVE ANY
14	GOOD APPROACH AT THIS POINT, AND WE DON'T ALSO KNOW
15	EXACTLY EVERYTHING ABOUT COGNITIVE LOSS IN PD. BUT
16	THERE'S PROBABLY TWO COMPONENTS TO IT. ONE HAS TO
17	DO MORE WHERE WE ACTUALLY MIGHT HAVE A SHOT TO HAVE
18	SOME IMPACT WITH THE DOPAMINE NEURONS. IF THERE IS
19	SOME DOPAMINERGIC INNERVATION OF THE FOREBRAIN,
20	FRONTAL CORTEX, THAT MIGHT ACTUALLY BENEFIT FROM THE
21	NEW DOPAMINE NEURONS. AND IT HAS TO DO WITH KIND OF
22	WHAT YOU CALL EXECUTIVE FUNCTION THAT GETS WORSE IN
23	PATIENTS. SO THERE MIGHT BE SOME HOPE THAT CERTAIN
24	SMALL AREA OF SYMPTOMS MIGHT IMPROVE COGNITIVELY.
25	BUT THE MUCH BIGGER PROBLEM IS THIS DIFFUSE LEWY

1	BODY DISEASE, BUT THERE'S NO REASON TO BELIEVE THAT
2	DOPAMINE NEURON REPLACEMENT WOULD ADD TO ANYTHING
3	MAJOR ABOUT THAT AND CAN AFFECT MANY NEURON
4	POPULATION.
5	NOW, ONE POPULATION THAT GETS AFFECTED
6	ALSO QUITE EARLY ARE NOT JUST DOPAMINE NEURONS.
7	THEY ARE ACTUALLY FOREBRAIN CHOLINERGIC NEURONS. SO
8	THEY ARE SITTING, AGAIN, IN THE NUCLEUS IN THE BRAIN
9	AS YOU CAN SEE HERE. THAT BASICALLY IS AN AREA THAT
10	PROTECTS VERY, VERY WIDELY WITHIN THE BRAIN TO ALL
11	KIND OF AREAS, THE HIPPOCAMPUS, THE CORTEX, AND SO
12	FORTH. AND THEY ACTUALLY DIE QUITE EARLY OR ARE
13	AFFECTED DYSFUNCTIONAL ALSO QUITE EARLY IN
14	PARKINSON'S DISEASE. AND THERE'S A LONG HISTORY
15	ACTUALLY GOING BACK TO FETAL GRAFT AND SIMILAR TO
16	DOPAMINE NEURON FETAL GRAFTING, WHERE PEOPLE TRIED
17	TO HAVE MODELS TO KIND OF HAVE A DEGENERATION OF
18	THOSE CELLS AND SEE WHERE THEY CAN BE REPLACED USING
19	FETAL ISSUE.
20	I SHOW YOU HERE ONE SUCH STUDY THAT WAS
21	ONE OF THE MAJOR ONES. IT'S SO-CALLED A COGNITIVE
22	TEST, A WATER MAZE TEST WHERE THE MOUSE NEEDS TO
23	KNOW WHERE BASICALLY A SAFE EXIT IS ON THE PLATFORM.
24	AND THE RED ONE IS THE SAFE AREA. YOU CAN SEE
25	NORMAL MOUSE FINDS THIS PLATFORM QUITE ROUTINELY. A

1	LESIONED ONE DOESN'T. THE GRAFTED ONE IS NEARLY AS
2	GOOD AS THE NORMAL ONE. AND SO THIS IS GRAFT OF
3	THOSE BASAL FOREBRAIN CHOLINERGIC NEURONS.
4	AND WE HAVEN'T REALLY DONE MUCH ON THAT
5	WORK, BUT I KNOW THE SWEDISH GROUP UNDER S. LUND AND
6	AGNETE KIRKEBY AND OTHERS, THEY ACTUALLY NOW GO BACK
7	AND USE SOME OF THE PROTOCOLS WE AND
8	(UNINTELLIGIBLE) CHUNG DEVELOPED, REFINED THEM
9	FURTHER, AND ACTUALLY TRIED LISTING PRECLINICALLY,
10	SEE CAN WE HAVE A COMBINED APPROACH. COULD YOU HAVE
11	DOPAMINE NEURONS FOR THE CLASSIC MOTOR DISEASE? AND
12	COULD YOU HAVE THOSE FOREBRAIN CHOLINERGIC NEURONS
13	FOR SOME OF THE COGNITIVE SYMPTOMS THAT YOU SEE IN
14	AD? AGAIN, CLEARLY WOULDN'T TREAT ALL THE SYMPTOMS,
15	BUT THAT'S SOMETHING THAT IS CURRENTLY ACTUALLY
16	BEING KIND OF RE-PURSUED WITHIN THE FIELD.
17	NOW, AGAIN, THERE ARE OBVIOUSLY OTHER WAYS
18	THAT CAN BE THOUGHT ABOUT AND OTHER CELL TYPES THAT
19	PEOPLE HAVE THOUGHT ABOUT IS PARTICULARLY CELLS THAT
20	WOULD JUST SIMPLY AFFECT THE DISEASE PROCESS, MAYBE
21	A LITTLE BIT, AGAIN, IN THE CELL PLUS GENE; BUT IN
22	THIS CASE, PROBABLY NOT THE DOPAMINE NEURONS, BUT
23	MAYBE MORE ASTROCYTES OR MICROGLIA THAT COULD
24	PRODUCE ANTIBODIES OR COULD BE ANTI-INFLAMMATORY TO
25	AFFECT THE DISEASE PROCESS.

1	NOW, AND EVEN MORE KIND OF OUT THERE AND,
2	AGAIN, NOT SOMETHING WHICH CAN HAPPEN IMMEDIATELY,
3	BUT TECHNICALLY FEASIBLE IS TO TREAT THE
4	GASTROINTESTINAL SYMPTOMS IN PD. SO WE, FOR
5	EXAMPLE, HAVE SHOWN COUPLE OF YEARS AGO THAT IN A
6	VERY SEVERE MODEL IN A MOUSE WHERE A MOUSE ACTUALLY
7	DOESN'T HAVE THE NERVE CELLS OF THE GUT PROPERLY
8	FUNCTIONING, THE SAME NERVE CELLS THAT DON'T
9	PROPERLY FUNCTION IN PARKINSON'S DISEASE BECAUSE
10	THEY'RE AFFECTED BY THE DISEASE, YOU CAN LITERALLY
11	REPLACE THEM.
12	SO THESE RED SPOTS ALONG THE COLON ARE NOW
13	HUMAN CELLS THAT TAKE UP SHOP QUITE QUICKLY IN A
14	MOUSE. AND THIS IS NOW MUCH, MUCH LATER, SOMETHING
15	LIKE, I THINK IT WAS, NINE MONTHS LATER, YOU CAN SEE
16	THIS BEAUTIFUL FIBER THAT'S A NETWORK THAT
17	CORRESPONDS TO THE ENTERIC NERVOUS SYSTEM, BUT IT'S
18	COMPLETELY HUMAN DERIVED IN A MOUSE.
19	WHAT YOU CAN SHOW THEN IS THAT NOW THE
20	GUT, THE COLON ACTUALLY CONTRACTS AND RELEASES. AS
21	YOU KNOW, WHEN YOU PUSH THE FOOD FORWARD, WHICH IS
22	THIS BLUE, ORANGE, RED PERISTALTIC MOVEMENT OVER
23	TIME, THERE'S A TIME AXIS, YOU CAN SEE THAT YOU CAN
24	TRIGGER THESE NICE WAVES OF PERISTALTIC IN COLON
25	COMPLETELY WITHIN THIS HUMAN ENTERIC NERVOUS SYSTEM.

51

AGAIN, HERE THE IDEA WOULD BE THAT YOU WOULD FIRST
GO TO VERY SEVERE DISEASE, LIKE HIRSCHSPRUNG, SHOWS
THAT THIS CAN BE ROUTINELY AND SAFELY DONE, BUT
MAYBE THAT IS NO LONGER COMPLETELY CRAZY. NOW THEY
USE THESE CELLS IN OTHER DISORDERS MAYBE IN THE
CONTEXT OF (CORRUPTED TRANSMISSION) DISEASE, MAYBE
IN THE CONTEXT EVEN OF PARKINSON'S DISEASE.
SO THEN LAST BUT NOT LEAST, THE QUESTION
IS REALLY BEYOND PARKINSON'S. I'M NOT GOING TO
SPEND MORE THAN LIKE ONE MINUTE ON THAT BECAUSE THAT
WAS NOT THE TOPIC OF TODAY. BUT I MENTIONED SOME OF
THOSE CELLS NOW THAT WE COULD PUT IN LIKE GLIAL
CELLS, FOR EXAMPLE, THAT COULD HAVE A DISEASE
MODIFYING ROLE, THAT'S CLEARLY THE CASE IN
PARKINSON'S DISEASE, BUT I THINK WHERE IT'S ALREADY
GETTING PURSUED IS IN ALZHEIMER'S DISEASE. THIS IS
FROM WORK YOU PROBABLY KNOW, (UNINTELLIGIBLE) BUT
YOU CAN ACTUALLY LITERALLY SWAP MICROGLIA. THESE
ARE HUMAN MICROGLIA IN THE MOUSE BRAIN. WE ARE
DOING SOME OF THOSE STUDIES TOO. AND YOU CAN THEN
HAVE A REJUVENATED POPULATION BECAUSE THE MICROGLIA
YOU HAVE IN YOUR BRAIN THAT CAME DURING DEVELOPMENT
INTO THE BRAIN, THEY HAVE BEEN THERE FOR 50, 60
YEARS, WHATEVER YOUR AGE IS. YOU CAN GIVE THEM
EASILY A CARGO OR AS WE CALL YOU CAN MAKE THEM

52

1	STEALTHS. YOU CAN GIVE THEM SUPRAPHYSIOLOGICAL
2	FUNCTIONS THAT WOULD MAKE THEM BEING NOT ONLY NOT SO
3	MUCH AFFECTED BY THE DISEASE, BUT HELP THE DISEASE.
4	AND SO I THINK THESE ARE ALL VERY EXCITING
5	AREAS, AND YOU CAN JUST SIMPLY SWITCH THE CARGO AND
6	CONDITIONS AND THEN APPLY THAT BACK, FOR EXAMPLE, TO
7	PARKINSON'S DISEASE WHERE THE MECHANISMS ARE
8	SLIGHTLY DIFFERENT, BUT MICROGLIA AND ASTROCYTES
9	PLAY ALSO A VERY IMPORTANT ROLE AND, AGAIN, COULD BE
10	SIMILARLY SWAPPED, SO TO SAY.
11	ANOTHER AREA THAT'S BEING DONE, THERE IS
12	THE SAME APPROACH THAT I MENTIONED WHICH IS BASAL
13	FOREBRAIN NEURONS OBVIOUSLY YOU COULD TRY. IN AD IT
14	HAS BEEN DONE BEFORE. AND I THINK I MENTIONED THAT
15	THOSE INTERNEURON APPROACHES ARE ACTUALLY ALSO QUITE
16	INTERESTING IN THE CONTEXT OF AD BECAUSE THERE ARE
17	CERTAIN NEUROPHYSIOLOGICAL CHANGES THAT HAPPEN THAT
18	ARE IMPORTANT FOR COGNITION. THERE'S LI-HUEI TSAI
19	AT MIT THAT ACTUALLY TRIES TO PURSUE THAT LESS WITH
20	INTERNEURON, BUT BY STIMULATING THEM, MIMICKING
21	INTERNEURON LIKE TO PHYSIOLOGICALLY.
22	AND THEN, FINALLY, WE ALREADY HEARD FROM
23	NEURONA. THERE WAS REALLY BEAUTIFUL WORK WITH
24	INTERNEURONS IN CALIFORNIA FOR SEIZURES. I THINK
25	THEY'RE ALSO INTERESTED IN PAIN. AND THERE ARE

1	OTHER TYPES OF INTERNEURONS THAT COULD BE
2	INTERESTING FOR SPINAL CORD INJURY.
3	SO THIS IS JUST A KIND OF A LITTLE BIT OF
4	AN EXCURSION BEYOND PD, BUT I THINK, AGAIN, THIS
5	GOES FORTH AND BACK TO SEE WHAT ARE THE RIGHT CELL
6	TYPES THAT CAN BE PURSUED BY CELL THERAPY.
7	LAST BUT NOT LEAST, HERE'S SOME OF THE
8	CONCLUSIONS FOCUSING ON PARKINSON'S. SO, AGAIN,
9	DOPAMINE NEURON REPLACEMENT IS NOW IN THE CLINIC, AT
10	LEAST IN THE EARLY STAGE TRIAL WITH LATER STAGE
11	TRIAL GETTING STARTED, PROMISING EARLY RESULTS.
12	MANY GROUPS ARE PURSUING IT, INCLUDING BIG PHARMA.
13	SO BAYER ACQUIRED BLUE ROCK. NOVO NORDISK IS
14	SPONSORING THE TRIALS IN EUROPE. AND MULTIPLE
15	START-UPS. WE HEARD FROM KENAI AND ASPEN AND SO
16	FORTH IN ADDITION TO SOME ACADEMIC CENTERS.
17	MY POINT IS THAT THERE COULD BE A BIG
18	IMPACT THAT REALLY TRY TO DEVELOP NEURAL APPROACHES,
19	NOT JUST DOING THE EXACT SAME CELLS AT MANY MORE
20	PLACES, BUT SEE WHERE ARE THE BOTTLENECKS THAT I
21	TRIED TO HIGHLIGHT. CELL PLUS GENE IS ONE OF THOSE
22	APPROACHES. BUT, AGAIN, MAYBE WON'T BE VERY BOLD.
23	MAYBE YOU CAN ALSO THINK AND INVEST IN THE AREAS TO
24	ACTUALLY TARGET SOME OF THE NON-DOPAMINE-RELATED
25	SYMPTOMS IN PARKINSON'S, APPROACHES THAT COULD

54

1	BENEFIT NEURODEGENERATION BEYOND PARKINSON'S.
2	AND THEN FINALLY THERE'S JUST SOME OF THE
3	PEOPLE. I'M NOT GOING TO SPEND MUCH TIME, BUT THIS
4	IS SOME OF THE CREW IN MY LAB THAT REALLY DOES THE
5	DOPAMINE WORK CURRENTLY, BUT THEN ALSO IT'S THE
6	WHOLE TEAM NEEDED THAT'S NOW MOVED FROM MY LAB, AT
7	LEAST SOME OF THEM, TO BLUE ROCK THERAPEUTICS AND
8	LEADS THE EFFORTS OVER THERE.
9	I'M GOING TO STOP HERE AND OBVIOUSLY BE
10	HAPPY TO TAKE ANY OF THE QUESTIONS YOU MIGHT HAVE.
11	CHAIRMAN GOLDSTEIN: THANK YOU, LORENZ.
12	THAT'S REALLY TERRIFIC. LET ME LAUNCH THE QUESTIONS
13	BY ASKING A FAIRLY SIMPLE ONE. IS THE BASAL
14	FOREBRAIN ORDINARILY RECEIVING DOPAMINERGIC INPUT
15	FROM THE SUBSTANTIA NIGRA, OR IS ITS FAILURE AN
16	AUTONOMOUS DEFECT RELATIVE TO THE SUBSTANTIA NIGRA,
17	OR IS IT JUST UNCLEAR?
18	DR. STUDER: I THINK IT'S NOT COMPLETELY
19	CLEAR, BUT I WOULD GUESS, PRETTY HEAVILY GUESS THAT
20	IT'S UNRELATED BECAUSE THERE ARE MANY OTHER BRAIN
21	REGIONS THAT ARE AFFECTED. I DIDN'T TALK, FOR
22	EXAMPLE, ABOUT LOCUS COERULEUS. THAT'S ANOTHER
23	POPULATION VERY EARLY AFFECTED, NOT A POPULATION CAN
24	BE GRAFTED, AND CAN BE ACTUALLY GENERATED
25	BY CHUN-LI ZHANG JUST PUBLISHED A PAPER ON MAKING

1	LOCUS COERULEUS NEURONS. VERY IMPORTANT FOR SOME OF
2	THE SLEEP-RELATED, MOTOR-RELATED SYMPTOMS IN PD, BUT
3	THAT'S EVEN FURTHER BEHIND TRYING TO DEVELOP THAT.
4	BUT I THINK THESE ARE ALL INTERESTING AREAS.
5	CHAIRMAN GOLDSTEIN: YEAH. THAT'S QUITE A
6	LOT OF OVERLAP WITH ALZHEIMER'S DISEASE ACTUALLY
7	BECAUSE THE LOCUS COERULEUS GOES IT FAILS EARLY
8	IN AD AS WELL.
9	QUESTIONS FROM THE REST OF THE GROUP?
10	MS. MANDAC: J.T. HAS HIS HAND RAISED.
11	CHAIRMAN GOLDSTEIN: J.T., PLEASE.
12	CHAIRMAN IMBASCIANI: J.T., UNMUTE.
13	DR. THOMAS: SORRY ABOUT THAT. LORENZ,
14	OUTSTANDING PRESENTATION. THANK YOU SO MUCH.
15	REALLY APPRECIATE IT.
16	QUESTION ON IPS WORK THAT'S USED IN
17	CONNECTION WITH HIGH THROUGHPUT SCREENING AGAINST
18	NEURONS IN THE DISH. I KNOW THIS IS SOMETHING YOU
19	WERE WORKING ON A LITTLE WHILE AGO, BUT I'M JUST
20	CURIOUS WHAT THE LATEST IS. SO ONE OF THE ISSUES
21	WHEN YOU OBVIOUSLY REPROGRAM IPS CELLS INTO NEURONS,
22	THEY'RE SORT OF YOUNG NEURONS, IF YOU WILL, IN THE
23	DISH AND HAVEN'T FULLY ADVANCED TO MATURITY WHERE
24	THEY'D HAVE FULL MANIFESTATION OF WHATEVER THE
25	PHENOTYPIC CONDITION IS YOU'RE TRYING TO STUDY,

56

1	WHETHER IT'S PARKINSON'S OR ALZHEIMER'S OR WHATEVER.
2	WHAT'S BEEN DONE TO ACCELERATE THAT
3	PROCESS TO MAKE DRUG SCREENING SORT OF MORE RELEVANT
4	TO LATER STAGE DISEASE?
5	DR. STUDER: I THINK THERE'S A LOT OF
6	EARLY STAGE DEVELOPMENTS IN THOSE AREA. WE
7	ACTUALLY IT'S AN AREA THAT WE ARE REALLY
8	INTERESTED IN. AND SO WE JUST PUBLISHED TWO PAPERS
9	ON WHAT WE REFER TO AS IMPROVING THE MATURATION
10	STAGE. THERE WAS ONE PAPER IN NATURE, ONE PAPER IN
11	NATURE BIOTECH EARLY THIS YEAR. THAT HAS TO DO WITH
12	NEURONAL MATURATION. SO WE CAN ADD COMPOUNDS THAT
13	AFFECT THE CHROMATIN STATE TEMPORARILY. IT LOOKS
14	LIKE THE TIMING IS CONTROLLED BY A CLOCK, THE HUMAN
15	CLOCK, BECAUSE IT TICKS MUCH LOWER THAN THE MOUSE,
16	AND IT HAS TO DO WITH CERTAIN CHROMATIN STATE OF THE
17	CELL. SO WE CAN TEMPORARILY DISRUPT THAT, AND THEN
18	THE CELLS THAT RESULT AFTER THE DISRUPTION ACTUALLY
19	MOVE MUCH FASTER THROUGH THE MATURATION STAGES.
20	NOW, WE HAVEN'T REALLY USED THAT EITHER IN
21	IN VIVO STUDIES OR EVEN FOR DRUG DISCOVERY. THAT'S
22	ACTUALLY SOMETHING WE'RE DOING RIGHT NOW WHERE WE
23	TRY TO SEE CAN WE INTEGRATE THAT. AND SO THAT'S ONE
24	COMPONENT, ACTUALLY TWO COMPONENTS. ONE IS REMOVING
25	WE CALL THE EPIGENETIC BARRIER. AND THE OTHER ONE

1	IS ACTIVITY RELATED. SO YOU CAN ADD FACTORS THAT
2	CONTROL THOSE TWO COMPONENTS TO MAKE THE NEURONS GO
3	FASTER. THEN WE HAVE ALSO NEW STUDY THAT SHOULD
4	COME OUT SOON, IT'S NOT COMPLETELY OUT YET, THAT HAS
5	TO DO WITH THE WAY WHERE WE START WITH ALZHEIMER'S
6	DISEASE, BUT ALSO IN PARKINSON'S WHERE WE SCREENED
7	EVERY SINGLE GENE IN THE HUMAN GENOME THAT CAN
8	SYNERGIZE WITH THE DISEASE SUSCEPTIBILITY TO TRIGGER
9	DISEASE.
10	WE FOUND A PATHWAY WHERE WE CAN JUST WITH
11	A COMPOUND WE CAN STIMULATE THOSE CELLS AND THEY
12	KIND OF IN ABOUT TEN DAYS TRIGGER AGE-LIKE FEATURES,
13	BUT THEY'RE NOT FULLY MATURE. SO IT'S A BIT OF A
14	DIFFERENT THING BETWEEN MATURATION AND AGING, BUT
15	THEY ARE GETTING THESE AGING FEATURES THAT MAKES
16	THEM NOW VULNERABLE TO DISEASE THAT MIMICS WHAT
17	HAPPENS LATER IN LIFE.
18	AGAIN, THOSE ARE JUST AREA OF MATURATION
19	AND AGING IN OUR LAB, AND I'M SURE OTHER PEOPLE DO
20	THAT TOO, TRY TO INTEGRATE TO DO DRUG SCREENING.
21	AND I THINK THAT'S, AGAIN, AN AREA THAT'S VERY
22	INTERESTING.
23	BUT THE OTHER THING IS THAT A LOT OF
24	EFFORTS ARE NOW DONE TO DO THAT NOT JUST IN ONE
25	PATIENT. AS I MENTIONED, FOR PATIENT
	58

1	STRATIFICATION, THIS PPMI COHORT, WE AND OTHERS HAVE
2	NOW IPS CELLS FROM THOSE HUNDREDS OF INDIVIDUALS.
3	AND WE CAN GROW IT NOT ONLY ONE BY ONE, BUT WE MAKE
4	POOLS OF THEM. WE CALL THEM A VILLAGE IN A DISH.
5	THEY HAVE A WHOLE VILLAGE OF, LET'S SAY, HUNDRED TO
6	200 PATIENTS, AND YOU GIVE THEM A DRUG. YOU DO THE
7	AGING, WHATEVER YOU DO, AND THEN THEY SHOULD HAVE
8	THE DISEASE MANIFESTATION. YOU CAN NOW LITERALLY
9	SEE NOW WHICH OF THE PATIENTS RESPOND TO
10	INTERVENTION.
11	IN THE PAST THAT WAS VERY, VERY DIFFICULT
12	BECAUSE, AS YOU KNOW, GROWING HUNDRED, 200 CELLS IN
13	EACH WELL IN A SYNCHRONIZED MANNER IS VERY DIFFICULT
14	FOR SOME OF THOSE CELL TYPES. BUT SO THIS VILLAGE
15	IN A DISH, I THINK, IS NOW THE RECENT DEVELOPMENT, I
16	THINK THAT'S GOING TO CHANGE HOW PEOPLE ARE GOING TO
17	DO SOME OF THOSE DISEASE MODELING STUDIES. SO THERE
18	ARE A LOT OF DEVELOPMENT, I THINK, ON THIS AREA AS
19	WELL FOR DRUG DISCOVERY THAT WE ARE VERY EXCITED.
20	AND, AGAIN, FOR FULL DISCLOSURE, WE STARTED ANOTHER
21	COMPANY WHICH IS CALLED DACAPO BRAINSCIENCE, WHICH
22	IS NOW JUST GETTING INTO THIS AREA THAT USES SOME OF
23	THOSE TOOLS TOGETHER WITH MACHINE LEARNING TOOLS.
24	FROM THE PATIENT DATA, WE TRY TO INTEGRATE AND KNOW
25	HOW DO YOU PREDICT PROGRESSION? HOW DO YOU RESPOND

59

1	TO GENETIC PERTURBATION? HOW DO YOU RESPOND TO
2	DRUGS?
3	SO IT'S AN AREA I'M VERY EXCITED ABOUT
4	ACTUALLY, WHICH IS ALWAYS INDEPENDENT OF CELL
5	THERAPY, BUT IS ACTUALLY DRUG DISCOVERY.
6	DR. THOMAS: THANK YOU. VERY EXCITING.
7	CHAIRMAN GOLDSTEIN: YEAH. A LOT OF GREAT
8	WORK GOING ON, LORENZ.
9	OTHER QUESTIONS FROM THE TASK FORCE?
10	OKAY. SO HAS JEFF ROTHSTEIN JOINED US?
11	MS. MANDAC: YES.
12	DR. ROTHSTEIN: YES, I'M HERE.
13	CHAIRMAN GOLDSTEIN: ALL RIGHT. SO, JEFF,
14	YOU'VE GOT A TOUGH ACT TO FOLLOW HERE, BUT I'M SURE
15	YOU'LL BE MORE THAN CAPABLE OF IT.
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
	60
I	

1	
Т	JEFF IS AN M.D./PH.D. HE S MOVED AROUND
2	TO A LOT OF PLACES, BUT HE'S REALLY SPENT THE BULK
3	OF HIS CAREER AT HOPKINS WHERE HE HAS LED THE
4	DEPARTMENT OF NEUROSCIENCES FOR PART OF HIS TIME
5	THERE, AND PERHAPS MOST IMPORTANT HE DEVELOPED THE
6	PACKARD ALS CENTER, WHICH I HAD SOME ASSOCIATION
7	WITH SOME YEARS AGO, AND IT IS A TRULY POWERFUL
8	DISCOVERY ENGINE IN THE AREA OF ALS. AND SO JEFF
9	WILL GIVE US SOME UNDERSTANDING OF WHAT'S CURRENT IN
10	ALS AND PERHAPS WHERE TO GO NEXT WITH RESEARCH.
11	SO, JEFF, YOU'RE UP.
12	DR. ROTHSTEIN: GREAT. THANKS, LARRY.
13	NICE TO SPEND SOME TIME WITH YOU. I ACTUALLY WAS
14	INVOLVED WITH CIRM WHEN YOU FIRST STARTED MANY YEARS
15	AGO AS AN EXTERNAL REVIEWER.
16	I'M GOING TO TRY MOVE FAST. I KNOW THIS
17	IS A MIXED GROUP. ONE OTHER BIT OF BACKGROUND, I'M
18	BOTH A NEUROLOGIST. I FOUNDED THE ALS CLINIC AT
19	HOPKINS. SO I'VE RUN MOST, IF NOT ALL, OF THE ALS
20	CLINICAL TRIALS OVER THE YEARS, BUT I RUN A BASIC
21	SCIENCE LAB WORKING ON BASIC CELL BIOLOGY UNDERLYING
22	ALS, OF COURSE, WITH THE HOPES OF FINDING DRUGS.
23	WHAT I'M NOT GOING TO TELL YOU ABOUT IS
24	CELL THERAPY. AND I'M FROM THE EAST COAST, AND I'M
25	NOTHING BUT BLUNT. SO CELL THERAPY FOR ALS IS A

61

1	BUNCH OF BULLSHIT. IT'S A WASTE OF TIME. THE REAL
2	VALUE IN CELLS IN ALS, WHICH IS LARGELY A SPORADIC
3	DISEASE, NOT UNLIKE PARKINSON'S. AND, OF COURSE,
4	YOU JUST HEARD THE ELEGANT WORK BY LORENZ. AND
5	ALZHEIMER'S IS TRYING TO FIND APPROACHES TO SPORADIC
6	ALS, AND THERE IS NO ANIMAL MODEL FOR SPORADIC ALS.
7	AND SO THIS IS WHERE IPS CELLS BECOME A REAL
8	PLATFORM.
9	SO I'M GOING TO FIRST VERY QUICKLY TELL
10	YOU ABOUT A PATHWAY, AND BURIED IN THAT WILL BE HOW
11	YOU CAN USE IPS CELLS AS A PLATFORM TO UNDERSTAND
12	THE PATHOGENESIS CASCADE THROUGH THE DISEASE AS WELL
13	AS THERAPIES AND WHERE WE'RE GOING IN THE FUTURE.
14	SO THE START OF THIS IS VERY BASIC, AND
15	IT'S ABOUT A NEW PATHWAY THAT UNDERLIES ALMOST ALL
16	
	OF SPORADIC ALS. KLAL QUICK BACKGROUND BECAUSE I
17	DON'T KNOW THE BACKGROUND OF YOU. ALS LIKE
17 18	DON'T KNOW THE BACKGROUND OF YOU. ALS LIKE ALZHEIMER'S AND PARKINSON'S, THIS IS A LARGELY A
17 18 19	DON'T KNOW THE BACKGROUND OF YOU. ALS LIKE ALZHEIMER'S AND PARKINSON'S, THIS IS A LARGELY A SPORADIC DISEASE. THIS DISEASE LARGELY AFFECTS YOUR
17 18 19 20	DON'T KNOW THE BACKGROUND OF YOU. ALS LIKE ALZHEIMER'S AND PARKINSON'S, THIS IS A LARGELY A SPORADIC DISEASE. THIS DISEASE LARGELY AFFECTS YOUR VOLUNTARY MOTOR SYSTEM. IT'S DUE TO THE LOSS OF
17 18 19 20 21	DON'T KNOW THE BACKGROUND OF YOU. ALS LIKE ALZHEIMER'S AND PARKINSON'S, THIS IS A LARGELY A SPORADIC DISEASE. THIS DISEASE LARGELY AFFECTS YOUR VOLUNTARY MOTOR SYSTEM. IT'S DUE TO THE LOSS OF CORTICAL MOTOR NEURONS, WHICH INTERACT WITH SPINAL
17 18 19 20 21 22	DON'T KNOW THE BACKGROUND OF YOU. ALS LIKE ALZHEIMER'S AND PARKINSON'S, THIS IS A LARGELY A SPORADIC DISEASE. THIS DISEASE LARGELY AFFECTS YOUR VOLUNTARY MOTOR SYSTEM. IT'S DUE TO THE LOSS OF CORTICAL MOTOR NEURONS, WHICH INTERACT WITH SPINAL MOTOR NEURONS AND CONTROL THE CONTRACTION OF
17 18 19 20 21 22 23	OF SPORADIC ALS. KEAL QUICK BACKGROUND BLCAUSE I DON'T KNOW THE BACKGROUND OF YOU. ALS LIKE ALZHEIMER'S AND PARKINSON'S, THIS IS A LARGELY A SPORADIC DISEASE. THIS DISEASE LARGELY AFFECTS YOUR VOLUNTARY MOTOR SYSTEM. IT'S DUE TO THE LOSS OF CORTICAL MOTOR NEURONS, WHICH INTERACT WITH SPINAL MOTOR NEURONS AND CONTROL THE CONTRACTION OF MUSCLES, BOTH VOLUNTARY MUSCLES, SUCH AS, OF COURSE,
17 18 19 20 21 22 23 24	DON'T KNOW THE BACKGROUND OF YOU. ALS LIKE ALZHEIMER'S AND PARKINSON'S, THIS IS A LARGELY A SPORADIC DISEASE. THIS DISEASE LARGELY AFFECTS YOUR VOLUNTARY MOTOR SYSTEM. IT'S DUE TO THE LOSS OF CORTICAL MOTOR NEURONS, WHICH INTERACT WITH SPINAL MOTOR NEURONS AND CONTROL THE CONTRACTION OF MUSCLES, BOTH VOLUNTARY MUSCLES, SUCH AS, OF COURSE, YOUR ARMS AND YOUR LEGS, BUT ALSO YOUR DIAPHRAGM AND
17 18 19 20 21 22 23 23 24 25	DON'T KNOW THE BACKGROUND OF YOU. ALS LIKE ALZHEIMER'S AND PARKINSON'S, THIS IS A LARGELY A SPORADIC DISEASE. THIS DISEASE LARGELY AFFECTS YOUR VOLUNTARY MOTOR SYSTEM. IT'S DUE TO THE LOSS OF CORTICAL MOTOR NEURONS, WHICH INTERACT WITH SPINAL MOTOR NEURONS AND CONTROL THE CONTRACTION OF MUSCLES, BOTH VOLUNTARY MUSCLES, SUCH AS, OF COURSE, YOUR ARMS AND YOUR LEGS, BUT ALSO YOUR DIAPHRAGM AND THE FIRST PART OF YOUR SWALLOWING MUSCLES. AS SUCH,

1	ALS IS A UNIFORMLY FATAL DISEASE. THERE ARE NO
2	ESCAPEES FROM THIS DISEASE.
3	AND TYPICALLY IT PROGRESSES OVER TWO TO
4	THREE YEARS; BUT LIKE ALL MEDICAL DISEASES, THERE
5	ARE EXCEPTIONS. I'VE SEEN WELL OVER 10,000
6	PATIENTS, AND MY FASTEST PATIENT HAS BEEN SOMETHING
7	ON THE ORDER OF THREE MONTHS FROM ONSET. NOW THERE
8	ARE THOSE THAT ARE 20 AND 30 YEARS. SO HIGHLY
9	VARIABLE. WHY THAT'S VARIABLE IS A DIFFERENT ISSUE,
10	BUT IT'S ALWAYS FATAL.
11	WE USED TO THINK OF ALS AS ONLY A MOTOR
12	SYSTEM DISEASE. IT IS NOT. 50 PERCENT OF PATIENTS
13	CAN DEVELOP A MILD DEMENTIA, AND A SMALL PERCENTAGE,
14	ABOUT 10 PERCENT, OVERLAP WITH HAVING A FRONTAL
15	TEMPORAL DEMENTIA AS WELL AS ALS. AND WE NOW KNOW
16	SOME OF THE GENES THAT CAUSE FRONTAL TEMPORAL
17	DEMENTIA ARE THE SAME GENES THAT CAUSE ALS.
18	ALTHOUGH WE THINK OF IT AS A MOTOR SYSTEM DISEASE,
19	IN THE EARLY DAYS OF EVEN THE USE OF STEM CELLS
20	FOCUSED ON MOTOR NEURONS, THAT MISSES THE BOAT.
21	THERE ARE MANY OTHER CELL TYPES THAT DEGENERATE IN
22	ALS THAT CONTRIBUTE TO THE CLINICAL SYNDROME OF THE
23	DISEASE.
24	THE FIRST GENE DISCOVERED WAS SOD1, AN
25	ANTIOXIDANT GENE DISCOVERED IN THE EARLY '90S BY BOB
	63

1	BROWN AND TEEPU SIDDIQUE. AND THAT LED TO THE FIRST
2	MOUSE MODELS IN ANY NEURODEGENERATIVE DISEASE,
3	WHAT'S KNOWN AS THE SOD1 MOUSE. IT'S USED FOR MORE
4	THAN TWO DECADES TO GRADE MOUSE IN THAT IT LOOKS
5	LIKE ALS, AND IT'S A TERRIBLE MOUSE FOR DETERMINING
6	WHAT DRUGS WORK IN PATIENTS. IN FACT, NO MODEL TO
7	DATE HAS BEEN AN EXACT PREDICTOR OF WHAT WORKS IN
8	PATIENTS OTHER THAN THE SOD1 MOUSE BECAUSE TURNING
9	OFF THAT GENE, WHICH IS A THERAPY THAT WAS JUST
10	APPROVED BY THE FDA, SHOWS REMARKABLE EFFICACY IN
11	HUMANS. SO KNOW THE MUTATION, YOU CAN HAVE A GREAT
12	OUTCOME. AND WHEN TIME PERMITS, I'LL TALK ABOUT
13	OTHER MUTATIONS.
14	A REAL CHANGE IN THE DISEASE CAME WITH THE
15	DISCOVERY OF A GENE CALLED C90RF-72, LONG NAME, A
16	GENE WHOSE PROTEIN WE DON'T ENTIRELY KNOW WHAT IT
17	DOES, BUT TT'S AN UNUSUAL MUTATION RECAUSE TT'S IN
18	THE FIRST INTRON. AND THAT CAUSES A VARIETY OF
18 19	THE FIRST INTRON. AND THAT CAUSES A VARIETY OF OTHER PROBLEMS, INCLUDING ABERRANT RNA SPECIES AS
18 19 20	THE FIRST INTRON. AND THAT CAUSES A VARIETY OF OTHER PROBLEMS, INCLUDING ABERRANT RNA SPECIES AS WELL AS ABERRANT POLYPEPTIDES THAT ARE MADE FROM
18 19 20 21	THE FIRST INTRON. AND THAT CAUSES A VARIETY OF OTHER PROBLEMS, INCLUDING ABERRANT RNA SPECIES AS WELL AS ABERRANT POLYPEPTIDES THAT ARE MADE FROM THAT GENE. THAT GENE IS ACTUALLY VERY COMMON. UP
18 19 20 21 22	THE FIRST INTRON. AND THAT CAUSES A VARIETY OF OTHER PROBLEMS, INCLUDING ABERRANT RNA SPECIES AS WELL AS ABERRANT POLYPEPTIDES THAT ARE MADE FROM THAT GENE. THAT GENE IS ACTUALLY VERY COMMON. UP TO 20 TO 40 THE PERCENT OF ALS PATIENTS THAT
18 19 20 21 22 23	THE FIRST INTRON. AND THAT CAUSES A VARIETY OF OTHER PROBLEMS, INCLUDING ABERRANT RNA SPECIES AS WELL AS ABERRANT POLYPEPTIDES THAT ARE MADE FROM THAT GENE. THAT GENE IS ACTUALLY VERY COMMON. UP TO 20 TO 40 THE PERCENT OF ALS PATIENTS THAT INHERITED ALS HAVE THAT GENE MUTATION. AND UP TO 10
18 19 20 21 22 23 24	THE FIRST INTRON. AND THAT CAUSES A VARIETY OF OTHER PROBLEMS, INCLUDING ABERRANT RNA SPECIES AS WELL AS ABERRANT POLYPEPTIDES THAT ARE MADE FROM THAT GENE. THAT GENE IS ACTUALLY VERY COMMON. UP TO 20 TO 40 THE PERCENT OF ALS PATIENTS THAT INHERITED ALS HAVE THAT GENE MUTATION. AND UP TO 10 TO 20 PERCENT OF SPORADIC PATIENTS WITH NO FAMILY
18 19 20 21 22 23 24 25	THE FIRST INTRON. AND THAT CAUSES A VARIETY OF OTHER PROBLEMS, INCLUDING ABERRANT RNA SPECIES AS WELL AS ABERRANT POLYPEPTIDES THAT ARE MADE FROM THAT GENE. THAT GENE IS ACTUALLY VERY COMMON. UP TO 20 TO 40 THE PERCENT OF ALS PATIENTS THAT INHERITED ALS HAVE THAT GENE MUTATION. AND UP TO 10 TO 20 PERCENT OF SPORADIC PATIENTS WITH NO FAMILY HISTORY HAVE THAT MUTATION AS WELL. AND IT'S

64

1	EQUALLY COMMON IN FRONTAL TEMPORAL DEMENTIA.
2	IT'S THE MOST COMMON DISEASE CAUSING GENE
3	IN FTD AS WELL. YOU CAN HAVE A FAMILY WITH A SISTER
4	WITH FTD WITH THE GENE MUTATION AND A BROTHER WITH
5	ALS. REALLY A PHENOMENAL FOCUS OF RESEARCH IN THE
6	LAST DECADE OR SO. NEVERTHELESS, MOST OF THE
7	DISEASE IS SPORADIC, AND THAT BECOMES AN IMPORTANT
8	POINT WHEN WE'RE THINKING ABOUT HOW DO WE UNDERSTAND
9	WHAT'S THE MOST EFFECTIVE THERAPY FOR THE DISEASE.
10	OVER THE YEARS USING MOUSE MODELS, AND IN
11	FACT FROM THE MID-1990S WHEN THE MOUSE MODELS WERE
12	FIRST DEVELOPED HEAVILY HERE AT HOPKINS, WE, THE
13	COMMUNITY, IT'S A ROYAL WE, USE THOSE MICE TO TRY TO
14	UNDERSTAND PATHWAYS. BECAUSE UNDERSTANDING THE
15	PATHWAYS, AS SHOWN IN THIS SLIDE FROM A COUPLE YEARS
16	AGO FROM COLLEAGUES IN EUROPE, ARE THE WAYS YOU FIND
17	DRUGS FOR THE DISEASE. AND NO MATTER WHAT YOU WANT
18	TO STUDY, ULTIMATELY IT'S KNOWING THE DISEASE
19	CAUSING PATHWAYS. AND EACH OF THESE PATHWAYS HAVE
20	BEEN DESCRIBED IN MICE.
21	NOW, THE UNFORTUNATE PART OF THIS, AND I'M
22	GOING TO COME BACK TO THIS IN JUST A FEW MINUTES, IS
23	THAT MOUSE MODELS ARE GREAT. THEY LOOK LIKE THE
24	DISEASE, BUT THEY MAY NOT RECAPITULATE WHAT REALLY
25	HAPPENS IN HUMAN. AND QUITE HONESTLY, THE ONLY

1	THING THAT COUNTS I'M NOT INTERESTED IN CURING A
2	MOUSE OR ANY OTHER ORGANS IN A FLY, A FISH. I NEED
3	TO KNOW THIS IS A PLATFORM FOR FINDING THERAPIES IN
4	HUMAN.
5	AND THE REASON I POINT THAT OUT IS BECAUSE
6	OVER THE YEARS THE MOUSE MODEL WHICH WAS DISTRIBUTED
7	WORLDWIDE, GREAT TOOL, WAS NOT ALWAYS MATCHED WITH
8	HUMAN STUDIES TO PROVE THAT THE PATHWAY OF
9	DISCOVERY, WHEREVER IT MIGHT BE, WAS ALSO PRESENT IN
10	HUMANS. AND IF IT'S NOT PRESENT IN HUMANS, QUITE
11	FRANKLY, WHO GIVES A SHIT? IT ONLY COUNTS WHEN IT'S
12	PRESENT IN HUMANS.
13	MANY OF THESE HAVE BEEN ULTIMATELY
14	DESCRIBED IN HUMANS. ACTUALLY STARTED WITH WORK IN
15	MY OWN LAB STUDYING ASTROCYTES AND EXCITOTOXICITY,
16	AND THAT ACTUALLY LED TO THE FIRST FDA-APPROVED DRUG
17	FOR ALS. WE'VE ONLY HAD ABOUT TWO OTHER DRUGS
18	APPROVED, AND NONE OF THEM WORK ANY BETTER THAN THAT
19	FIRST DRUG UNFORTUNATELY.
20	I'M JUST GOING TO SKIP THROUGH THIS FOR
21	THE SAKE OF TIME.
22	WHAT HAPPENED WAS ABOUT A DECADE AGO, MORE
23	THAN A DECADE AGO, ONCE C9 WAS DISCOVERED, WE WERE
24	FORTUNATE THAT THE NIH SPONSORED EFFORTS TO DEVELOP
25	IPS CELLS FOR ALS, HUNTINGTON'S DISEASE, AND
	66
	00

1	PARKINSON'S DISEASE. AND I RAN THE ALS PROGRAM
2	ALONG WITH THEN I BROUGHT IN COLLABORATORS, KEVIN
3	EGGAN AND CHRIS HENDERSON, THEN STILL IN ACADEMICS,
4	NO LONGER UNFORTUNATELY, BUT THEY'RE STILL GREAT
5	SCIENTISTS. AND FROM THOSE IPS CELLS, WE BEGAN TO
6	HAVE A SENSE OF WHAT'S REALLY GOING ON IN HUMAN
7	TISSUES, EVEN THOUGH IT'S NOT A COMPLETE SYSTEM, AND
8	SOME DISEASES CLEARLY YOU CAN'T JUST USE SIMPLE 2D
9	IPS CELLS. BUT IF YOU'RE TRYING TO UNDERSTAND THE
10	CELL BIOLOGICAL PATHWAY, YOU CAN USE THAT SYSTEM.
11	AND IN THOSE DAYS A MOUSE, IT TOOK YEARS
12	BEFORE A MOUSE COULD EVER BE BUILT AROUND THIS
13	MUTATION. AND WE BEGAN TO DISCOVER THAT FUNDAMENTAL
14	TO SOME OF THESE MUTATIONS, ESPECIALLY ALS, WAS
15	INVOLVEMENT UNDER THE NUCLEAR PORE, WHICH I'M GOING
16	TO TALK ABOUT IN A MINUTE.
17	SO THE NUCLEAR EVERY NUCLEUS HAS
18	NUCLEAR PORES. THINK OF IT AS A TENNIS BALL WITHIN
19	A TENNIS BALL. AND THEY HAVE ABOUT 2,000 TO 3,000
20	NUCLEAR PORES. THIS ALLOWS THE MOVEMENT OF
21	MOLECULES IN AND OUTSIDE THE NUCLEUS. REMEMBER
22	WITHIN THE NUCLEUS IS YOUR DNA, WHICH EVENTUALLY
23	CODES FOR RNA, WHICH EVENTUALLY LEADS TO THE
24	PROTEINS THAT ARE MADE IN EVERY CELL. AND OUR
25	BODY'S BIOLOGY IS ULTIMATELY ABOUT PROTEINS. THAT

67

1	ENTIRE PROCESS OF MOVING IN AND OUT IS CONTROLLED BY
2	THE NUCLEAR PORE. IT'S ONE OF THE LARGEST COMPLEXES
3	IN THE HUMAN BODY. THAT NUCLEAR PORE OR COMPLEX IS
4	A THOUSAND PROTEIN MOLECULES ASSEMBLED IN SORT OF
5	LIKE A DONUT. THIS IS ACTUALLY A SCHEMA OF WHAT
6	THAT LOOKS LIKE.
7	THIS SCHEMA OF THE HUMAN NUCLEAR PORE
8	STRUCTURE WAS ACTUALLY PUT TOGETHER BY SOMEONE IN
9	YOUR STATE, ANDRE HOELZ AT CALTECH, A COLLABORATOR
10	OF OURS, AND HE COULD DETERMINE THE ACTUAL ASSEMBLY
11	OF ALL OF THESE PROTEINS THAT MAKE UP DIFFERENT
12	DOMAINS OF THIS NUCLEAR PORE.
13	THE NUCLEAR PORE NOT ONLY REGULATES WHAT
14	MOVES IN AND OUT OF THE NUCLEUS RNA'S AND PROTEINS,
15	BUT IT INTERACTS DIRECTLY WITH THE DNA AS WELL TO
16	REGULATE GENE ACTIVATION. SO IT'S A REALLY
17	IMPORTANT STRUCTURE IN THE CELLS.
18	AND WE LEARNED EARLY ON, NOW ALMOST ABOUT
19	EIGHT YEARS AGO, THAT THERE WERE DEFECTS IN THE
20	NUCLEAR PORE. I'M NOT GOING TO WORK YOU THROUGH ALL
21	OF THOSE EXPERIMENTS, BUT THE NUCLEAR PORE STRUCTURE
22	IS BOUND TO THE NUCLEAR MEMBRANE. SO THINK OF THESE
23	INDIVIDUAL LITTLE DONUTS ON A SURFACE OF A TENNIS
24	BALL HAS TO BE BOUND TO THE TENNIS BALL, AND THOSE
25	ARE WHAT ARE KNOWN AS TRANSMEMBRANE NUCLEAR PORE

1	PROTEINS. AND WE LEARNED THAT A NUMBER OF THESE
2	NUCLEAR PORES WERE MISSING IN SPORADIC ALS AS WELL
3	AS C9 ALS. AND I'LL TELL YOU MORE ABOUT THAT IN
4	JUST A SECOND.
5	AND IT ALL BEGAN WITH THE LOSS OF ONE THAT
6	LED TO A CASCADE, KIND OF LIKE A DOMINO EFFECT, OF
7	OTHERS THAT BEGAN WITH ONE PROTEIN KNOWN AS POM121.
8	WHEN IT'S LOST FROM THE NUCLEAR PORE, THERE'S A
9	SERIES OF OTHER NUCLEOPORINS THAT ARE LOST AS WELL.
10	THAT EVENTUALLY AFFECTS THE TRANSPORT IN AND OUT OF
11	CELLS AND MAKES THOSE NEURONS, ESPECIALLY MOTOR
12	NEURONS, MUCH MORE SUSCEPTIBLE TO DEATH.
13	THIS IS AN IMPORTANT CASCADE BECAUSE,
14	SEPARATE FROM THE STUDIES WE WERE DOING, OTHERS IN
15	THE FIELD WAY BACK IN 2005 HAD DETERMINED THAT FIRST
16	IN ALS, AND I'LL COME BACK TO OTHER DISEASES IN A
17	MINUTE, THERE'S A NUCLEAR PROTEIN KNOWN AS TDP-43.
18	FIRST WE DIDN'T KNOW MUCH ABOUT WHAT IT DOES.
19	AGAIN, WHEN I SAY WE, IT'S THE ROYAL WE. BUT WE
20	LEARNED THAT IN DISEASES LIKE ALS AND LATER FRONTAL
21	TEMPORAL DEMENTIA AND EVEN HALF OF ALZHEIMER'S
22	DISEASE, THIS PROTEIN IS CLEARED FROM THE NUCLEUS OR
23	PARTIALLY CLEARED. IT BECOMES VERY CYTOPLASMIC AND
24	IT EVENTUALLY AGGREGATES. AND WHEN IT'S NO LONGER
25	IN THE NUCLEUS, WE'VE LEARNED THAT ITS FUNCTION TO

1	REGULATE MANY, MANY, HUNDREDS, IF NOT THOUSANDS, OF
2	RNA'S ARE LOST. AND IF YOU ARTIFICIALLY TURN OFF
3	THAT PROTEIN, THIS WAS DONE BY ANOTHER MEMBER OF
4	YOUR STATE, DON CLEVELAND AND COLLABORATORS AS WELL
5	AS KEVIN EGGAN INDEPENDENTLY, A WHOLE SERIES OF
6	GENES ARE MISHANDLED. IN FACT, TODAY INDIVIDUAL
7	BIOTECH COMPANIES ARE TARGETING SINGLE GENES TO
8	REPLACE THEM. BUT THE REALITY IS ALL OF THESE GENES
9	ARE MISHANDLED BECAUSE OF THIS PROTEIN NOT BEING IN
10	THE NUCLEUS.
11	OF COURSE, A QUESTION WOULD BE WHY IS IT
12	NOT IN THE NUCLEUS? IT'S NOT IN THE NUCLEUS BECAUSE
13	OF NUCLEAR PORE DEFECTS. AND WE DISCOVERED THAT NOW
14	ENTIRELY BASED, STARTING FROM ABOUT 2013, USING IPS
15	CELLS, CAN'T STUDY THIS IN MOUSE, NO MOUSE DEVELOPS
16	THIS DEFECT. THIS IS A COMMON DEFECT OF SPORADIC
17	ALS. NO RODENT MODEL SHOWS THAT. BUT HUMAN IPS
18	CELLS AND I'LL GET TO THE QUESTION THAT JON ASKED
19	EARLIER AND LORENZ IS TALKING ABOUT MATURATION IN
20	JUST A MOMENT.
21	TURNS OUT WHEN YOU HAVE THESE CELLS, AND
22	WE'RE LOOKING HERE AT IPS CELLS THAT ARE VERY YOUNG.
23	SORRY. I SAID THAT WRONG. THESE ARE IPS CELLS
24	TURNED INTO EARLY MOTOR NEURONS ONLY ABOUT A WEEK OR
25	TWO OF AGE. THESE LITTLE GREEN DOTS ARE THE NUCLEAR

70

1	PORES ON THE SURFACE OF THE NUCLEUS. AND WHAT
2	HAPPENS IS THERE'S A PROTEIN CALLED CHMP7, WHICH
3	REGULATES SORT OF THE STRUCTURE OF NUCLEAR PORES,
4	CLEANS THEM OUT, PUTS THEM BACK IN.
5	AND WE LEARNED EARLY ON WELL BEFORE
6	THERE'S ANY DISEASE IN THESE IPS CELLS THAT THIS
7	CHMP7 IS RELOCALIZED TO THE NUCLEUS. SHOULDN'T BE
8	THERE. SHOULD LOOK LIKE CONTROLS. YOU WAIT A
9	COUPLE WEEKS LONGER, AND THE NUCLEAR PORE MAY LOOK
10	LIKE THE SAME GREEN DOT IT'S NOT. THESE ARE
11	NUCLEAR PORES ARE THEN MISSING IN ALS. THIS IS
12	ONE OF EIGHT THAT ARE MISSING.
13	AND THEN WE WAIT LONGER, AND THEN THERE'S
14	A DEFECT IN NUCLEAR TRANSPORT, THE FUNCTION OF THE
15	NUCLEAR PORE. AND THEN WE WAIT EVEN LONGER AND NOW
16	THAT WHOLE TDP-43 PROCESS IS COMPLETELY ABNORMAL.
17	SO THE POINT OF THIS IS IF THIS IS A MOUSE
18	EXPERIMENT, THIS MIGHT BE A MOUSE AT 30 DAYS OF AGE,
19	60 DAYS OF AGE, A YOUNG ADULT, AND FINALLY A MORE
20	SENIOR ADULT THAT DEVELOPS THE DISEASE PHENOTYPE.
21	SO GETTING BACK TO WHAT YOU WERE TALKING
22	ABOUT EARLIER WITH LORENZ, WE ACTUALLY DO HAVE A
23	PATHOGENIC CASCADE. I DON'T CARE IF THESE ARE YOUNG
24	CELLS. THEY'RE MATCHING, AS YOU WILL SEE IN A
25	MOMENT, THE PATHOGENIC CASCADE THAT OCCURS IN
	71

1	HUMANS. THIS IS NOT ABOUT SYNAPTIC BIOLOGY. IN ALS
2	IT'S NOT ABOUT SYNAPTIC BIOLOGY. IT'S MORE ABOUT
3	THE CELL BIOLOGY OF THE CELL AND CAN WE SEE THAT
4	PHENOTYPE. SO ALTHOUGH PEOPLE BANTER AROUND ABOUT
5	EPIGENETIC MODIFICATIONS AND STUFF, IT'S ALL
6	BULLSHIT WHEN IT COMES TO THIS. WE SEE THE CASCADE
7	THAT'S PRESENT IN PATIENTS IN THE CELLS AS THEY
8	MATURE. AS YOU WILL SEE, THIS IS VERY RELEVANT TO
9	OUR PATIENTS AS WELL.
10	WHY DOES THIS OCCUR IS A BIG QUESTION. SO
11	LET ME GO BACK A STEP AND TELL YOU A PROGRAM THAT
12	WAS ESSENTIAL FOR ALL OF THIS. IF YOU'RE LOOKING AT
13	A SPORADIC DISEASE, YOU CAN'T LOOK AT ONE OR TWO IPS
14	LINES. IT'S NONSENSE. IT'S ME IN THE CLINIC

15 LOOKING AT ONE OR TWO PATIENTS. I CAN MAKE NO 16 CONCLUSIONS FROM LOOKING AT ONE OR TWO PATIENTS. I 17 NEED HUNDREDS OF PATIENTS, CERTAINLY DOZENS. AND WHEN WE DESIGNED -- WHEN I DESIGNED THE PROGRAM BACK 18 19 IN 2013 CALLED ANSWER ALS, THE IDEA THERE WAS LET'S BUILD IPS LINES FROM NOT ONE OR TWO OR THREE 20 PATIENTS, BECAUSE THIS IS A SPORADIC DISEASE, FROM A 21 22 THOUSAND PATIENTS. AND ANSWER ALS WAS A PROGRAM THAT WE ACTUALLY STARTED ENROLLING IN 2016, FINISHED 23 24 ENROLLING BY ABOUT 2021. AND IT'S A BIG CONSORTIUM 25 AND HEAVILY INVOLVES ACTUALLY MEMBERS OF YOUR --
1	ACADEMIC MEMBERS IN YOUR STATE.
2	WE ENROLLED AT EIGHT CLINICS AROUND THE
3	COUNTRY. THE CLINICS ARE SHOWN HERE. OBVIOUSLY A
4	LITTLE HEAVY ON THE EAST COAST. AND WE REALLY
5	ENROLLED IN CLINICS THAT WE KNEW WE COULD ENROLL
6	FAST. WE ENROLLED A THOUSAND PATIENTS IN A LITTLE
7	OVER A YEAR.
8	EVERY PATIENT HAD WHOLE GENOME SEQUENCING.
9	IN EVERY PATIENT WE MADE IPS CELLS FROM THEIR BLOOD.
10	THAT WAS DONE WITH CLIVE SVENDSEN AT CEDARS-SINAI.
11	AND IN DOING A THOUSAND, WE UNIFORMLY CREATED THE
12	SAME LINES WITH RIGOROUS QUALITY CONTROL BUILT INTO
13	THAT, REPRODUCIBILITY BUILT INTO THAT, AND EACH OF
14	THOSE LINES WERE THEN DIFFERENTIATED TO EARLY STAGE
15	MOTOR NEURONS OR SPINAL NEURONS, NOT JUST PURE MOTOR
16	NEURONS. AND BY THE WAY, THAT'S IMPORTANT. SOME
17	PEOPLE WANT TO LOOK AT A SINGLE CELL TYPE. ALS IS
18	NOT ABOUT JUST MOTOR NEURONS. I ALREADY TOLD YOU IT
19	INVOLVES OTHER CELLS AS WELL AS GLIAL CELLS. WE
20	WANTED SORT OF A SAMPLE EQUIVALENT OF A BIOPSY OF
21	THE SPINAL CORD.
22	SO WE DID SPINAL DIFFERENTIATIONS. AND
23	EACH OF THOSE BATCHES OF DIFFERENTIATIONS FROM EACH
24	CELL THEN UNDERWENT PROTEOME, EPIGENOME, AND RNA
25	SEQ.

73

1	IN AGGREGATE, ALONG WITH LONGITUDINAL
2	CLINICAL DATA FROM EVERY SINGLE PATIENT USING AN
3	IPHONE APP IBM WATSON WAS A PARTNER IN THIS
4	AND IT AMOUNTED TO ABOUT AMOUNTS TO ABOUT 6
5	BILLION DATA POINTS PER PATIENT. WE'LL GET TO THAT
6	LATER, BUT WHAT IT ALSO MEANT IS THAT WE HAVE AN
7	ENORMOUS BANK OF WELL-DIFFERENTIATED OR
8	WELL-DESCRIBED IPS LINES WITH FULL CLINICAL DATA
9	THAT WE CAN PICK AMONG TO DO OUR ANALYSIS. AND THE
10	HOPES WERE WOULD WE FIND SUBGROUPS OF THIS SPORADIC
11	DISEASE BECAUSE PATIENTS, I GOT TO TELL YOU, ARE ALL
12	OVER THE PLACE. I ALREADY TOLD YOU AT THE BEGINNING
13	THREE MONTHS SURVIVAL, 30-YEAR SURVIVAL. WHAT ARE
14	THESE DIFFERENCES BECAUSE IN CLINICAL TRIALS WE LUMP
15	EVERYONE TOGETHER. AND AS YOU WILL SEE LATER IN THE
16	TALK, WE OBVIOUSLY FAIL AT OUR CLINICAL TRIALS, BUT
17	UNDERSTANDING THE MOLECULAR PATHWAYS, AND IPS CELLS
18	HAS THAT POTENTIAL, IN FACT, IT DOES SHOW THAT
19	POTENTIAL, WE CAN POTENTIALLY TARGET THE RIGHT DRUGS
20	TO THE RIGHT PATIENT.
21	SO HERE'S A REAL-WORLD EXAMPLE. I'VE JUST
22	TOLD YOU ABOUT THESE PATHWAYS. TDP-43 AND CHMP7,
23	WHICH IS AN EARLY INJURY TO THE NUCLEAR PORE, THIS
24	IS A REALLY BUSY SLIDE, BUT THERE'S A TON OF DATA.
25	WHAT YOU'RE SEEING HERE IS SOMETHING WE COMPLETED

1	RECENTLY. THIS IS 200 PATIENTS, INDIVIDUAL IPS
2	LINES, GREAT REPRODUCIBILITY IN PRODUCING AND WE
3	WAIT IT'S NOT SHOWING HERE. WE CAN LOOK AT
4	DIFFERENT TIME POINTS, 30 DAYS, 45 DAYS, 60 DAYS.
5	AND WHEN WE DO THAT, WE ACTUALLY SEE THE DEVELOPMENT
6	OF WHAT YOU'RE SEEING HERE. THIS IS KNOWN AS A HEAT
7	MAP FOR THOSE NOT FAMILIAR. AND THE DARKER THE
8	COLOR THE MORE DYSFUNCTIONAL THAT PATHWAY IS. YOU
9	CAN OBVIOUSLY SEE THERE ARE NOT A LOT OF CHANGES
10	HERE BECAUSE THESE 30-ODD CONTROL PATIENTS, YOU AND
11	ME, IF YOU WILL, YEAH, THERE'S NO ABNORMALITIES.
12	AND BY THE WAY, WHEN I SAY ABNORMALITIES,
13	YOU PROBABLY WOULD HAVE A HARD TIME SEEING THAT, BUT
14	THIS FIRST COLUMN IS A DEFECT IN THE PATHWAY THAT'S
15	INJURING THE NUCLEAR PORE COMPLEX. ALL OF THE C9,
16	FTD/ALS, SPORADIC ALS ALL HAVE JUST ALMOST ALL OF
17	THEM HAVE ABNORMALITIES OR AT LEAST 85 PERCENT IN
18	CHMP7, THEY ALL HAVE ABNORMALITIES IN THE NUCLEAR
19	PORE. AND MOST OF REST OF THESE ARE THOSE TDP-43
20	PRODUCTS. REMEMBER I TOLD YOU THERE'S ONE OR TWO OR
21	A HUNDRED DIFFERENT, IF NOT A THOUSAND. HERE WE'RE
22	PICKING 18 DIFFERENT ONES.
23	AND VERY QUICKLY, YOU CAN SEE THAT, GEEZ,
24	THERE'S A BUNCH OF RED HERE. THAT'S BECAUSE C9
25	PATIENTS, THEY HAVE A DEFECT IN THIS PATHWAY THAT
	75

-43, SOMETHING IS DIFFERENT ABOUT HE ALS PATIENTS IN AGGREGATE HAVE
HE ALS PATIENTS IN AGGREGATE HAVE
BUT IT'S VARIABLE. SO RIGHT NOW,
OTECH COMPANIES ARE FOCUSING ON ONE
STATHMIN. THAT'S THIS COLUMN HERE,
THE RED ONE STATHMIN, THERE'S ONLY
T OF PATIENTS. THIS WOULD TEACH US
ATFORM ALLOWS US TO TELL US MAYBE
TIENTS ARE BETTER TIED TO A DISEASE
HERS. THIS IS REALLY IMPORTANT WHEN
LS TOGETHER BECAUSE TRIALS TAKE A
A FATAL DISEASE, YOU'D LIKE TO BE
TIVE OUTCOMES.
OME PATIENTS ACTUALLY HAVE VERY
HAT ARE SPORADIC ALS, WHICH MEANS
FFERENT ABOUT THEM. THERE'S NOT A
THERE'S NOT A TDP-43 ABNORMALITY EVEN
PLE THINK THAT EVERYONE HAS A TDP-43
O THIS IS PLATFORM, WHICH, BY THE
YOU THE SAME THING WE CAN SEE IN
SHOW YOU THAT IN A MINUTE.
ACHES US THAT FOR THIS PATHWAY, YOU
USE MODEL. YOU DON'T NEED ALL THAT
USE MODEL. YOU DON'T NEED ALL THAT NG EPIGENETICS, NOT THAT THAT CAN'T

1	BE IMPORTANT. THIS PATHWAY IS DETECTABLE IN AN IPS
2	PLATFORM.
3	NOW, DOES IT MATCH, THOUGH, HUMAN BRAIN?
4	EARLIER I TOLD YOU IT'S REALLY IMPORTANT WHATEVER
5	MODEL YOU USE MATCHES HUMAN BRAIN. FORTUNATELY,
6	BECAUSE OF THAT LARGE ANSWER ALS PROGRAM, WE
7	ACTUALLY HAVE AUTOPSIES FROM THE SAME PATIENTS THAT
8	WE GENERATED IPS CELLS FROM, AND WE CAN MAKE THE
9	COMPARISON. DID THAT IPS CELL FOR THESE PATHWAYS
10	TEACH US THE SAME THING YOU SEE AT THE OTHER END OF
11	LIFE, DEATH? AND THE ANSWER IS YOU BET IT DID. SO
12	THESE ARE A HANDFUL OF PATIENTS THAT WE'VE STUDIED,
13	AND I'M NOT GOING TO GO THROUGH ALL OF THESE. THESE
14	ARE THE SAME RNA PROCESSING PRODUCTS, BUT BASICALLY
15	THE CHANGES THAT WE SEE IN IPS CELLS WE SEE IN THE
16	SAME PATIENT'S BRAIN AT DEATH. AND THAT MEANS FOR
17	THIS PATHWAY, THIS MODEL SYSTEM, AND NOT ALL MODEL
18	SYSTEMS WILL THIS APPLY TO, IS A GREAT REPRODUCER OF
19	WHAT'S GOING ON IN PATIENTS. IT RECAPITULATES THE
20	SAME CHANGES WE SEE IN PATIENTS.
21	AND WE'VE EVEN DONE MULTIPLE IT'S HARD
22	FOR YOU TO SEE BUT MULTIPLE TISSUE SAMPLES FROM
23	THE SAME PATIENT'S CORTEX, AND IT'S VERY
24	REPRODUCIBLE. DEFECTS IN IPS MATCH DEFECTS WE SEE
25	IN PATIENTS.

77

1	THIS IS REALLY IMPORTANT IF YOU ARE GOING
2	TO USE A MODEL SYSTEM. I'M NOT GOING TO TELL YOU
3	THIS APPLIES TO OTHER PATHWAYS THAT MAY APPLY TO
4	ALS, BUT THIS IS A MAJOR PATHWAY THAT UNDERLIES
5	SPORADIC ALS, THE VAST AND COMMON FORM OF ALS. IS
6	THIS MODEL SYSTEM GOING TO TEACH US ABOUT
7	INFLAMMATION? NO. THERE'S NO MICROGLIA IN THIS
8	PATHWAY, BUT DO I CARE ABOUT THAT? NO. AND I'LL
9	TELL YOU WHY IN A MINUTE.
10	CAN WE LEARN THE RELATIONSHIP BY USING
11	THESE LARGE NUMBERS OF IPS CELLS TO ACTUAL CLINICAL
12	INDICES? WELL, WE'RE JUST BEGINNING TO DO THAT.
13	THIS IS WHERE YOU NEED AI TO COME IN, AND WE HAVE
14	COLLABORATORS HERE AT HOPKINS, AND IT'S PART OF THE
15	ANSWER ALS PROGRAM AT MIT. WE BEGIN TO LOOK AT
16	THAT, AND SOME OF THESE PATHWAYS IN IPS CELLS DO
17	MATCH THE CLINICAL INDICES THAT WE'RE SEEING. IN
18	THIS CASE, AGE OF ONSET SEEMS TO MATCH THE CHANGES
19	WE'RE SEEING IN THE IPS CELLS THAT WE'VE LOOKED AT
20	SO FAR.
21	NOW, BY THE WAY, THAT VARIABILITY I SHOWED
22	YOU IN IPS CELLS, WE CAN TAKE A DOZEN OR TWO DOZEN
23	HUMAN BRAINS AT AUTOPSY AND SHOW ACTUALLY THAT SAME
24	VARIABILITY. SO STATHMIN OR UNC13, THESE ARE THE
25	SINGLE TARGETS THAT ARE OF GREAT IMPORTANCE. RIGHT

78

1	NOW THERE'S SOME NEW BIOTECHS. THEY'RE CHANGED,
2	BUT, YEAH, NOT EVERY PATIENT HAS CHANGES. SO,
3	AGAIN, A RECAPITULATION OF WHAT WE SEE IN IPS CELLS
4	CAN BE SEEN IN HUMAN BRAIN, TEACHING US THAT THE
5	REAL VALUE OF IPS CELLS, STEM CELLS, IS ACTUALLY IN
6	HUMAN BRAIN.
7	BY THE WAY, I HAVEN'T TOLD YOU WHY IT'S

NOT SO VALUABLE FOR THERAPY. STEM CELL THERAPY IN 8 9 ALS HAS BEEN, QUITE FRANKLY, A DEAD END, TERRIBLE COMPANIES HAVE BEEN INVOLVED, AND IT'S JUST NOT THE 10 WAY OF GETTING AT THE HEART OF THE DISEASE. 11 AND PART OF THAT IS THE COMPLEXITY. IT WOULD TAKE -- IF 12 I COULD PUT A MOTOR NEURON INTO SOMEONE'S SPINAL 13 14 CORD, IT WOULD TAKE A MINIMUM OF THREE YEARS TO GROW 15 THAT AXON TO TARGET EVEN IF IT COULD EVER FIND ITS TARGET. IT'S NOT THE WAY TO GO. THE POWER OF THIS 16 17 HUMAN PLATFORM IS IN DISCOVERING PATHWAYS AND THEN USING THESE PLATFORMS FOR DRUG DISCOVERY. 18

IN FACT, THE NEXT SLIDE SHOWS THAT. SO
HERE'S -- WE NOW KNOW THE PATHWAY. BY THE WAY, THIS
IS ONLY ONE OF MANY PATHWAYS, BUT HERE'S A PATHWAY
THAT INVOLVED THAT PROTEIN CHMP7 THAT IS INVOLVED IN
THE DEGRADATION OF THE NUCLEAR PORE. WE CAN NOW
TAKE 30 IPS LINES THAT HAVE THAT DEFECT AS SHOWN
HERE, TREAT THEM WITH AN ANTISENSE OLIGONUCLEOTIDE,

79

1	THE FASTEST THERAPY TO GO FROM LABORATORY TO CLINIC
2	IN NEUROLOGIC DISEASES.
3	AND WE CAN SHOW IN 30 DIFFERENT PATIENTS
4	THAT WE COMPLETELY REPAIR THAT PATHWAY. THIS IS
5	LIKE A HUMAN TRIAL IN CULTURE. IT'S JUST
6	PHENOMENAL. AND THIS IS AN EXAMPLE OF ACTUALLY A
7	PATHWAY THAT'S BEING WORKED ON BY, AGAIN, ANOTHER
8	COMPANY IN YOUR STATE, IMS PHARMACEUTICALS, TO
9	DEVELOP THIS ASO FOR PATIENTS.
10	BY THE WAY, I STRESS THAT THAT'S FAST.
11	ONE OF THE NEWER THERAPIES, WHETHER THEY'LL WORK OR
12	NOT I DON'T KNOW FOR ALS, IS ONE OF THOSE TDP-43
13	DEFECTS KNOWN AS STATHMIN2. THOSE FIRST PAPERS CAME
14	OUT IN 2019 BY THE CLEVELAND LAB AND THE EGGAN
15	GROUP. AND WITHIN THREE YEARS A CLINICAL TRIAL HAD
16	STARTED USING THOSE ASO'S. THERE'S NOTHING THAT
17	FAST. HIGHLY SPECIFIC TARGETING AGENT, AND
18	INCREDIBLY FAST MOVING FROM THE LAB TO THE CLINIC.
19	THAT'S WHY MANY OF US ARE QUITE EXCITED ABOUT THIS
20	APPROACH. THERE ARE GOING TO BE FOLLOW-ON
21	APPROACHES, BUT IT'S WONDERFUL TO UNDERSTAND THE
22	MOLECULAR PATHWAYS TO DEVELOP A DRUG-TARGETED
23	MOLECULAR PATHWAY AND BRING IT TO PATIENTS.
24	AND BY THE WAY, DO WE KNOW THIS APPROACH
25	CAN WORK? SOD1, THE FIRST GENE DISCOVERED, FDA

APPROVED THE SOD1 ANTISENSE. REMEMBER THIS IS A
FATAL DISEASE. CERTAIN FORMS OF THE SOD1 MUTATION
PROGRESS OVER NINE MONTHS. THOSE PATIENTS WHO HAVE
GOTTEN THE ASO TO SOD1 ARE ALIVE TWO YEARS LATER,
AND THEY'RE ACTUALLY IMPROVING IN STRENGTH. THAT'S
UNHEARD OF IN AN ADULT NEURODEGENERATIVE DISEASE.
AND IT REALLY IS THE SPEED BY WHICH WE CAN TARGET A
WELL-DEFINED MOLECULAR PATHWAY. IT'S WHY THE FOCUS
ON USING IPS CELLS FOR FINDING THOSE PATHWAYS
BECOMES SO IMPORTANT.
WHY THIS PROCESS BEGINS IN ALS THEN GOES
BACK TO REALLY TRYING TO UNDERSTAND THE DEFECTS IN
THE NUCLEAR PORE. WHAT INITIATES THIS DEFECT? AND
WE HAVE LEARNED THAT THOSE INDIVIDUAL PROTEINS CAN
HAVE EACH PROTEIN HAS A MOLECULAR CODE TO IT, AND
THERE CAN BE CODING VARIATIONS. SO THIS IS A
THOUSAND MOLECULES ALL ASSEMBLED TOGETHER. YOU
MIGHT IMAGINE THAT IF THEY DON'T ASSEMBLE PROPERLY
JUST BECAUSE OF A SMALL DEFECT, THAT COULD ACTIVATE
THAT DEGRADATION PATHWAY. AND WE HAVE NOW
DISCOVERED THAT, IN FACT, THAT CAN HAPPEN. AND THIS
IS ACTUALLY A HEAT MAP FROM ANDRE HOELZ. THE DARKER
THE BROWN, THE GREATER THE FREQUENCY OF DEFECTS IN
THOSE NUCLEOPORINS IN SPORADIC ALS CAN BE FOUND. SO
THESE AREN'T MUTATIONS. THEY'RE CALLED CODING

1	VARIANTS. AND WE'RE BEGINNING TO THEN LOOK FOR THEM
2	IN THOSE IPS CELLS.
3	AND THIS IS COMING BACK TO WHERE I SHOWED
4	YOU. ALL OF THE IPS CELLS THAT WE HAVE ALREADY, A
5	NUMBER OF THEM HAVE THESE CODING VARIANTS. WE CAN
6	THEN USE THE IPS CELLS TO CORRECT THOSE CODING
7	VARIANTS USING CRISPR METHODOLOGY TO REPAIR THEM.
8	AND WHEN WE REPAIR THEM IN PATIENTS, WILL WE SEE AN
9	IMPROVEMENT IN THE LOSS OF THE NUCLEAR PORE DEFECT
10	AND, THEREFORE, A GREATER SURVIVAL? AND IT WILL
11	GIVE US AN UNDERSTANDING WHAT WAS THE ACTUAL
12	INITIATING EVENT IN SPORADIC ALS. AND THIS IS THE
13	KIND OF ANALYSIS THAT'S DONE. THIS IS THAT NUCLEAR
14	PORE COMPLEX. ANDRE HOELZ CAN LOOK AT INDIVIDUAL
15	PROTEINS AND SAY, WELL, THERE'S A CODING VARIANT
16	HERE, IT MAY BE HERE, AND THIS PREDICTS THAT IT
17	WON'T INTERACT WITH ITS NEIGHBOR PROTEIN, AND THOSE
18	BECOME CANDIDATES FOR US TO ATTEMPT TO REPAIR.
19	ALL OF THIS IS NOT POSSIBLE IF NOT FOR AN
20	IPS-BASED PLATFORM. I'M GOING TO SKIP THROUGH THAT.
21	SO I MENTIONED BEFORE HOW IMPORTANT HAVING
22	LARGE NUMBERS OF IPS CELLS ARE, ESPECIALLY FROM THE
23	SPORADIC ALS POPULATION. THIS COULD EQUALLY APPLY
24	TO ANY OTHER DISEASE. A RELATIVELY LARGE POPULATION
25	OF IPS CELLS HAVE ALSO BEEN DEVELOPED FOR FRONTAL

1	TEMPORAL DEMENTIA. I THINK THE LARGEST ONE
2	WORLDWIDE, THOUGH, IS REALLY IN ALS BECAUSE OF THE
3	ANSWER ALS PLATFORM. THAT DATA, BY THE WAY,
4	EVERYTHING DONE IN THE ANSWER ALS PLATFORM,
5	COMPLETELY, FREELY AVAILABLE TO COMPANIES AND
6	ACADEMICS ALIKE. YOU HAVE TO PAY A SMALL FEE TO
7	CLIVE AT CEDARS-SINAI TO BUY THE CELLS ONLY BECAUSE
8	THEY HAVE TO GROW UP A NEW BATCH. BUT THE DATA FROM
9	THAT PLATFORM, ALL THOSE ANALYTICS CAN BE FILTERED
10	ONLINE, COMPLETELY FREE. YOU CAN DOWNLOAD THE WHOLE
11	GENOME SEQUENCES. YOU CAN DOWNLOAD THE RNA SEQ.
12	YOU CAN CHOOSE BETWEEN WHAT AGES OF PATIENTS, HOW
13	FAST THEY'RE PROGRESSING, WHETHER THEY HAVE
14	MUTATIONS OR NOT, AND DOWNLOAD THAT DATA FOR FREE.
15	AND, IN FACT, TODAY ALMOST ALL 1,000 IPS
16	LINES ARE AVAILABLE, NOT QUITE ALL AVAILABLE.
17	THEY'RE GENERATED IN BATCHES. FROM THOSE IPS CELLS,
18	WE ROLL OUT NEW DATASETS ON THE EPIGENOMICS, THE
19	PROTEOMICS, THE TRANSCRIPTOMICS, AND, OF COURSE,
20	WHOLE GENOME IS REALLY KNOWN ON ALL OF THEM, ALL
21	ACCESSIBLE. AND TO DATE THE DATA HAS BEEN SHARED
22	THROUGH COUNTRIES REALLY WORLDWIDE. THIS IS A
23	LITTLE OUTDATED. AND PROJECTS ARE STARTED BASED ON
24	THOSE DATASETS. SO WE'VE NOW ALREADY, AGAIN THIS IS
25	A LITTLE OUTDATED, MORE THAN 95 TERABYTES OF OMICS

1	DATA HAVE BEEN RELEASED TO THE WORLD. HUNDREDS OF
2	PROJECTS HAVE BEEN STARTED, AND HUGE NUMBERS OF CELL
3	LINES HAVE BEEN DISTRIBUTED BOTH TO PHARMA AND TO
4	ACADEMICS. THERE ARE NO INTELLECTUAL PROPERTY
5	RESTRAINTS ON ANY OF THIS. NO OWNERSHIP. WE
6	CONSENTED PATIENTS FROM THE VERY BEGINNING KNOWING
7	THAT'S EXACTLY HOW WE WANTED THIS DATA USED.
8	AND I THINK THAT'S OH, ONE FINAL POINT,
9	THOUGH ALMOST TO END, IS THAT OVER THE YEARS IN ALS,
10	THIS IS A LIST FROM ABOUT A YEAR AGO OF STUDIES OF
11	MORE THAN A HUNDRED PATIENTS IN ALS. JUST ABOUT ALL
12	OF THESE STUDIES BUT ONE REALLY HAVE ALL BEEN
13	FAILURES. THEY'RE ALL BASED ON SOME PATHWAY
14	ANALYSIS, MANY FROM THE ALS MOUSE, ESSENTIALLY NONE
15	FROM THE IPS CELLS, THEY'RE RELATIVELY NEW, A HIGH
16	RATE OF FAILURES. IT'S INCREDIBLY DEPRESSING.
17	HOWEVER, BEGINNING TO LOOK AT THE GENES
18	THAT CAUSE ALS EITHER FROM GENETIC MODELS OR FROM
19	IPS CELLS, WE'RE ALREADY BEGINNING TO SHOW SUCCESS.
20	SOD1, WE ALREADY HAVE AN FDA APPROVED. THE NEXT ONE
21	SOMEWHERE HERE FUS, A RELATIVELY RARE MUTATION, IS
22	LOOKING ALMOST AS GOOD AS SOD1 IN SLOWING THE
23	DISEASE. IN THIS CASE, FUS IS VERY YOUNG PATIENTS
24	WITH THE DISEASE. ALL OF THESE ARE, I'M GOING TO
25	ARGUE, EASY TARGETS BECAUSE WE KNOW THE MUTATION.

84

1	IT'S SPORADIC DISEASE WHICH IS THE VAST MAJORITY OF
2	DISEASE THAT WE HAVE TO MAKE A DIFFERENCE IN.
3	NOW, RECENTLY, IF WE LOOK AT WHAT'S COMING
4	FROM BOTH IPS CELLS AND SOME MODEL SYSTEMS AND HUMAN
5	TISSUE, THERE ARE A SERIES OF PATHWAYS THAT HAVE
6	BEEN DISCOVERED MORE RECENTLY THAT ALL ARE POTENTIAL
7	TARGETS FOR THERAPIES. AND THIS COMES BACK TO WHERE
8	DO WE WANT TO GO IN THE FUTURE. AND I WOULD ARGUE
9	WHERE WE WANT TO GO IN THE FUTURE IS WITH IPS. BY
10	THE WAY, NOT ALL OF THESE ARE GOING TO BE AMENABLE
11	TO IPS PREPARATIONS, ESPECIALLY INFLAMMATORY
12	PATHWAYS. THERE YOU MAY NEED ORGANOIDS. I WON'T
13	SPEAK TO ORGANOIDS BECAUSE THERE'S VERY LITTLE WORK
14	IN ALS IN ORGANOIDS. I DON'T KNOW IF THEY'RE ANY
15	BETTER THAN WHAT WE'VE SEEN IN TISSUE. I CAN TELL
16	YOU ALL OF THESE LISTS OF PATHWAYS, INFLAMMATION HAS
17	BEEN THE GREATEST I WENT BACK TWO SLIDES EARLIER
18	TO SHOW ALL THOSE HUMAN TRIALS. INFLAMMATION IS THE
19	MOST COMMON APPROACH TO ALS. EVERY
20	NEURODEGENERATIVE DISEASE HAS INFLAMMATION, EVERY
21	NEURODEGENERATIVE DISEASE, AT LEAST AT END STAGE.
22	NOW, TWO WEEKS PRIOR TO THE PATIENT'S
23	DEATH, DID THEY HAVE THAT MUCH INFLAMMATION? DON'T
24	KNOW. WE DON'T TEND TO LOOK AT HUMANS THAT EARLY.
25	SOME COMPANIES ARE BEGINNING TO LOOK AT BIOMARKERS,

1	BUT I CAN TELL YOU ALL OF THESE INFLAMMATORY
2	PATHWAYS WHERE OFTEN COMPANIES HAVE VERY LITTLE
3	DATA, A LITTLE HISTOLOGY AT DEATH AND THAT'S IT,
4	THEY'VE ALL BEEN FAILURES. THE GREATEST LIST OF
5	FAILURES IN NEURODEGENERATION ARE INFLAMMATORY
6	PATHWAYS. THE GREATEST LIST OF CANDIDATE DRUGS ARE
7	INFLAMMATORY PATHWAYS BECAUSE MOST OF THESE
8	COMPANIES ARE ALREADY DEALING WITH INFLAMMATION FROM
9	PERIPHERAL TARGETS, PERIPHERAL INFLAMMATION. SO
10	THEY HAVE A DRUG ALREADY AND THEY'LL COME TO US.
11	EVEN THOUGH THERE'S A HIGH FAILURE RATE,
12	I'M NOT GOING TO TURN A COMPANY DOWN AS LONG AS THE
13	DESIGN IS DONE WELL BECAUSE I CAN'T TELL YOU I CAN
14	PREDICT WHAT WORKS IN ALS. BUT I CAN TELL YOU
15	THERE'S A LONG HISTORY, TWO PLUS DECADES OF
16	INFLAMMATORY MEDIATORS ALL BEING FAILURES.
17	THE SUCCESSES ARE COMING FROM
18	UNDERSTANDING PATHWAYS. OBVIOUSLY GENE TARGETS ARE
19	PATHWAYS. THERE ARE NOW TARGETS FOCUSING ON
20	ASTROCYTES, OLIGODENDROGLIA. SOME ARE NOT AS WELL
21	WORKED OUT. MANY GENETIC SUBTYPES ARE GOING TO BE
22	TARGETS. THAT MAKES PERFECT SENSE. AND WHAT WE'RE
23	LEARNING FROM IPS CELLS, RNA BINDING PROTEINS,
24	NUCLEAR PORES, NUCLEAR TRANSPORT ARE SORT OF THE
25	UPCOMING PATHWAYS. DNA DAMAGE IS OF INTEREST, AND

1	CERTAINLY AXON REGROWTH, THERE ARE COMPANIES THAT
2	ARE DEVELOPING DRUGS FOR AXON REGROWTH. AGAIN,
3	GREAT PATHWAYS FOR STUDYING IN IPS CELLS DUE TO
4	GROWTH OF AXONS.
5	THESE ARE NOT PLATFORMS PARTICULARLY GOOD
6	FOR MULTIPLE SYNAPTIC INTERACTIONS, BUT ALS IS NOT
7	GENERALLY THOUGHT TO BE A MULTISYNAPTIC INTERACTION
8	DISEASE. IT'S HEAVILY BASED ON TRUE CELL BIOLOGY OF
9	INDIVIDUAL CELLS. OTHER THAN CELL-CELL
10	INTERACTIONS, LIKE GLIAL CELLS INTERACTING WITH
11	NEURONS, THAT MAY BE WHERE IPS CELLS FALL SHORT.
12	ORGANOIDS MIGHT BE BETTER.
13	SO THIS IS SORT OF JUST A CURRENT LIST OF
14	WHAT WE AS A COMMUNITY THINK ARE INTERESTING
15	PATHWAYS. MOST OF THESE, THOUGH, CAN BE OPTIMIZED
16	THROUGH THE USE OF PATIENT IPS LINES. AND I WOULD
17	ARGUE, DEPENDING ON AS YOU LOOK FORWARD, I WOULDN'T
18	WASTE I'M GOING TO BE HARSH HERE. I WOULD NOT
19	WASTE YOUR MONEY ON CELL THERAPIES. I CAN ANSWER
20	QUESTIONS ABOUT THAT. THIS IS WHAT YOU USE IPS
21	CELLS FOR, FOR FINDING PATHWAYS. AND THE QUESTION
22	EARLIER ABOUT DRUG SCREENING, NO QUESTION. INSITRO
23	IN SAN FRANCISCO IS ALREADY USING LARGE NUMBERS OF
24	ANSWER ALS IPS LINES ULTIMATELY FOR DRUG PATHWAY AND
25	DRUG SCREENING. THERE'S NO QUESTION THAT'S AN

87

1	EXCITING PLATFORM FOR COMPANIES, TO A LESSER EXTENT
2	ACADEMICS, TO USE.
3	I WENT KIND OF FAST, BUT I WANTED TO MAKE
4	SURE WE HAD TIME FOR QUESTIONS. I SHOULD POINT OUT
5	THAT, LIKE LORENZ, MUCH OF WHAT WE DO IN THE FIELD
6	IS HEAVILY BASED ON COLLABORATIVE INTERACTIONS
7	BETWEEN MY LAB, DR. COYNE'S LAB HERE FOR SOME OF THE
8	NUCLEAR PORE BIOLOGY, BUT MANY RESEARCHERS, BOTH
9	WEST, EAST COAST, AND EUROPE, THAT HELP MAKE ALL OF
10	THIS RESEARCH POSSIBLE, AND ALL OF US, I BELIEVE,
11	RELY ON MANY DIFFERENT SOURCES OR FUNDING TO MAKE
12	SURE WE CAN MOVE FORWARD RAPIDLY. THANKS.
13	CHAIRMAN GOLDSTEIN: JEFF, THAT WAS
14	ABSOLUTELY TERRIFIC. SO A COUPLE OF COMMENTS AND
15	THEN A QUESTION.
16	THE COMMENT IS YOU AND CLIVE AND
17	COLLABORATORS DESERVE A GREAT THANK-YOU FOR NOT ONLY
18	CREATING THIS LIBRARY, BUT MAKING IT VERY
19	STRAIGHTFORWARD FOR THE REST OF THE COMMUNITY TO
20	ACCESS IT. IT'S A REALLY POWERFUL DISCOVERY TOOL, I
21	THINK.
22	MY SECOND COMMENT IS ACTUALLY A QUESTION.
23	THIS MAY BE LOONEY, BUT THE DEFECTS IN THE NUCLEAR
24	PORE IN SOME WAYS ARE REMINISCENT OF THE DEFECTS IN
25	PROGERIA.

88

1	DR. ROTHSTEIN: YES.
2	CHAIRMAN GOLDSTEIN: AND I GUESS THE
3	QUESTION IS WOULD ALL OF THESE NUCLEAR PORE DEFECTS
4	IN ALS BENEFIT FROM A SHOT OF THE NORMAL PROGERON
5	GENE?
6	DR. ROTHSTEIN: DIFFERENT. SO PROGERIA, I
7	BELIEVE, AFFECTS LAMINS. I CAN'T REMEMBER IF IT'S
8	LAMINATORS. I NEVER REMEMBER THIS.
9	CHAIRMAN GOLDSTEIN: FAIR ENOUGH. RIGHT.
10	DR. ROTHSTEIN: NUCLEAR MEMBRANES ARE
11	ACTUALLY NOT THE DEFECT IN ALS. WE BELIEVE IT.
12	WE'VE DONE A STRUCTURAL LAMINATION MICROSCOPY. WE'D
13	LOVE TO DO CRYO EM. IT'S VERY DIFFICULT IN IPS
14	CELLS, BUT WE'VE EXTENSIVELY LOOKED. SO NUCLEAR
15	LAMINS ARE NOT REALLY DEFECTIVE IN ALS. IT'S THE
16	PORE ITSELF. BUT IT WAS A VERY IMPORTANT QUESTION
17	FOR US TO LOOK AT EARLIER.
18	ON THE OTHER HAND, COULD I TELL YOU THAT
19	IF WE DID SOMEHOW ENHANCE LAMINS OR FOR THAT MATTER,
20	THIS MAYBE WILL GO BEYOND MANY OF YOU IN THE
21	AUDIENCE, THE LINK COMPLEX. THERE ARE CERTAIN LINK
22	COMPLEX PROTEINS THAT INTERACT WITH THE NUCLEAR PORE
23	SUCH AS SUN1. THERE MAY BE A HINT THERE. RIGHT NOW
24	MOST OF IT'S COMING FROM THIS ESCRT-III PATHWAY,
25	WHICH IS CHMP7, AND ITS INTERACTION. WE DON'T KNOW

1	WHAT STARTS THAT. WE GUESS RIGHT NOW IT'S THESE
2	CODING VARIANTS THAT WE THINK SOMEHOW OVER TIME
3	BUILD UP SOME SLOWLY DEVELOPING INJURY. ONE OF THE
4	THINGS, AGAIN, FOR ANY OF THE SCIENTISTS IN THE
5	ROOM, AGAIN, THIS WORK COMES FROM THE SALK, IS THAT
6	NUCLEAR PORE PROTEINS ARE SOME OF THE LONGEST LIVED
7	PROTEINS IN THE HUMAN BODY. SOME OF THOSE
8	NUCLEOPORINS HAVE HALF-LIFE MEASURED IN YEARS, NOT
9	HOURS, NOT DAYS, BUT YEARS.
10	IN FACT, WHEN WE FIRST PUBLISHED OUR FIRST
11	STUDIES IN 2015 ON NUCLEAR PORE NUCLEAR TRANSPORT
12	DEFECTS, IT WAS RUSTY GAGE WHO SEPARATELY THAT SAME
13	YEAR HAD A PAPER IN SCIENCE ON SORT OF DEFECTS
14	ASSOCIATED WITH AGING. ONE OF THE HIGHEST ONES WAS
15	A NUCLEOPORIN. I CAN'T REMEMBER IF IT WAS NUKE 62
16	OR GROUP 98. SO AGING, YES, IN SOME WAY IS THAT
17	COMPONENT. BUT I CAN ONLY HANDWAVE AT THIS POINT,
18	LARRY.
19	CHAIRMAN GOLDSTEIN: INTERESTING.
20	QUESTIONS FROM THE GROUP?
21	DR. ROTHSTEIN: BY THE WAY GO RIGHT
22	AHEAD. SOMEONE HAS QUESTIONS.
23	CHAIRMAN GOLDSTEIN: WELL, I WAS JUST
24	GOING TO MENTION ON THE ONE HAND IT'S A TREMENDOUSLY
25	DISAPPOINTING THERAPY DISCOVERY EFFORT SO FAR.
	90

1	DR. ROTHSTEIN: YES.
2	CHAIRMAN GOLDSTEIN: I'VE CERTAINLY SEEN
3	THOSE FIRSTHAND.
4	DR. ROTHSTEIN: GO AHEAD.
5	CHAIRMAN GOLDSTEIN: I THINK WHERE YOU ARE
6	WITH THE NUCLEAR PORE IS A REALLY INCREDIBLE
7	OPPORTUNITY TO MAKE A DIFFERENCE FOR A SUBSET OF ALS
8	PATIENTS IF YOU CAN FIND ASO'S OR DRUGS THAT HELP.
9	DR. ROTHSTEIN: I WANT TO MAKE SURE. I
10	DID THIS FAST. THERE ARE OTHER LABORATORIES THAT
11	ARE VERY MUCH IPS BASED. A LOT OF LABORATORIES IN
12	ALS ARE BEGINNING TO MOVE AWAY FROM MICE USING IPS.
13	AND YOU HEARD ME BEING VERY BLUNT AT THE BEGINNING.
14	IT'S NOT ABOUT THERAPY. WHAT I MEAN BY THAT IT'S
15	NOT ABOUT CELLULAR THERAPY. IT'S REALLY ABOUT USING
16	THE VALUE OF A TRUE HUMAN MODEL SYSTEM TO UNDERSTAND
17	DISEASE. AS LONG AS YOU MAKE SURE YOU TRY TO
18	REPLICATE THAT IN HUMAN BRAIN, KNOWING YOU MIGHT
19	NOT, THAT'S END STAGE DISEASE. A LOT OF OTHER
20	THINGS HAPPEN AT THE END STAGE, BUT NOT CELLULAR
21	THERAPY.
22	I KNOW MY COLLEAGUE CLIVE HAS BEEN TRYING
23	CELL THERAPY, BUT IT'S THE COMPLEXITY IN A
24	DISEASE LIKE ALS, THIS IS VERY DIFFERENT THAN
25	LORENZ'S DISCUSSIONS AROUND, SAY, PARKINSON'S

91

1	DISEASE, WHICH IS VERY FOCAL. WE'RE TALKING ABOUT
2	THE ENTIRE MOTOR CORTEX, THE ENTIRE NEURO AXIS, YOUR
3	ENTIRE SPINAL CORD MOTOR NEURONS, WHICH HAVE VERY
4	LONG PROCESSES, THE SOMA, THE CELL BODY, AS YOU
5	KNOW.
6	JUST FOR THOSE OF YOU WHO DON'T KNOW, THE
7	CELL BODY OF A MOTOR NEURON THAT ALLOWS YOU TO
8	WIGGLE YOUR BIG TOE STARTS AT YOUR BELLY BUTTON.
9	AND THAT LONG AXON GOES FROM THERE ALL THE WAY DOWN
10	THREE OR FOUR FEET, DEPENDING HOW TALL OR SHORT YOU
11	ARE, AND THAT'S JUST INCREDIBLY COMPLEX. NOT TO SAY
12	ONE DAY SOMEONE MIGHT KNOW HOW TO DO THAT, BUT THOSE
13	DAYS OF FOCUSING ON THAT, I THINK, ARE PAST. THERE
14	ARE A FEW COMPANIES IN OUR FIELD THAT HAVE BEGUN TO
15	DEAL WITH CELLULAR-BASED THERAPIES THAT HAVE BEEN
16	TERRIBLE. I CAN ONLY SAY I CAN'T SAY ANYTHING
17	NICE ABOUT THEM. THEY'RE NOT GOOD COMPANIES.
18	JON, YOU HAVE YOUR HAND UP.
19	CHAIRMAN GOLDSTEIN: J.T., YEAH.
20	DR. THOMAS: HI, JEFF. ANOTHER JUST
21	OUTSTANDING PRESENTATION. THANK YOU.
22	IF YOU HAD TO SPECULATE, WHAT IS IT THAT
23	ALLOWS THE PATIENTS WITH THE CONDITION FOR 25 TO 30
24	YEARS TO MAKE IT THAT FAR, LET ALONE STEVEN HAWKING
25	WHO CLIVE HOSTED AT CEDARS A NUMBER OF YEARS AGO,
	92

1	WHICH WAS A FASCINATING EVENT, WHY IS THAT
2	HAPPENING?
3	DR. ROTHSTEIN: YES. IT'S A GREAT
4	QUESTION. AND THE SIMPLE ANSWER IS, SHIT, I DON'T
5	KNOW. NO ONE KNOWS. ALL DEGENERATIVE DISEASES ARE
6	LATE ONSET, ALZHEIMER'S, PARKINSON'S. YOU COULD
7	POSE THAT QUESTION TO ANY ONE OF US, AND WE DON'T
8	KNOW THAT ANSWER. WE KNOW THIS IS WHERE ANIMAL
9	MODELS ARE USEFUL OR EVEN IPS. WE KNOW THEY CAN
10	HAVE AN INJURY CASCADE EARLY ON, BUT WHAT TIPS THAT
11	OVER TO CELL DEATH WE DON'T KNOW YET. IS THAT AN
12	ENVIRONMENTAL STRESSOR? WE KNOW THE IPS CLEARLY HAS
13	A DEFECT. I CAN SHOW THE SAME DEFECTS IN BRAIN. SO
14	I KNOW I CAN BRIDGE THOSE TWO. EVEN IN MOUSE MODELS
15	WE KNEW YOU CAN SEE A DEFECT. MOUSE MAY DIE AT 120
16	DAYS OF AGE; BUT, GEE, AT TWO WEEKS OF AGE? WE CAN
17	FIND ALREADY EARLY RNA CHANGES AND PROTEIN CHANGES.
18	WHY THAT ACCUMULATES TO REACH A THRESHOLD, I DON'T
19	THINK ANY OF US REALLY FULLY UNDERSTAND. I CAN
20	HANDWAVE, BUT SAY, WELL, NUCLEAR PORE PROTEINS HAVE
21	SUCH A LONG HALF-LIFE AND THEY'RE NOT DIVIDING
22	CELLS, SO CAN TAKE TIME TO BUILD UP AN INJURY. I'M
23	REALLY HANDWAVING THERE.
24	SO THAT WAS A REALLY CRAPPY ANSWER TO YOUR
25	QUESTION, BUT IT'S THE BEST I CAN DO.

1	STEVEN HAWKING, THOUGH, PEOPLE DON'T
2	REALIZE HE WAS ON A VENTILATOR. IF YOU'RE ON A
3	VENTILATOR, YOU DON'T DIE OF ALS. YOU DIE BECAUSE
4	THE VENTILATOR, YOU GET A BAD INFECTION. I'VE HAD
5	PATIENTS WHO LIVE 20 PLUS TO 30 YEARS WHEN THEY
6	SHOULD HAVE DIED WHEN THEY WERE TEN YEARS INTO THE
7	DISEASE, BUT THEY ARE ON A VENTILATOR.
8	THE DISEASE DOES NOT STOP, AND YOU CAN SEE
9	STEVEN HAWKING COULDN'T DO MUCH. IN FACT, IN THE
10	BEGINNING, AS THE DISEASE MOVES ON, THE ONLY THING
11	PRESERVED ARE YOUR EYE MOVEMENTS, AND WE USE
12	COMPUTER SCREENS TO READ LETTERS, BUT EVENTUALLY
13	EVEN THAT CAN GO AWAY FOR MOTOR NEURONS. BUT AS
14	LONG AS YOU'RE BREATHING, YOU DON'T DIE. AND YOU'LL
15	ONLY DIE BECAUSE THE VENTILATOR COMES OFF
16	ACCIDENTALLY. IT HAPPENS IN PATIENTS OCCASIONALLY.
17	POWER TO THE VENTILATOR, OR YOU CAN HAVE A SEVERE
18	INFECTION. AND THE FOURTH REASON IS YOU FINALLY
19	SAY, "I DON'T WANT TO BE ON A VENTILATOR ANYMORE.
20	HELP ME END MY LIFE." ALL OF THOSE ARE REAL-WORLD
21	EXAMPLES. BUT HE LIVED LONGER BECAUSE HE WAS
22	ARTIFICIALLY VENTILATED.
23	DR. THOMAS: INTERESTING.
24	CHAIRMAN GOLDSTEIN: VITO, YOU HAVE A
25	QUESTION?
	94

1	CHAIRMAN IMBASCIANI: HI. I HAVE A
2	QUESTION FOR JEFFREY. JEFFREY, I GOT TO TELL YOU
3	THAT MY PH.D. FROM CORNELL IS IN THE HUMANITIES.
4	OKAY. SO BUT A QUESTION I READ IN THE NEWSPAPERS
5	THAT POLIO IS RESURGENT IN NEW YORK CITY'S WATERS.
6	AND I'M THINKING IS THERE ANY INTEREST IN YOUR
7	COMMUNITY TO UNDERSTAND HOW THE ANTERIOR HORN CELLS
8	THAT ARE KILLED OFF BY THE POLIO VIRUS AND THEN THE
9	SURVIVING NEURONS, I PRESUME, ARBORIZE TO PICK UP
10	ORPHAN NEUROMUSCULAR. IS THERE ANYTHING IN THAT
11	AREA? I DON'T READ ANYTHING IN THE POST-POLIO.
12	DR. ROTHSTEIN: YEAH. WHAT YOU ARE
13	REFERRING TO IS WHAT'S CALLED POST-POLIO. FIRST OF
14	ALL, IT'S EXTREMELY RARE. I HAVE, I THINK, THREE
15	PATIENTS IN MY CAREER THAT ARE POST-POLIO. ONE WAS
16	A SENATOR. AND THERE WAS ACTUALLY THE ONLY
17	RESEARCH I KNOW IN THE U.S. WAS A GUY NAMED BURT
18	JUBELT AT SYRACUSE WHO USED TO DO WORK ON THAT.
19	BEYOND THAT I KNOW NO ONE ELSE DOING IT.
20	THERE'S A VERSION OF THAT, SOME OF THE
21	CHILDHOOD ENCEPHALITITIES, BOTH WEST NILE
22	AND SHIT, I'M BLOCKING ON THE OTHER ONE. THERE'S
23	ACTUALLY A COLLEAGUE WHO WAS A YOUNG M.D./PH.D.
24	PEDIATRIC NEUROLOGIST WHO'S WORKING ON ONE OF THOSE
25	WHERE IT LOOKS LIKE POLIO. IT'S A RESURGENCE OF A

1	VIRUS LIKE POLIO, IT'S NOT POLIO, THAT AFFECTED
2	CHILDREN PREDOMINANTLY MOTOR NEURONS SPECIFICITY
3	THAT THERE HAD TO DO MORE WITH THE VIRUS GETTING
4	INTO MOTOR NEURONS. AND BY THE WAY, AFFECTING THE
5	NUCLEUS INCLUDING NUCLEAR PORE PROTEINS. AND THAT'S
6	ACTUALLY WHAT HE WAS STUDYING IN MY LAB.
7	BUT THE POST-POLIO SIDE OF THINGS, I DON'T
8	KNOW OF ANYONE STUDYING IT. IT'S EXACTLY AS YOU
9	DESCRIBE. IT'S THE ARBORIZATION. AND IT
10	COMES ACTUALLY AS YOU SAID THAT, IT REMINDS ME.
11	AS WE'RE KEEPING SOD1 PATIENTS ALIVE NOW WHO LOST
12	HALF THEIR MOTOR NEURONS, WE'RE SEEING WHAT WE THINK
13	IS THAT SAME EFFECT. THE REMAINING MOTOR NEURONS
14	BRANCH OUT NOW.
15	AND FOR THOSE IN THE AUDIENCE WHO DON'T
16	KNOW THIS, POST-POLIO WAS THE FACT THAT YOU HAVE
17	POLIO AND YOU'RE VERY WEAK, YOUR OTHER MOTOR NEURONS
18	ARE SORT OF COMPENSATING, THEY'RE HELPING OUT
19	KEEPING THINGS MOVING A LITTLE BIT, BUT EVENTUALLY
20	THEY DIE AS WELL. AND THAT WAS WHAT WAS CALLED
21	POST-POLIO. EVENTUALLY YOU'RE STABLE AND THEN YOU
22	START GETTING WEAK AGAIN. THE SAME COULD OCCUR WITH
23	THE SOD1 PATIENTS EXCEPT THEY'RE GETTING THEIR
24	THERAPIES TODAY MUCH LATER IN LIFE, THEIR FIFTIES.
25	I HAVE TO TELL YOU ONE OTHER THING THAT'S

96

1	THE MOST EXCITING TO MANY OF US. AS WE DEVELOP GENE
2	THERAPIES, IT'S NOT AS MUCH ABOUT STEM CELLS, BUT
3	DERIVES FROM THEM. AS WE DEVELOP GENE THERAPIES FOR
4	PATIENTS WHO HAVE DISEASE NOW, WHAT WE'RE DOING IS
5	THINKING ABOUT THE NEXT STEP. SO WHAT IF YOU HAVE
6	ALS, UNFORTUNATELY, BUT YOUR SON CARRIES THE
7	MUTATION. HE'S GOING TO GET DISEASE ONE DAY. SOME
8	OF THESE ARE A HUNDRED PERCENT PENETRANT. WE'RE
9	ACTUALLY FOLLOWING THOSE INDIVIDUALS NOW. AND
10	THERE'S A PROTEIN IN THE BLOOD THAT SAYS THE NERVOUS
11	SYSTEM IS STARTING TO GET AFFECTED. THEY'RE GETTING
12	THE GENE THERAPY BEFORE THEY GET DISEASE. BUT THE
13	IDEA IS THEY WILL NEVER ACTUALLY GET ALS BECAUSE
14	WE'RE TURNING OFF THAT GENE WITH THIS THERAPY.
15	AND THE NEXT GENERATION OF THAT, AND THIS
16	IS GOING ON HEAVILY ACTUALLY BY SOME OF THE PEOPLE
17	IN YOUR STATE, SOMEONE I'M TRYING TO RECRUIT TO
18	HOPKINS, IS USING CRISPR TO COMPLETELY FIX THE GENE.
19	BUT RIGHT NOW ASO'S ARE THAT NEXT GREAT HOPE, AND
20	THAT'S PREVENTIVE NEUROLOGIC MEDICINE, UNHEARD OF IN
21	NEUROLOGY UNTIL THERAPIES. AND I'M GOING TO ARGUE
22	THIS IS WHERE IPS PLATFORM, YOU'RE GOING TO INVEST
23	LOCALLY IN YOUR STATE, THOSE ARE THE THINGS TO THINK
24	ABOUT.
25	CHAIRMAN IMBASCIANI: THANK YOU.
	97

1	CHAIRMAN GOLDSTEIN: SO IF THERE'S NOTHING
2	BURNING, WE SHOULD PROBABLY WRAP UP THIS DISCUSSION.
3	JEFF, FASCINATING AS ALWAYS. WE DO HAVE A COUPLE
4	MINUTES FOR PUBLIC COMMENT. CLAUDETTE, DO WE HAVE
5	ANY OF THAT?
6	MS. MANDAC: WE ACTUALLY DO HAVE A PUBLIC
7	COMMENT FROM A PERSON IN OUR ROOM.
8	DR. CHAMBERS: HELLO. MY NAME IS STUART
9	CHAMBERS. IF THAT RINGS A BELL, I WAS A POST-DOC IN
10	LORENZ STUDER'S LAB. AND I DEVELOPED MANY OF THE
11	PROTOCOLS THAT WERE FOR MAKING NEURONS IN THE
12	NERVOUS SYSTEM FROM PLURIPOTENT STEM CELLS. AND
13	THAT'S THE BASIS FOR WHAT NOW PROPELS BLUE ROCK,
14	NEURONA, AND ASPEN NEUROSCIENCE AS MANY OTHERS
15	TOWARDS THE CLINIC.
16	I'M HERE TO ADVOCATE FOR EARLY SEED
17	START-UPS AND THEIR APPLICATION PROCESS AS PART OF
18	APPLYING TO CIRM. I WANTED TO BRING THIS TO THE
19	TASK FORCE'S ATTENTION BECAUSE THERE'S A BIG
20	CHALLENGE WITH PRE-SEED COMPANIES IN PARTICULAR IN
21	REGARDS TO APPLYING FOR CIRM FUNDING. THERE'S A
22	SOLVENCY CHECK IN PLACE THAT MAKES IT TRICKY,
23	BASICALLY MAKES IT A BURDEN.
24	IN MY PERSONAL CASE, I COULD NOT APPLY AT
25	ALL. AND I JUST SIMPLY WANTED TO SAY THAT THIS IS
	98

1	IMPORTANT. IT'S IMPORTANT THAT WE FIGURE OUT WAYS
2	FOR PRE-SEED AND EARLY SEED COMPANIES TO CONTINUE TO
3	BE ABLE TO APPLY FOR CIRM. I RECOGNIZE THE PURPOSE
4	OF THE SOLVENCY CHECK IN TERMS OF MAKING GOOD
5	INVESTMENTS AND BEING GOOD STEWARDS OF THE
6	CALIFORNIA STATE'S MONEY, BUT AT THE SAME TIME I
7	WONDER IF THERE ARE CREATIVE SOLUTIONS TO THIS
8	PROBLEM.
9	I JUST SIMPLY WANT TO BRING IT UP TO THIS
10	AUDIENCE AND CIRM AS A WHOLE SO THAT WE CAN TALK
11	ABOUT THIS IN THE FUTURE.
12	CHAIRMAN GOLDSTEIN: GREAT POINT. CAN
13	SOMEBODY MAKE SURE THAT SHYAM PATEL GETS ON THIS TO
14	THINK ABOUT IT?
15	MR. TOCHER: WILL DO, LARRY.
16	CHAIRMAN GOLDSTEIN: GREAT. ANY OTHER
17	PUBLIC COMMENT?
18	MS. MANDAC: NO HANDS RAISED.
19	CHAIRMAN GOLDSTEIN: OKAY. IF NOT, I'M
20	GOING TO ADJOURN US TWO MINUTES LATE. SORRY FOR THE
21	EXTRA TIME. AND THANK YOU ALL FOR YOUR
22	PARTICIPATION. FASCINATING DISCUSSIONS TODAY. JEFF
23	AND LORENZ, THANK YOU FOR HELPING US. VITO HAS GOT
24	IT RIGHT.
25	DR. THOMAS: THANK YOU, GUYS.
	99

208-920-3543 DRAIBE@HOTMAIL.COM

208-920-3543 DRAIBE@HOTMAIL.COM