BEFORE THE TASK FORCE ON NEUROSCIENCE AND MEDICINE TO THE INDEPENDENT CITIZENS' OVERSIGHT COMMITTEE TO THE CALIFORNIA INSTITUTE FOR REGENERATIVE MEDICINE ORGANIZED PURSUANT TO THE CALIFORNIA STEM CELL RESEARCH AND CURES ACT

REGULAR MEETING

LOCATION: VIA ZOOM

DATE: JULY 17, 2023

1 P.M.

REPORTER: BETH C. DRAIN, CA CSR

CSR. NO. 7152

FILE NO.: 2023-24

INDEX

ITEM DESCRIPTION	PAGE NO.
OPEN SESSION	
1. CALL TO ORDER	3
2. ROLL CALL	3
3. PRESENTATION ON NOVEL ORGANOID PHENOTYPING BY DR. FRED GAGE	5
4. CONSIDERATION OF DRAFT NEURO DISC CONCEPT PLAN	38
5. GENERAL DISCUSSION	60
6. PUBLIC COMMENT	NONE
7. ADJOURNMENT	90

	DETH G. DRAIN, GA GSR NO. 7 132
1	JULY 17, 2023; 1 P.M.
2	
3	CHAIRMAN GOLDSTEIN: GREAT. WELCOME,
4	EVERYBODY. WE HAVE TWO ITEMS TODAY. THE FIRST WILL
5	BE A TALK FROM RUSTY GAGE. MARIANNE, CAN YOU CALL
6	THE ROLL PLEASE BEFORE WE MOVE ON?
7	MS. DEQUINA-VILLABLANCA: YEAH. YOU WERE
8	ON MUTE FOR ONE MINUTE. I'LL GO AHEAD AND CALL THE
9	ROLL NOW.
10	MARIA BONNEVILLE.
11	MS. BONNEVILLE: PRESENT.
12	MS. DEQUINA-VILLABLANCA: LEONDRA
13	CLARK-HARVEY. MARK FISCHER-COLBRIE. FRED FISHER.
14	DR. FISHER: FRED IS HERE.
15	MS. DEQUINA-VILLABLANCA: JUDY GASSON.
16	DR. GASSON: HERE.
17	MS. DEQUINA-VILLABLANCA: LARRY GOLDSTEIN.
18	CHAIRMAN GOLDSTEIN: HERE.
19	MS. DEQUINA-VILLABLANCA: DAVID HIGGINS.
20	VITO IMBASCIANI.
21	DR. IMBASCIANI: YES. VINI, VIDI, VITO.
22	MS. DEQUINA-VILLABLANCA: ALL RIGHT.
23	STEVE JUELSGAARD.
24	MR. JUELSGAARD: PRESENT. PRESENT.
25	PRESENT. SORRY.
	3
	3

_	
1	MS. DEQUINA-VILLABLANCA: GOTCHA. GOTCHA.
2	GOTCHA. OKAY. PAT LEVITT.
3	DR. LEVITT: PRESENT.
4	MS. DEQUINA-VILLABLANCA: LAUREN
5	MILLER-ROGEN. MARVIN SOUTHARD.
6	DR. SOUTHARD: PRESENT.
7	MS. DEQUINA-VILLABLANCA: KEITH YAMAMOTO.
8	DR. YAMAMOTO: I'M HERE. HI, RUSTY.
9	DR. GAGE: HEY.
10	MS. DEQUINA-VILLABLANCA: ALL RIGHT. WE
11	ARE GOOD, AND WE DO HAVE A QUORUM, LARRY. SO YOU
12	MAY PROCEED.
13	CHAIRMAN GOLDSTEIN: GREAT. THANK YOU.
14	SO TWO ITEMS TODAY. THE FIRST WILL BE A
15	TALK FROM RUSTY GAGE, THAT I'LL INTRODUCE IN A
16	MOMENT. AND THE SECOND IS WE'LL HEAR A CONCEPT PLAN
17	FROM ROSA CANET-AVILES LAYING OUT A POSSIBLE FUNDING
18	SYSTEM FOR NEUROPSYCHIATRIC STEM CELL RESEARCH.
19	SO RUSTY WILL SPEAK FOR ABOUT 45 MINUTES,
20	INCLUDING QUESTIONS, AND THEN WE'LL GET ROSA UP.
21	SO RUSTY GAGE. DR. FRED GAGE HAS BEEN A
22	LONGTIME COLLEAGUE OF MINE. HE HAS A NUMBER OF
23	FIRSTS OVER THE YEARS, INCLUDING EVIDENCE THAT
24	THERE'S NEUROGENESIS IN HUMANS, SOME WONDERFUL STEM
25	CELL WORK OVER THE YEARS. AND THE REASON I THOUGHT
	4

1	WE SHOULD HEAR FROM HIM TODAY IS, AS WE LAUNCH INTO
2	NEUROPSYCHIATRIC STEM CELL RESEARCH, IT'S IMPORTANT
3	THAT WE BE ABLE TO ANALYZE WHAT GOES WRONG IN
4	MUTATIONS THAT PREDISPOSE TO SCHIZOPHRENIA OR
5	BIPOLAR DISORDER OR ANY OF THE DISEASES THAT WE MAY
6	TURN OUT TO BE INTERESTED IN. AND RUSTY'S LAB
7	RECENTLY PUBLISHED WHAT I THINK IS ONE OF THE MOST
8	ADVANCED PHENOTYPIC SYSTEMS FOR EVALUATING WHAT IS
9	HAPPENING INSIDE OF BRAIN ORGANOIDS.
10	AND WITH NO ADDITIONAL VERBIAGE FROM ME,
11	I'M GOING TO TURN IT OVER TO RUSTY. SO TAKE IT
12	AWAY.
13	DR. GAGE: ALL RIGHT. I'M SCREEN SHARING
14	NOW.
15	OKAY. WELL, THANKS FOR INVITING ME TO
16	PRESENT. I'LL BE PRESENTING OUR EFFORTS TO DEVELOP
17	A FULLY HUMAN BRAIN ORGANOID MODEL SYSTEM. IT WILL
18	BE MOSTLY METHODOLOGICAL, BUT THERE ARE SOME
19	CONCEPTUAL THINGS THAT I'D LIKE TO ADVANCE AS WELL.
20	BUT HERE'S THE LAYOUT.
21	WHAT ARE OUR GOALS? WELL, THERE'S A LOT
22	OF FOCUS LATELY IN THE LAST TEN YEARS OR SO ON
23	DEVELOPING HUMAN BRAIN ORGANOIDS IN PART BECAUSE OF
24	THE, LET'S SAY, LACK OF COMPLETE SATISFACTORY
25	EVIDENCE FROM MOUSE MODELS, ESPECIALLY OF

1	PSYCHIATRIC DISEASES. AND THE ABILITY TO LOOK AT
2	HUMAN BRAIN TISSUE IN MODELS OF THE HUMAN BRAIN IS
3	HOPED TO ADVANCE OUR ABILITY MAKE NEW DISCOVERIES.
4	SO WITH THAT TOWARD THE ORGAN TREE OR
5	ORGANOIDS, HUMAN ORGANOIDS, THERE'S A COUPLE OF
6	THINGS THAT ARE PROBLEMATIC SO FAR. AND THAT IS
7	THAT THE ORGANOIDS THAT HAVE BEEN AND ARE BEING USED
8	IN VITRO ARE NOT VASCULARIZED. AND WHAT HAPPENS,
9	BECAUSE OF THE 1 MILLIMETER RULE, THAT MEANS THINGS
10	CAN'T DIFFUSE MORE THAN 1 MILLIMETER INTO THE
11	ORGANOID. ONCE THEY GET LARGER THAN 2 MILLIMETERS
12	IN SIZE, THE CORE BEGINS TO ROT. THE LARGER THEY
13	GET, THE LARGER THE CORE BECOMES. AND IN MY MIND,
14	IN OUR MIND, OUR LAB, IT'S VERY HARD TO MAKE
15	CONCLUSIONS ABOUT THE OUTER RIM OF AN ORGANOID WHEN
16	YOU KNOW THAT THE INNER CORE IS DYING. WE NEED TO
17	ELIMINATE WE NEED TO VASCULARIZE THE ORGANOIDS
18	AND ELIMINATE THE NECROTIC CORE.
19	NEXT IS MOST OF THE ORGANOIDS THAT
20	CURRENTLY EXIST ARE REALLY NEURAL ORGANOIDS.
21	THEY'RE MADE UP OF NEURONS OR NEURAL PRECURSORS AND
22	DON'T REALLY THEY'RE NOT REALLY IMBUED NATURALLY
23	WITH OTHER CELL TYPES. AND, OF COURSE, THE BRAIN IS
24	MADE UP OF MANY DIFFERENT CELL TYPES. AND ONCE YOU
25	HAVE THESE AS YOU IMBUE THE ORGANOIDS WITH THESE

1	DIFFERENT CELL TYPES, YOU NEED TO ESTABLISH THEIR
2	HEALTH AND FUNCTION AND DEMONSTRATE THAT THEY ARE
3	RESPONDING AS ONE MIGHT EXPECT THEM TO RESPOND IN
4	SITU.
5	I'LL GIVE YOU EVIDENCE TODAY ON NEURONS,
6	MICROGLIA, AND ASTROCYTES AND IN-PROGRESS FOR
7	ENDOTHELIAL CELLS AND PERICYTES, WHICH ARE THE CELLS
8	IN THE BLOOD-BRAIN BARRIER VASCULATURE, AND WITH A
9	LONG-TERM PLAN OF MYELINATING THE AXONS WITHIN THE
10	ORGANOIDS.
11	NOW, THE GOAL OBVIOUSLY IS ONCE AS WE
12	MOVE THROUGH THIS, WE CAN BEGIN TO COMPARE HEALTHY
13	BRAIN TO DISEASED BRAIN. AND REALLY IT'S DISEASE
14	AGNOSTIC BECAUSE WITH IPS TECHNOLOGY YOU CAN GET
15	FIBROBLASTS FROM ANY PATIENT AVAILABLE. ONCE THERE,
16	YOU CAN DO WHAT WE CALL INDUCTIVE EXPERIMENTS WHERE
17	YOU CAN REPLACE A HEALTHY CELL WITH A DISEASED CELL
18	TO DETERMINE IF THAT DISEASE CELL IS DRIVING OR A
19	CONSEQUENCE OR ACTIVATED AS A CONSEQUENCE OF THE
20	ENVIRONMENT THAT THEY FIND THEMSELVES. AND I'LL
21	GIVE YOU AN EXAMPLE OF MICROGLIA IN AUTISM.
22	RESTORATION IS ANOTHER APPROACH, AND THAT
23	IS WHERE YOU HAVE A DISEASED BRAIN ORGANOID AND YOU
24	REPLACE IT WITH HEALTHY CELLS TO SEE IF YOU CAN
25	ELIMINATE SOME OF THE PATHOLOGY THAT EXISTS WITHIN

1	THE ORGANOID DISEASED BRAIN. OF COURSE, WITH THIS
2	SYSTEM, BECAUSE IT'S LIVING AND MODULAR, WE CAN
3	BEGIN TO IDENTIFY CELLULAR ANIMAL MECHANISMS THAT
4	ARE CAUSING OR PREVENTING THESE CELLS TO BECOME
5	HEALTHY.
6	AND IN THE FINAL CASE, WE THINK OF THIS
7	MODEL SYSTEM AS A TOOL TO TEST THERAPIES IN THE
8	HUMAN BRAIN AND PERHAPS OF THE PATIENT THAT IS BEING
9	TREATED. SO TAKING A FIBROBLAST FROM THE PATIENT
10	THAT'S GOING TO HAVE SOME SORT OF THERAPEUTIC
11	INTERVENTION, YOU CAN ACTUALLY TEST THE DRUG, TEST
12	THE VECTOR, TEST THE GENE THERAPY, TEST THE CELL
13	THERAPY IN THE ORGANOID PRIOR TO GOING INTO THE
14	PATIENT.
15	SO WITH THAT, WE CAN SAY THAT THERE ARE
16	MANY DIFFERENT CELLS OF THE BRAIN. MOST OF THE
17	ORGANOIDS THAT EXIST HAVE THESE CAN YOU SEE MY
18	LITTLE ARROW THERE?
19	CHAIRMAN GOLDSTEIN: YES.
20	DR. GAGE: OKAY. WE DO SEE RADIAL GLIA IN
21	THE EXISTING ORGANOIDS, AND THEY GIVE RISE TO
22	NEURONS. THEY'RE LATE IN THE PROCESS. USUALLY FOUR
23	OR FIVE MONTHS INTO IT, YOU WILL SEE ASTROCYTES
24	FORMING IN THE OUTER CORE, BUT THEY DON'T THEY
25	HAVEN'T BEEN TESTED YET FOR THEIR FUNCTIONALITY.

1	AND NEURAL OPC'S OR OLIGOS HAVE BEEN DETECTED SO
2	FAR.
3	I'M GOING TO START BY TALKING TO YOU A
4	LITTLE BIT ABOUT MICROGLIA. THESE ARE CELLS THAT
5	ARE NOT EVEN DERIVED IN THE BRAIN, BUT THEY'RE
6	DERIVED IN WHAT'S CALLED THE YOKE SACK, VERY EARLY
7	STAGE IN DEVELOPMENT, WHERE THEY MIGRATE INTO THE
8	PRIMORDIAL BRAIN, TAKE UP RESIDENCE, AND
9	BECOME THEY PROLIFERATE ACTUALLY WHEN THEY'RE
10	THERE, AND THEY TAKE UP RESIDENCE. ONCE THE
11	PERICYTES FORM IN THE OUTER EDGES OF THE ENDOTHELIAL
12	CELLS AND PREVENT THE GROWTH OF THESE CELLS OR
13	MOVING THESE CELLS INTO THE BRAIN, YOU RELY PRETTY
14	MUCH ON THE EXISTING MICROGLIA THAT CAME IN EARLY
15	ON. HOWEVER, BONE MARROW-DERIVED MACROPHAGES OR
16	MYELOID ORIGIN CELLS CAN MIGRATE INTO THE BRAIN ALSO
17	UNDER CERTAIN CIRCUMSTANCES. SO WE HAVE TWO
18	SOURCES, EARLY DEVELOPMENT AND LATE DEVELOPMENT ON
19	MICROGLIA. BUT, AGAIN, THEY'RE NOT BRAIN DERIVED.
20	THEY ARE (UNINTELLIGIBLE).
21	A LOT OF INTEREST IN MICROGLIA LATELY
22	SUGGESTED THEIR ROLE IN A VARIETY OF DISEASES,
23	PARTICULARLY THEIR ROLE IN INFLAMMATION. AND SO A
24	LOT OF WORK HAS BEEN I'M TRYING TO CHARACTERIZE.
25	OF COURSE, VERIFIED BY BEN BARRES EARLY ON,

1	ESTABLISHING WHAT IS A MICROGLIAL IDENTITY, BOTH
2	DEVELOPMENTAL AND MATURE. WE WERE INVOLVED IN
3	ISOLATING MICROGLIA DIRECTLY OUT OF THE BRAIN. BUT
4	ONE OF THE THINGS THAT HAPPENS WITH MICROGLIA IN
5	VITRO IS THEY'RE VERY SENSITIVE TO THE ENVIRONMENT.
6	AND WHEN THEY GO INTO AN IN-VITRO SETTING, THEY
7	DOWNREGULATE KEY PROTEINS THAT ARE THOUGHT TO BE
8	ESSENTIAL FOR THE FEATURES AND FUNCTION OF
9	MICROGLIA, INCLUDING THESE GENES HERE.
10	I'M NOT GOING TO GO TOO MUCH INTO SPECIFIC
11	GENES UNLESS THERE'S INTEREST FROM THE GROUP. I CAN
12	GIVE YOU MORE DETAIL IN THE DISCUSSION SECTION. BUT
13	THE FACT IS THEY ARE MICROGLIA IN VITRO, BUT THEY'RE
14	NOT FULLY MATURED.
15	SO WHAT WE'VE DONE IS WE'VE TAKEN OUR
16	REGULAR ORGANOID AND WE MAKE ERYTHRO-MYELOID CELLS.
17	SO WE TAKE A FIBROBLAST AND TURN IT INTO AN IPS
18	CELL, AND WE GENERATE BASICALLY EARLY DEVELOPMENT OF
19	HEMATOPOIETIC CELLS AND THEN DRIVE THEM SLIGHTLY
20	LESS SLIGHTLY INTO THE PHASE WHERE WE KNOW FROM
21	HUMAN DEVELOPMENT THAT THEY MIGRATE INTO THE BRAIN
22	IN ABOUT THREE TO FOUR MONTHS WEEKS OF AGE. AND
23	SO HERE WE HAVE THE GREEN AS THE ORGANOID, AND HERE
24	WE HAVE OUR INDUCED MYELOID PROGENITOR CELLS ON THE
25	OUTSIDE. AND YOU CAN SEE IN THE MOVIE THAT THEY'RE

1	MIGRATING IN OVER A PERIOD OF TIME AND THEY SETTLE
2	IN THE BRAIN.
3	NOW, I'M NOT GOING TO GO THROUGH IT, BUT
4	WE AND OTHERS HAVE DONE A SERIES OF EXPERIMENTS
5	TRYING TO GET MICROGLIA INTO THE ORGANOIDS, AND THEY
6	DON'T SURVIVE VERY WELL. THEY REQUIRE SEVERAL
7	HUMAN-DERIVED PROTEINS THAT PROTECT THE SURVIVAL OF
8	THE MICROGLIA. WITHOUT THEM, THEY DON'T SURVIVE.
9	AND EVEN WITH THOSE ADDED PROTEINS IN VITRO, THE
10	MICROGLIA DO NOT SURVIVE MORE THAN A MONTH, AND THEY
11	ARE IN WHAT'S CALLED A REACTIVE STATE. SO THEY'RE
12	NOT NATURALLY FORMED.
13	WE FOUND BACK IN WE DEVELOPED A MODEL
14	in 2018 where we take an organoid and we can form it
15	AND THEN TRANSPLANT IT INTO THE RETROSPLENIAL CORTEX
16	OVERLYING THE VASCULAR BED. AND SO IT'S OVERLYING
17	THIS PERI-COLLICULUS. AND THE BLOOD VESSELS FROM
18	THIS PERI-COLLICULUS GO INTO THE BRAIN, TO THE HUMAN
19	ORGANOID, AND YOU CAN SEE HERE, AFTER AN
20	INTERORBITAL INJECTION OF DYE, THAT THE BLOOD-BRAIN
21	BARRIER IS FORMED AND THERE'S NO LEAKINESS INTO THE
22	HOST.
23	WHEN WE TRANSPLANT THE MICROGLIA-ENRICHED
24	ORGANOIDS INTO THE BRAIN, WE SEE LIVELY, FULLY
25	MATURE MICROGLIA. THESE ARE LABELED WITH TDTOMATO

1	HERE, BUT DOUBLE LABEL WITH IBA1, A MARKER FOR
2	MICROGLIA. WE CAN DO THIS IN SOME DETAIL
3	QUANTITATIVELY. AND NOW WE CAN SEE IN VIVO THAT
4	THESE GENES THAT PREVIOUSLY WERE NOT ON IN VITRO ARE
5	NOW BEING EXPRESSED IN THE MICROGLIA. SO IN VIVO
6	SETTING.
7	INTERESTINGLY, THE CF1 RECEPTOR, WHICH IS
8	A SURVIVAL RECEPTOR IN THE GENE FOR MICROGLIA IN
9	HUMANS UNIQUELY TO MOUSE, IS BEING EXPRESSED IN OUR
10	ORGANOID, HUMAN ORGANOID. SO WE DO NOT HAVE TO ADD
11	OR ENGINEER THE CELLS IN ANY WAY. THEY'RE NATURALLY
12	SURVIVING. IBA1, HERE ARE THESE MARKERS, ADDITIONAL
13	MARKERS FOR MICROGLIA.
14	TO SORT OF CONFIRM THAT THEY REALLY ARE IN
15	A MATURED FORM, WE HAVE LOOKED AT SINGLE-CELL
	A MATURED FORM, WE HAVE LOOKED AT SINGLE-CELL SEQUENCING AT 6 WEEKS, 11, AND 24 WEEKS AFTER
16	
16 17	SEQUENCING AT 6 WEEKS, 11, AND 24 WEEKS AFTER
16 17 18	SEQUENCING AT 6 WEEKS, 11, AND 24 WEEKS AFTER TRANSPLANTATION. AND WE DO OUR UMAP ANALYSIS HERE,
15 16 17 18 19	SEQUENCING AT 6 WEEKS, 11, AND 24 WEEKS AFTER TRANSPLANTATION. AND WE DO OUR UMAP ANALYSIS HERE, AND YOU CAN SEE THAT THEY THESE ARE COLOR CODED
16 17 18 19	SEQUENCING AT 6 WEEKS, 11, AND 24 WEEKS AFTER TRANSPLANTATION. AND WE DO OUR UMAP ANALYSIS HERE, AND YOU CAN SEE THAT THEY THESE ARE COLOR CODED FOR THE SENSOME GENOME. SO PICKMAN SOME TIME AGO
16 17 18 19 20	SEQUENCING AT 6 WEEKS, 11, AND 24 WEEKS AFTER TRANSPLANTATION. AND WE DO OUR UMAP ANALYSIS HERE, AND YOU CAN SEE THAT THEY THESE ARE COLOR CODED FOR THE SENSOME GENOME. SO PICKMAN SOME TIME AGO EXTRACTED HUMAN MICROGLIA FROM THE HUMAN BRAIN AND
16 17 18 19 20 21	SEQUENCING AT 6 WEEKS, 11, AND 24 WEEKS AFTER TRANSPLANTATION. AND WE DO OUR UMAP ANALYSIS HERE, AND YOU CAN SEE THAT THEY THESE ARE COLOR CODED FOR THE SENSOME GENOME. SO PICKMAN SOME TIME AGO EXTRACTED HUMAN MICROGLIA FROM THE HUMAN BRAIN AND ANALYZED GENES THAT ARE IMPORTANT FOR WHAT IS CALLED
16 17 18 19 20 21	SEQUENCING AT 6 WEEKS, 11, AND 24 WEEKS AFTER TRANSPLANTATION. AND WE DO OUR UMAP ANALYSIS HERE, AND YOU CAN SEE THAT THEY THESE ARE COLOR CODED FOR THE SENSOME GENOME. SO PICKMAN SOME TIME AGO EXTRACTED HUMAN MICROGLIA FROM THE HUMAN BRAIN AND ANALYZED GENES THAT ARE IMPORTANT FOR WHAT IS CALLED A SENSOME. SO MICROGLIA HAVE THIS INTERESTING
16 17 18 19 20 21 22	SEQUENCING AT 6 WEEKS, 11, AND 24 WEEKS AFTER TRANSPLANTATION. AND WE DO OUR UMAP ANALYSIS HERE, AND YOU CAN SEE THAT THEY THESE ARE COLOR CODED FOR THE SENSOME GENOME. SO PICKMAN SOME TIME AGO EXTRACTED HUMAN MICROGLIA FROM THE HUMAN BRAIN AND ANALYZED GENES THAT ARE IMPORTANT FOR WHAT IS CALLED A SENSOME. SO MICROGLIA HAVE THIS INTERESTING PROPERTY WHERE THEY SENSE DANGER OR DAMAGE IN THE

1	BUILT INTO THIS IS THAT WHEN MICROGLIA BECOME
2	OVERACTIVE, THEY BEGIN HARMING OR HURTING THE
3	EXISTING HEALTHY BRAIN AS WELL.
4	SO WE ARE SEEING THAT THERE'S AN
5	UPREGULATION OF THESE SENSOME GENES. THEY BECOME
6	MORE ACTIVE AND ALSO GENES THAT WE AND OTHERS HAVE
7	DISCOVERED TO BE IMPORTANT FOR MAINTAINING THE
8	ENVIRONMENTAL INTEGRITY OF THE MICROGLIA.
9	SO ONE OF THE THINGS THAT WE CAN DO WITH
10	THIS MODEL IS WE CAN PUT A GLASS COVERSLIP OVER THE
11	TOP OF THE MOUSE'S BRAIN. THESE ARE NON-SCID MICE.
12	THEY'RE IMMUNOCOMPROMISED. AND WE PUT A 2-PHOTON
13	MICROSCOPE OVER THE TOP OF THE ANESTHETIZED ANIMALS,
14	AND WE CAN WATCH THE MICROGLIA AS THEY SENSE THE
15	ENVIRONMENT. THIS WAS AN EXPERIMENT DONE TEN YEARS
16	AGO IN MICE FOR THE FIRST TIME BY AXEL NIMMERJAHN.
17	AND HE'S NOW A FACULTY MEMBER AT THE SALK. HE WAS
18	ABLE TO SEE HUMAN MICROGLIA BEHAVING IN MANY WAYS
19	THE SAME WAY. WHAT'S INTERESTING, THEY SURVEY THEIR
20	ENVIRONMENT, BUT THEY DON'T TOUCH EACH OTHER, BUT IS
21	SENSING FOR TOXINS IN THE ENVIRONMENT.
22	WE KNOW THESE CELLS ARE RESPONSIVE. SO WE
23	CAN GIVE AN INFLAMMATORY INJECTION OF WHAT'S CALLED
24	LIPOPOLYSACCHARIDE, WHICH INDUCES AN INFLAMMATORY
25	RESPONSE. AND HERE'S THE CONTROL AND HERE'S 24
	12

1	HOURS AFTER INJECTION. AND THEY ROUND UP AND APPEAR
2	MUCH MORE LIKE A PHAGOCYTIC CELL. THESE PHAGOCYTIC
3	CELLS ARE WHAT ARE CALLED REACTIVE MICROGLIA, AND
4	THEY'RE NOT DOING THEIR HEALTHY JOB. THEY'RE
5	ACTUALLY CAUSING TOXICITY, SECRETING A LOT OF
6	UNHEALTHY MOLECULES INTO THE ENVIRONMENT.
7	NOW, INTERESTINGLY, WHEN WE KILL A CELL
8	RIGHT BETWEEN TWO OF THESE FOUR OF THESE
9	MICROGLIA, WE END UP SEEING HOW THE MICROGLIA
10	ACTUALLY RESPOND. SO NORMALLY WHAT WOULD HAPPEN IS
11	THAT THE MOUSE MICROGLIA, AS WE'VE LEARNED IN THE
12	PAST, MIGRATE IN AND SURROUND AND DESTROY THE CELL.
13	BUT HUMAN CELLS BEHAVE DIFFERENTLY. THEY WORK
14	COORDINATELY, RESPONDING TO THEIR ENVIRONMENT AND
15	SEND OUT THEIR PROCESS OF RETAINING THEIR POSITION
16	IN THEIR QUADRANT. SO THIS WAS ACTUALLY A NEW
17	DISCOVERY OF HOW HUMAN MICROGLIA BEHAVE DIFFERENTLY
18	THAN DO MICE, THE ONLY TWO SPECIES IN WHICH WE'VE
19	BEEN ABLE TO SEE LIVING IMAGES OF HOW THEY FUNCTION.
20	NOW, ONE OF THE ADVANTAGES OF THIS THAT WE
21	KNEW WE COULD EXPLOIT IS TO DETERMINE WHETHER IT IS
22	THE CELLS THEMSELVES, LET'S SAY THE MICROGLIA, WHICH
23	ARE INDUCING A REACTIVITY WITHIN THE HOST, OR IS THE
24	HOST ACTIVATING THE MICROGLIA TO BECOME AN INFLAMED
25	CELL TYPE? WE'VE BEEN PREVIOUSLY WORKING WITH AN
	1.4

1	AUTISTIC SUBGROUP OF INDIVIDUALS THAT HAVE LARGE
2	BRAINS. THESE ARE MACROCEPHALIA. AND ONE OF THE
3	THINGS THAT'S BEEN SHOWN BOTH IN PET AND HISTOLOGY
4	IN THESE PATIENTS IS THEY HAVE AN INCREASE IN
5	MICROGLIA MORPHOLOGICAL RESPONSES, SUGGESTING AN
6	INFLAMED STATE OR A MACROPHAGIC STATE.
7	SO WE MADE ORGANOIDS FROM OUR CONTROL, AND
8	WE SEE AND IMBUED THEM WITH HEALTHY THESE ARE
9	ISOGENIC MICROGLIA, AND THEY BEHAVE WELL AND LOOK
10	GOOD. HOWEVER, WHEN WE IMBUED THEM WITH THE WHEN
11	WE TOOK THE ASD, THAT'S THE AUTISM SPECTRUM
12	DISORDER, BRAIN ORGANOIDS AND IMBUED THEM WITH THEIR
13	OWN MICROGLIA, THEY WERE INFLAMED. SO THAT'S THE
14	BASELINE. AND THEN THE QUESTION BECOMES IS IT THE
15	BRAIN THAT'S ACTIVATING THE MICROGLIA OR THE
16	MICROGLIA ACTIVATING THE BRAIN?
17	IN THIS ONE EXPERIMENT, WE JUST DID THE
18	LATTER PIECE, WHICH IS TO TAKE AN ASD ORGANOID AND
19	IMPLANTED THEM WITH NEUROTYPICAL MICROGLIA VERSUS,
20	OF COURSE, CONTROL ORGANOID IN NEUROTYPICAL
21	ORGANOIDS. AND HERE IS THE CONTROL WITH
22	NEUROTYPICAL ORGANOID, HEALTHY LONG BRANCHES. AND
23	IN THIS CASE YOU SEE THAT THEY ARE ACTIVATED. WE
24	CAN NOW SORT THESE MICROGLIA AND THE SURROUNDING
25	BRAIN AREA AND ARE BEGINNING TO UNDERSTAND THE

1	MOLECULAR SIGNALS FROM THE BRAIN WHICH ARE
2	ACTIVATING THESE MICROGLIA.
3	SO WHAT I SHOWED YOU SO FAR IS THAT
4	MICROGLIA PROGENITOR CELLS EFFICIENTLY POPULATES THE
5	DEVELOPING HUMAN BRAIN ORGANOID. THE LONG-TERM
6	DIFFERENTIATION WAS ALWAYS HAMPERED IN VITRO, THUS
7	LIMITING THEIR USE. WE DEVELOPED A METHOD FOR
8	CHIMERIC-TRANSPLANTATION PARADIGM, ALLOWING US TO
9	STUDY HUMAN MICROGLIA INSIDE TO OUR HUMAN BRAIN.
10	THEY SURVIVE, MATURE. THEY ACQUIRE IN VIVO-LIKE
11	RESTING PROPERTIES, BUT CAN RESPOND TO STIMULI IN
12	PREDICTED DIRECTION. AND WE CAN LEARN NEW THINGS
13	ABOUT HOW HUMANS ARE DIFFERENT ADULTS, AND WE CAN
14	BEGIN TO TAKE THESE STUDIES INTO A DISEASE CONTEXT
15	AS WELL.
16	I'D LIKE TO STEP BACK AND SAY WE ARE STILL
17	MISSING MANY OTHER CELLS IN HERE. I'M SHOWING RIGHT
18	NOW SOME UNPUBLISHED RESULTS ON ASTROCYTES. WE
19	DEVELOPED A PROTOCOL WHERE WE CAN USE A SERIES WE
20	CAN INCUBATE OUR ORGANOIDS IN GLIAL-PROMOTING
21	FACTORS WHICH CAN INDUCE A RAPID DEVELOPMENT AND
22	MATURATION OF GLIA IN THE ORGANOIDS THEMSELVES.
23	A GENE THAT HAS BEEN IDENTIFIED VERY EARLY
24	ON BY LAWRENCE STUDER AND HIS TEAM WAS NF1A IS
25	THOUGHT TO BE AN IMPORTANT TRANSCRIPTION FACTOR THAT
	10

1	ENABLES ASTROCYTE DIFFERENCES. AND WE FOUND THAT
2	WITH OUR CONDITIONING MEDIA WE GET NF1A EXPRESSION
3	AS EARLY AS 21 DAYS IN VITRO. THIS IS ALL IN VITRO.
4	BY 60 DAYS WE HAVE A FULLY REPRESENTED ASTROCYTE
5	POPULATION THROUGHOUT THE ORGANOID. AND WHEN WE DO
6	SINGLE-CELL SEQUENCING IN TEN-WEEK OLD ENRICHED
7	ORGANOIDS, AGAIN IN VITRO, WE SEE THAT OF COURSE,
8	WE SEE EXCITATORY NEURONS, INHIBITORY NEURONS,
9	PRECURSOR ASTROCYTES, AND MATURE ASTROCYTES. I'LL
10	GO INTO THAT IN A LITTLE BIT MORE DETAIL.
11	BUT FROM THE FUNCTIONAL POINT OF VIEW, YOU
12	CAN SEE THAT THEY CONTINUE TO MATURE FROM THREE
13	MONTHS TO FIVE MONTHS. AND RESEARCH HAS ALL THE
14	MORPHOLOGICAL EVIDENCE ACCORDING TO THE FACT THAT
15	THEY CONTINUE TO GROW AND ELABORATE THE PROCESSES.
16	THEY ARE FUNCTIONAL TO THE EXTENT THAT THEY CAN TAKE
17	UP GLUTAMATE, A TRANSMITTER THAT IS NORMALLY
18	SECRETED BY NEURONS; BUT IN THE ABSENCE OF THIS
19	UPTAKE, GLUTAMATE CAN BE TOXIC TO NEURONS AND MAY,
20	IN OUR ESTIMATE, BE PART OF THE REASON WHY NEURAL
21	ORGANOIDS THEMSELVES HAVE THIS CERTAIN TOXICITY THAT
22	OCCURS OVER TIME BECAUSE THEY'RE NOT ABLE TO TAKE
23	AWAY THE EXCESS GLUTAMATE. THEY ALSO CAN ELICIT
24	CALCIUM SPIKES WITH STIMULATION OF GLUTAMATE AS WELL
25	IN VITRO. THIS IS ALL IN VITRO.

1	SO WE TRANSPLANTED THESE CELLS INTO OUR
2	TRANSPLANTATION MODEL. HERE'S THE TRANSPLANT HERE.
3	AND THEY SURVIVE VERY WELL AND THEY CO-LOCALIZE WITH
4	THE HUMAN ANTIBODY. SO WE KNOW THEY'RE HUMAN.
5	QUITE REMARKABLY, THIS IS THE IN VITRO ORGANOID, AND
6	IT HAS A GREATER CONTENT OF ASTROCYTES, BUT THEY'RE
7	REALLY DISORGANIZED. THEY'RE NOT PATTERNED AND
8	DISTRIBUTED LIKE THEY ARE IN VIVO AND LIKE WE SEE IN
9	THE BRAIN. THERE'S ACTUALLY A DECREASE IN VITRO,
10	BUT THEY BEGIN TO PATTERN THEMSELVES.
11	WHEN YOU LOOK AT THE DIFFERENCE BETWEEN
12	HUMAN AND MOUSE ASTROCYTES, IT'S REALLY QUITE
13	EXTRAORDINARY. NOT ONLY ARE THEY LARGER, BUT THEIR
14	SHAPE IS REALLY QUITE DIFFERENT. THEY HAVE THESE
15	LONG EXTENDED PROCESSES THAT ARE DIRECTLY ATTRACTED;
16	WHEREAS, THE MOUSE ASTROCYTES FORM A SPHERICAL
17	SHAPE. THE LONG PROCESSES THAT EXTEND FROM THE
18	ASTROCYTES ARE OFTEN ASSOCIATED WITH BLOOD VESSELS.
19	IN VIVO THAT'S WHAT ONE SEES AND ALSO WHAT ONE SEES
20	IN VIVO.
21	AFTER TRANSPLANTATION NOW, WE CAN IDENTIFY
22	NOT JUST THAT THERE'S ASTROCYTES THERE, BUT THE FULL
23	PRINCIPAL TYPES OF ASTROCYTES THAT HAVE BEEN
24	DESCRIBED IN HUMAN LITERATURE CAN BE RECAPITULATED
25	IN THESE ORGANOIDS, SPECIFICALLY UPPER AND IT'S
	10

1	CALLED THE PEEL LAYER. WE HAVE THESE INTER-LAMINAR
2	ASTROCYTES SEND THEIR PROCESSES DOWN. THEY'RE
3	CLASSIC SORT OF PLASMIC ASTROCYTE IN THE CORE OF THE
4	TISSUE AND THE FIBROUS ASTROCYTES WHERE IT SITS ON
5	THE GLIAL SITE MOVING UP INTO THE TISSUE.
6	INTERESTINGLY, THERE'S AN ASTROCYTE WHICH
7	IS UNIQUE TO HUMANS CALLED THE VARICOSE PROJECTION
8	ASTROCYTE, AND WE SEE THAT ONE AS WELL. THAT MISSED
9	CELL RIGHT HERE HAS A SINGLE BLIPPY
10	PROTOPLASMIC-LIKE THING WHICH SENDS ON A PROCESS
11	THAT IS BEADED. AND THIS IS A UNIQUE FEATURE
12	OF IS A UNIQUE ASTROCYTE ACTIVITY IN HUMANS THAT
13	DOESN'T EXIST IN MOUSE OR LOWER SPECIES. BUT ALL
14	THE OTHER TYPES EXIST IN THERE, AND THEY ARE
15	LAMINATED.
16	INTERESTING FOR THOSE THAT HAVE WORKED
17	WITH ORGANOIDS IN THE PAST, ONCE THEY'RE
18	TRANSPLANTED AND VASCULARIZED, THEY DON'T THEY NO
19	LONGER HAVE A ROSETTE IN THE CORE AND, RATHER,
20	BECOME A FULL LAYERED CORTICAL TISSUE.
21	SO ONE OF THE FEATURES OF ASTROCYTES THAT
22	WE KNOW IS, AS I POINTED TO YOU BEFORE, THEY SEND
23	THEIR PROCESSES AND EXPRESS A GENE CALLED APOE4
24	ALONG THE VASCULAR BED. SO HERE IS A BLOOD VESSEL
25	HERE STAINED FOR APOE4A, WHICH IS A PROTEIN FROM THE

1	ASTROCYTE. HERE THEY ARE LAMINATED. IN VITRO,
2	OBVIOUSLY THERE'S NO BLOOD VESSELS AND IT'S JUST
3	SORT OF DISTRIBUTED DIFFUSELY AROUND IN THE
4	ASTROCYTE. THEY STILL MAKE IT, BUT IT'S NOT LOCATED
5	TO THE VASCULAR SYSTEM.
6	HERE IS A 3D WHAT THIS IMAGE IS GOING
7	TO SHOW YOU IS WHAT'S CALLED THE VASCULAR UNIT WHICH
8	IS COMPRISED OF ENDOTHELIAL CELLS, PERICYTES,
9	ASTROCYTES, AND ENDOTHELIAL CELLS, AND EXTRACELLULAR
10	MATRIX IN TIGHT JUNCTION. AND THIS IS THE UNIT THAT
11	KEEPS THE OUTSIDE BLOOD FROM COMING INTO THE BRAIN
12	OR WHAT IS CALLED BLOOD-BRAIN BARRIER. HERE'S A
13	THREE-DIMENSIONAL RECONSTRUCTION OF THAT. THESE ARE
14	EM SECTIONS. THEY'RE A SECTION THAT'S VERY THIN AND
15	THEN STACKED, AND THEN WE CAN GO BACK AND LABEL
16	THEM. THEY DON'T COME THIS WAY. WE HAVE TO COLOR
17	THEM. BUT IT NOT ONLY HAS PERICYTES, MEMBRANES,
18	TIGHT JUNCTIONS, AND ENDOTHELIAL CELLS. UNIQUE,
19	AGAIN, TO THE HUMAN IS THE FACT THAT THE ASTROCYTE
20	ABUTS THE UNIT AND COMPLETELY SURROUNDS IT BY ONE
21	ASTROCYTE. IN THE MOUSE THEY GENERALLY SEND
22	PORTIONS OF THEIR PROCESSES AND WOULD HAVE, SAY, AN
23	ASTROCYTE HERE, AN ASTROCYTE PORTION HERE, AND MAYBE
24	A THIRD ASTROCYTE THERE. SO THIS IS A UNIQUE FORM
25	OF THE VASCULAR UNIT IN HUMAN RELATIVE TO THE MOUSE.

1	IS THE BLOOD-BRAIN BARRIER INTACT? WE DID
2	THIS BY GIVING DEXTRAN BEADS TO THE
3	INTRAORBITAL INJECT THEM INTRAORBITALLY. AND YOU
4	CAN SEE THAT THE DYE WILL IN THE LIVER AND THE
5	MUSCLE IT GETS OUT AND SPREADS OUT TO ALL THE
6	TISSUES. HOWEVER, IN THE BRAIN YOU GET NO LEAKAGE
7	OR LITTLE LEAKAGE AND ONLY STAYS WITHIN THE BLOOD
8	VESSELS. SO HERE'S IN OUR ADJACENT MOUSE CORTEX
9	AFTER THE SAME EXPERIMENT, AND HERE'S WITHIN THE
10	TRANSPLANT. SO WE SEE THAT THE BIOTIN TRACER IS
11	EXCLUDED FROM THE TISSUE AND IS MAINTAINED IN THERE,
12	EVIDENCE SUPPORTING THE FACT THAT THIS IS A
13	RELATIVELY INTACT BLOOD-BRAIN BARRIER.
14	A CAVEAT HERE IS THAT THE ENDOTHELIAL
15	CELLS AND THE PERICYTES THAT MAKE UP THIS
16	BLOOD-BRAIN BARRIER ARE DERIVED FROM THE MOUSE.
17	THEY'RE MIGRATING IN FROM THE MOUSE, AND WE ARE NOT
18	SUPPLYING AT THIS POINT THOSE CELLS. SO THIS IS A
19	LIMITATION.
20	CHAIRMAN GOLDSTEIN: SO, RUSTY, WE ARE AT
21	ABOUT 25 MINUTES JUST TO GIVE YOU A MARK.
22	DR. GAGE: PERFECT. I'M TWO MINUTES AWAY
23	OR THREE.
24	SO WE HAVE IN THE SINGLE-CELL
25	SEQUENCING WE CAN LOOK AT THESE ASTROCYTES UNTOHELY
	SEQUENCING WE CAN LOOK AT THESE ASTROCYTES UNIQUELY,

1	AND WE FIND THAT GO CATEGORIES FOR THE GENES
2	IDENTIFY THOSE THINGS THAT WE BELIEVE TO BE
3	IMPORTANT FEATURES LIKE BLOOD-BRAIN BARRIER,
4	PERMEABILITY, POSITIVE REGULATION, VASCULAR
5	PERMEABILITY. ALL THESE GENES ARE UPREGULATED IN
6	THE ASTROCYTE IN THESE EMBEDDED TRANSPLANTED
7	ORGANOIDS.
8	JUST A LITTLE MORE INFORMATION ABOUT THE
9	MATURATION OF THEM. WE COMPARED THIS TO BEN BARRES'
10	EARLY WORK. WE ISOLATED ASTROCYTES FROM HUMAN FETAL
11	AND ADULT BRAIN, AND WE SEE THAT THE IN VITRO HAS A
12	FEW OF THESE MORE ADULT GENE MARKERS, MORE OF THE
13	FETAL; WHEREAS, IN OUR TRANSPLANT ORGANOIDS, THEY
14	MATURE QUITE DRAMATICALLY OVER TIME.
15	LARRY, I'M NOT GOING TO TELL TOO MUCH, BUT
16	ALSO PART OF THE STORY IS THAT THE ASTROCYTES EMBED
17	INTO THESE NEURONAL ORGANOIDS, INDUCE A RATHER
18	DRAMATIC MATURATION OF THE NEURONS AS WELL. SO
19	HERE'S THE IN VITRO ORGANOIDS AND HERE ARE NEURAL
20	GENE ONTOLOGY SIGNALS, INDICATING THESE NEURONS,
21	PURIFIED NEURONS, HAVE NOW TAKEN ON A MATURE SET.
22	AND WE CAN SEE THIS BY LOOKING AT AN ELECTRON
23	MICROSCOPE WHERE YOU CAN NOW SEE INTACT SYNAPSES.
24	SO THIS IS A PRESYNAPTIC TERMINAL HERE WITH VESICLES
25	AND POSTSYNAPTIC DENSITY AND POST (UNINTELLIGIBLE),

1	WHICH ARE EVIDENT IN THESE CELLS.
2	FINALLY, WE WANT TO TEST FUNCTIONALITY.
3	SO WE STIMULATED THE ANIMALS WHO HAVE TNF-ALPHA, AN
4	INFLAMMATORY INDUCTION MECHANISM. SO AN INCREASE IN
5	THE SUBSET OF ASTROCYTES IN THE TYPES OF GENES AND
6	NUMBER OF CELLS THAT TOOK PLACE. WE LOOK AT THOSE
7	IN QUITE DETAIL, AND WE SEE THAT THERE'S AN
8	UPREGULATION OF TWO HALLMARKS OF INFLAMMATION,
9	INTERFERON GAMMA, TNF-ALPHA SIGNALING OR NF-KAPPA-B
10	AS WELL, INTERESTINGLY, THE DOWNREGULATION OF OXYGEN
11	PHOSPHORYLATION. SO THE CELLS BECOME MORE
12	GLYCOLYTIC IN THEIR INFLAMED STATE, WHICH IS
13	CHARACTERISTIC OF THE LITERATURE.
14	FUN NOTE IS WE CAN TAKE THIS SAME ORGANOID
15	AND TEST THINGS IN MORE DETAIL IN VITRO. SO WE TAKE
15 16	THE ASTROCYTE ORGANOID, TREAT FOR TNF-ALPHA SHORTLY
16	THE ASTROCYTE ORGANOID, TREAT FOR TNF-ALPHA SHORTLY
16 17	THE ASTROCYTE ORGANOID, TREAT FOR TNF-ALPHA SHORTLY AND LOOK FOR GENES THAT ARE INVOLVED. AND WHAT WE
16 17 18	THE ASTROCYTE ORGANOID, TREAT FOR TNF-ALPHA SHORTLY AND LOOK FOR GENES THAT ARE INVOLVED. AND WHAT WE FIND IS THAT CD38, A KEY REGULATOR OF NAD+ LEVELS IN
16 17 18 19	THE ASTROCYTE ORGANOID, TREAT FOR TNF-ALPHA SHORTLY AND LOOK FOR GENES THAT ARE INVOLVED. AND WHAT WE FIND IS THAT CD38, A KEY REGULATOR OF NAD+ LEVELS IN THE BRAIN INVOLVED IN INFLAMMATION AND INTERHUMAN
16 17 18 19	THE ASTROCYTE ORGANOID, TREAT FOR TNF-ALPHA SHORTLY AND LOOK FOR GENES THAT ARE INVOLVED. AND WHAT WE FIND IS THAT CD38, A KEY REGULATOR OF NAD+ LEVELS IN THE BRAIN INVOLVED IN INFLAMMATION AND INTERHUMAN METABOLISM, IS DRAMATICALLY UPREGULATED IN THE
16 17 18 19 20	THE ASTROCYTE ORGANOID, TREAT FOR TNF-ALPHA SHORTLY AND LOOK FOR GENES THAT ARE INVOLVED. AND WHAT WE FIND IS THAT CD38, A KEY REGULATOR OF NAD+ LEVELS IN THE BRAIN INVOLVED IN INFLAMMATION AND INTERHUMAN METABOLISM, IS DRAMATICALLY UPREGULATED IN THE BRAIN. IN THE SUBSET OF ASTROCYTES, THERE ARE
16 17 18 19 20 21 22	THE ASTROCYTE ORGANOID, TREAT FOR TNF-ALPHA SHORTLY AND LOOK FOR GENES THAT ARE INVOLVED. AND WHAT WE FIND IS THAT CD38, A KEY REGULATOR OF NAD+ LEVELS IN THE BRAIN INVOLVED IN INFLAMMATION AND INTERHUMAN METABOLISM, IS DRAMATICALLY UPREGULATED IN THE BRAIN. IN THE SUBSET OF ASTROCYTES, THERE ARE CANCER DRUGS OUT THERE THAT SPECIFICALLY INHIBIT
16 17 18 19 20 21	THE ASTROCYTE ORGANOID, TREAT FOR TNF-ALPHA SHORTLY AND LOOK FOR GENES THAT ARE INVOLVED. AND WHAT WE FIND IS THAT CD38, A KEY REGULATOR OF NAD+ LEVELS IN THE BRAIN INVOLVED IN INFLAMMATION AND INTERHUMAN METABOLISM, IS DRAMATICALLY UPREGULATED IN THE BRAIN. IN THE SUBSET OF ASTROCYTES, THERE ARE CANCER DRUGS OUT THERE THAT SPECIFICALLY INHIBIT CD38. WE CAN APPLY THOSE IN THIS IN VITRO MODEL AND

1	AND THIS ALSO IS SHOWN BY LOOKING AT THE
2	FRAGMENTATION OF MITOCHONDRIA. AGAIN, SHOWING THAT
3	THE REESTABLISHMENT OF METABOLIC ACTIVITY WITHIN
4	THESE CELLS. SO WE HAVE RAPIDLY DERIVED FUNCTIONAL
5	ASTROCYTES, BLOOD-BRAIN BARRIER, AND FUNCTIONALITY
6	OF THE GLIAL CELLS.
7	ONE LAST THING, A COUPLE OF SLIDES JUST TO
8	SHOW THE DIRECTION WE ARE GOING. I TOLD YOU THAT
9	THE ENDOTHELIAL CELLS WERE NOT OF HUMAN ORIGIN. WE
10	HAVE APPLIED THIS PROTOCOL, WHICH IS CALLED
11	"GENERATION OF BLOOD VESSEL ORGANOIDS FROM HUMAN
12	PLURIPOTENT CELLS" BY JOSEF PENNINGER. AND WE
13	APPLIED THIS, AND WE CAN NOW SORT OUT HUMAN
14	PERICYTES AND ENDOTHELIAL CELLS. IT'S QUITE
15	REMARKABLE. THIS IS WHAT THESE ENDOTHELIAL
16	ORGANOIDS LOOK LIKE, AND THEY HAVE PDGF. THEY HAVE
17	ALL THE MARKERS FOR THE CELLS THAT WE WANT.
18	WE'VE DEVELOPED A PROTOCOL NOW WHERE WE
19	CAN EMBED THE ENDOTHELIAL ORGANOID WITH OUR EXISTING
20	ASTROCYTE AND MICROGLIA ORGANOID, AND WE CAN NOW FOR
21	THE FIRST TIME SEE HUMAN VASCULARIZATION BEGINNING
22	IN THESE HUMAN ORGANOIDS. AND WE'VE JUST BEGUN TO
23	TRANSPLANT THESE CELLS TODAY SO THAT WE CAN SEE IF
24	THE HUMAN ENDOTHELIAL CELL AND PERICYTES WILL
25	ANASTOMOSE WITH THE MOUSE VASCULATURE SO WE CAN GET
	24

1	A MORE COMPLETE HUMAN BLOOD-BRAIN BARRIER.
2	THIS IS THE SUMMARY THAT I STARTED OFF
3	WITH. WE HAVE MICROGLIA AND ASTROCYTES. WE ARE ON
4	THE WAY TO ENDOTHELIAL AND PERICYTES. WE HAVE A
5	STRATEGY FOR OLIGODENDROCYTES THAT I'M HAPPY TO
6	SHARE. AND WE'VE BEGUN DOING THE COMPARISON
7	EXPERIMENTS BY INDUCTING WITH PUTTING THE HEALTHY
8	MICROGLIA INTO A DISEASED ENVIRONMENT TO ASK
9	DIRECTIONALITY. AND WE ARE LOOKING FORWARD TO
10	DEVELOPING THESE MODELS THAT WILL BE USEFUL FOR
11	ADDRESSING HUMAN BRAIN DISEASES HERETOFORE UNTAPPED.
12	SO WITH THAT, I WANT TO THANK TWO
13	EXTRAORDINARY POST DOCS IN THE LAB, ONE FOR THE
14	ASTROCYTES AND ONE FOR THE MICROGLIA. AND THEY TEAM
15	UP TO WORK ON PUTTING THESE TOGETHER NOW INTO A
16	COMMON SYSTEM.
17	I'LL STOP THERE, LARRY, AND ESCAPE FROM
18	THIS. AND SHOULD I STOP SHARING? UNLESS YOU WANT
19	TO LOOK AT PICTURES AGAIN.
20	CHAIRMAN GOLDSTEIN: WELL, ACTUALLY, YEAH.
21	WHY DON'T YOU GO AHEAD AND KEEP CONTROL BECAUSE IT
22	COULD BE THAT A QUESTION WILL ELICIT THE NEED FOR A
23	PARTICULAR SLIDE.
24	DR. GAGE: OKAY.
25	CHAIRMAN GOLDSTEIN: SO THAT'S TERRIFIC,

1	RUSTY. THIS SYSTEM ALREADY LOOKS LIKE IT'S GOING TO
2	BE INCREDIBLY VALUABLE COMPARED TO PREVIOUS 2D AND
3	NEURAL ONLY SYSTEMS.
4	ONE QUICK QUESTION. AS THESE BECOME AS
5	THESE ORGANOIDS BECOME BETTER VASCULARIZED, WHAT DO
6	YOU THINK IS GOING TO LIMIT THEIR SIZE WHEN
7	TRANSPLANTED INTO THE MOUSE BRAIN?
8	DR. GAGE: SO WE'VE BEEN DOING THIS NOW
9	FOR ABOUT FIVE YEARS. AND WE DO NOT THEY STOP
10	DIVIDING. SO YOU DON'T HAVE THEY MATURE ENOUGH.
11	BECAUSE THEY'RE MATURING SO MUCH, THEY DON'T HAVE
12	ANY DIVIDING CELLS. WE PULSE WITH VRDU. AND YOU
13	WILL SEE AN OCCASIONAL DIVIDING CELL, BUT I THINK
14	IT'S A REPLACEMENT RATHER THAN ANY OTHER CELL. THEY
15	REALLY ARE RESTRAINED BY THE CAVITY SIZE.
16	I THINK THAT'S THE SAME QUESTION YOU WOULD
17	ASK OF YOURSELF, WHY YOUR BRAIN ISN'T BURSTING OUT
18	OF YOUR SKULL, IS THAT IT REACHES A RESTRICTIVE
19	LIMIT.
20	THERE ARE ABOUT, I WOULD SAY, 3
21	MILLIMETERS WHEN THEY ARE GRAFTED, AND THEY GET UP
22	TO ABOUT 3.5 TO 4 MILLIMETERS AND THEN THEY STOP AT
23	THAT POINT.
24	CHAIRMAN GOLDSTEIN: PRETTY REASONABLE
25	SIZE.

1	PAT.
2	DR. LEVITT: THAT'S GREAT, RUSTY. AMAZING
3	TECHNOLOGY. SO TWO RELATED QUESTIONS. ONE IS THE
4	AMOUNT OF WORK IN THESE EXPERIMENTS THAT YOU
5	DESCRIBED IS GINORMOUS. THAT'S LIKE BEYOND
6	ENORMOUS, RIGHT, IS GINORMOUS.
7	SO FROM THE PERSPECTIVE OF TRYING TO
8	UNDERSTAND BOTH MECHANISM AND ALSO PEOPLE HAVE
9	WRITTEN THERE'S BEEN A LOT OF WRITING ABOUT THE
10	USE OF ORGANOIDS AND STEM CELLS FOR TARGETING DRUG
11	SCREENING. WHAT IS YOUR VIEW ON THAT BECAUSE WHAT
12	YOU'VE DESCRIBED IS CERTAINLY TIME-CONSUMING,
13	GNAWING OUT ITS BENEFITS?
14	AND THEN THE OTHER THING THAT'S RELATED TO
15	THAT IS LIKE IN YOUR BIOLOGICAL PSYCHIATRY PAPER
16	THAT YOU WROTE WITH PAOLA, YOU DID AN INTRODUCTION
17	TO THE SPECIAL ISSUE. ONE OF THE THINGS THAT PAOLA
18	HAS EMPHASIZED IS THE HETEROGENEITY, WHICH I THINK
19	IS BIOLOGICAL. RIGHT? AND SO HOW ARE YOU THINKING
20	ABOUT THAT IN TERMS OF THE NUMBERS THAT YOU'D NEED
21	TO GET TO A POINT WHERE YOU FEEL THE SCREENINGS
22	WOULD ACTUALLY BE VALID AND VALUABLE?
23	DR. GAGE: I THINK
24	DR. LEVITT: TWO VERY EASY QUESTIONS FOR
25	YOU.

1	DR. GAGE: YEAH. WELL, FOR ONE, WE DO
2	IN A SETTING, IN ONE DAY WE CAN DO 25 TO 30 ANIMALS.
3	SO WE CAN GET GOOD SIZED GROUPS THAT WAY. WE
4	USUALLY DO SUBJECT-WISE, WE'LL DO THEM IN
5	DUPLICATE OR TRIPLICATE. THESE ARE ALL REPS. THIS
6	IS ALL THE GRAPHICS. AT THAT POINT, UNLIKE WITH
7	TISSUE CULTURE, YOU DON'T FEED YOURSELVES. YOU JUST
8	PUT THEM IN A CAGE AND THEY FEED THEMSELVES.
9	DR. LEVITT: SURE.
10	DR. GAGE: SO I DO THINK THAT THIS IS A
11	MORE COMPLICATED MODEL, BUT AND WHAT I WAS TRYING
12	TO SHOW HERE WITH THE IN VITRO EVIDENCE, WE INJECTED
13	TNF-ALPHA AND GOT AN INFLAMMATORY RESPONSE. AND WE
14	COULD THEN PURSUE THAT IN THE SUBPOPULATION IN VITRO
15	FOR THE SHORT-TERM PERIOD THAT WE WANTED. SO I
16	THINK WE ARE NOT SAYING THAT YOU WANT TO THROW OUT
17	ALL IN VITRO WORK; BUT, RATHER, YOU CAN GET A MORE
18	AUTHENTIC REPRESENTATION OF THE INTERACTIONS BETWEEN
19	CELLS IN THE IN VIVO SETTING. AND JUST LIKE WE HAVE
20	DONE IN THE PAST WITH MICE WHERE YOU DO SOME OF THE
21	WORK IN MICE; BUT THEN ONCE YOU ACTUALLY GET TOWARDS
22	THE MECHANISM, THEN YOU WOULD LIKE TO MAKE IT INTO
23	SIMPLER, MORE IN VITRO SYSTEM SO YOU CAN DO
24	MECHANISTIC KINDS OF THINGS OR HIGH THROUGHPUT
25	SCREENING. THIS IS NOT WHERE YOU WOULD DO HIGH

1	THROUGHPUT SCREENING. THIS IS WHERE YOU WOULD
2	DISCOVER MECHANISMS AND THEN COME BACK LATER AND
3	MAKE SURE THAT THE COMPOUNDS THAT YOU FOUND THAT ARE
4	DOING THEIR THING DO IT IN THIS CONTEXT AS WELL.
5	SO I DON'T WANT TO REPRESENT THAT I'M
6	PROMOTING THIS OVER AND ABOVE, BUT AS AN ADDED TOOL
7	TO THE ARSENAL.
8	DR. LEVITT: OKAY. AND WHAT ABOUT THE
9	HETEROGENEITY ISSUE WHICH
10	DR. GAGE: I GUESS I'M THERE IS
11	INDIVIDUAL HETEROGENEITY, AND WE EMBRACE
12	HETEROGENEITY AS INDIVIDUAL DIFFERENCES. WE, OF
13	COURSE, ARE INTERESTED IN THAT WITH REGARD TO MOBILE
14	ELEMENTS AND WAYS IN WHICH DIVERSITY CAN BE
15	GENERATED WITH THE TOOLS. WE HAVE FOUND THAT
16	BETWEEN INDIVIDUALS, SO SAME ORGANOIDS TRANSPLANTED
17	IN TWO SEPARATE MICE BUT FROM THE SAME PATIENT, ARE
18	SIMILAR TO EACH OTHER. SO THEY CLUSTER BY SUBJECT
19	RATHER THAN JUST RANDOM VARIATION. SO IT'S NOT
20	RANDOM VARIATION. I BELIEVE, AS YOU SAID, IT'S
21	INDIVIDUAL DIFFERENCES, AND WE EMBRACE THOSE
22	DIFFERENCES.
23	AND, FOR EXAMPLE, IN THIS AUTISM STUDY
24	THAT WE'VE DONE WITH THE MACROCEPHALIA, THEY ARE
25	CLEARLY DIFFERENT. THEY HAVE THE ORGANOIDS GROW

1	BIGGER, THEY GROW FASTER, AND THEY HAVE MORE
2	PROLIFERATING CELLS IN THEM RELIABLY ABOVE THE
3	AGE-MATCH CONTROL.
4	SO WHILE WORKING WITH HUMANS ALWAYS ADDS
5	EXTRA VARIANCE INTO THE SETTING, I BELIEVE THE MORE
6	YOU CAN CONSTRAIN THE CONTEXT IN WHICH YOU'RE
7	GROWING THEM AND ALSO THAT YOU'RE PROVIDING
8	APPROPRIATE NUTRIMENTS, YOU CAN REDUCE THAT AMOUNT
9	OF HETEROGENEITY.
10	TO BE HONEST WITH YOU, I THINK THAT PART
11	OF THE HETEROGENEITY IS THIS NECROSIS THAT OCCURS IN
12	THE CORE OF THE ORGANOID THAT LEADS TO VARIABLE
13	RESPONSE WITHIN THE HOST. AND EACH ORGANOID IS
14	GOING TO BE SLIGHTLY DIFFERENT DEPENDING UPON HOW
15	MUCH NECROSIS THERE REALLY IS. I THINK SOME OTHERS
16	HAVE ALSO COME TO RECOGNIZE THIS AND THEY'RE SEEING
17	THAT THIS INCREASE IN STRESS RESPONSE IN THE CORE IS
18	IMPACTING THE REST OF THOSE CELLS. I THINK
19	VARIABILITY, I DON'T WANT TO SAY ALL OF IT, BUT I
20	WOULD SAY SOME OF IT COMES FROM THE
21	YOU KNOW, THE OTHER THING, JUST TO PLAY ON
22	THAT, YOU CAN GET ASTROCYTES, HUMAN ASTROCYTES, IN
23	THESE ORGANOIDS, BUT IT TAKES ABOUT FIVE MONTHS, AND
24	THEN THEY'RE ONLY IN THE OUTER PORTIONS. AND THAT'S
25	A VARIABLE POINT BECAUSE THEY'RE NOT ALWAYS THERE.
	20

1	SO I WOULD ARGUE THAT, LIKE ALL OF US, WE WANT TO
2	HAVE AS MUCH CONTROL OF OUR ENVIRONMENT. THAT'S WHY
3	WE WANT TO DRIVE THE ASTROCYTES AND TAKE OUR TIME.
4	WE WANT TO EMBED THE MICROGLIA AND TAKE THE TIME.
5	WE WANT TO BRING THE ENDOTHELIAL CELLS AND TRY TO
6	MIMIC THE TIME PERIOD WHEN THEY ACTUALLY WOULD GET
7	IN THERE AS BEST WE CAN.
8	LOT OF WORDS. LOT OF WORDS.
9	DR. LEVITT: THAT WAS GREAT. THANK YOU.
10	CHAIRMAN GOLDSTEIN: QUESTIONS FROM THE
11	GROUP?
12	RUSTY, THE PROGRESS YOU GUYS HAVE MADE,
13	I'M SURE IT'S BEEN AGONIZING AT TIMES, BUT CERTAINLY
14	FROM THE OUTSIDE, OH, IT LOOKS EASY. AND IT WAS
15	REALLY FAST AND YOU KNEW ALL ALONG EXACTLY WHAT YOU
16	ARE GOING TO DO, BUT IT'S A BEAUTIFUL SYSTEM. AND I
17	THINK ALL OF US LOOK FORWARD TO FURTHER DEVELOPMENTS
18	FOR FIGURING OUT WHAT'S GOING WRONG IN ALL THE
19	VARIOUS DISORDERS WE ARE TRYING TO FIGHT, ALS AND
20	ALZHEIMER'S AND THE NEUROPSYCHIATRIC DISORDERS.
21	HAVING A SYSTEM THAT RELIABLY RECAPITULATES
22	FUNCTION WHOOPS, THERE'S FRED IS GOING TO BE
23	INCREDIBLY USEFUL. SO FRED.
24	DR. FISHER: THAT'S THE FIRST TIME I'VE
25	HEARD, WHOOPS, THERE'S FRED. HI, RUSTY. IT'S

1	BEEN
2	DR. GAGE: HI.
3	DR. FISHER: A VERY LONG TIME.
4	SO WHEN YOU WERE DESCRIBING YOUR MODEL AND
5	ITS SEPARATION FROM A VASCULAR SYSTEM, I'M
6	INTERESTED OF WHETHER YOU'VE LOOKED AT CLIVE
7	SVENDSEN'S WORK WHO'S DONE A LOT OF WORK IN THIS
8	AREA ALSO. THEY'VE NOW CREATED SORT OF WHAT THEY
9	CALL BRAIN ON A CHIP WHERE THEY HAVE THE VASCULAR
10	SYSTEM, THEY HAVE THE NEURONS AND THE ASTROCYTES AND
11	ALL OF THAT, AND THEY CAN WATCH THE INTERACTION.
12	I'M WONDERING HOW THAT WORK INFORMS THE FUTURE OF
13	WHAT YOU'RE DOING.
14	DR. GAGE: I HAVE BEEN FOLLOWING IT. AND
14 15	DR. GAGE: I HAVE BEEN FOLLOWING IT. AND WE HAVE A SEPARATE EFFORT USING, IT'S NOT A CHIP,
15	WE HAVE A SEPARATE EFFORT USING, IT'S NOT A CHIP,
15 16	WE HAVE A SEPARATE EFFORT USING, IT'S NOT A CHIP, BUT IT'S A FABRICATED, MICROFABRICATED TOOL. WE ARE
15 16 17	WE HAVE A SEPARATE EFFORT USING, IT'S NOT A CHIP, BUT IT'S A FABRICATED, MICROFABRICATED TOOL. WE ARE WORKING WITH THE ENGINEERING DEPARTMENT. AND WE CAN
15 16 17 18	WE HAVE A SEPARATE EFFORT USING, IT'S NOT A CHIP, BUT IT'S A FABRICATED, MICROFABRICATED TOOL. WE ARE WORKING WITH THE ENGINEERING DEPARTMENT. AND WE CAN GET WHAT YOU HAVE TO DO IS YOU HAVE TO FLOW WE
15 16 17 18 19	WE HAVE A SEPARATE EFFORT USING, IT'S NOT A CHIP, BUT IT'S A FABRICATED, MICROFABRICATED TOOL. WE ARE WORKING WITH THE ENGINEERING DEPARTMENT. AND WE CAN GET WHAT YOU HAVE TO DO IS YOU HAVE TO FLOW WE MAKE OUR VASCULAR ORGANOIDS AND THEY WILL PENETRATE
15 16 17 18 19 20	WE HAVE A SEPARATE EFFORT USING, IT'S NOT A CHIP, BUT IT'S A FABRICATED, MICROFABRICATED TOOL. WE ARE WORKING WITH THE ENGINEERING DEPARTMENT. AND WE CAN GET WHAT YOU HAVE TO DO IS YOU HAVE TO FLOW WE MAKE OUR VASCULAR ORGANOIDS AND THEY WILL PENETRATE INTO THE ORGAN. THEIR SURVIVAL LENGTH AND DURATION
15 16 17 18 19 20 21	WE HAVE A SEPARATE EFFORT USING, IT'S NOT A CHIP, BUT IT'S A FABRICATED, MICROFABRICATED TOOL. WE ARE WORKING WITH THE ENGINEERING DEPARTMENT. AND WE CAN GET WHAT YOU HAVE TO DO IS YOU HAVE TO FLOW WE MAKE OUR VASCULAR ORGANOIDS AND THEY WILL PENETRATE INTO THE ORGAN. THEIR SURVIVAL LENGTH AND DURATION IS LIMITED, AND YOU'RE RELYING ON PROVIDING
15 16 17 18 19 20 21	WE HAVE A SEPARATE EFFORT USING, IT'S NOT A CHIP, BUT IT'S A FABRICATED, MICROFABRICATED TOOL. WE ARE WORKING WITH THE ENGINEERING DEPARTMENT. AND WE CAN GET WHAT YOU HAVE TO DO IS YOU HAVE TO FLOW WE MAKE OUR VASCULAR ORGANOIDS AND THEY WILL PENETRATE INTO THE ORGAN. THEIR SURVIVAL LENGTH AND DURATION IS LIMITED, AND YOU'RE RELYING ON PROVIDING ARTIFICIAL CSF AND BLOOD VESSELS THROUGH. THE
15 16 17 18 19 20 21 22	WE HAVE A SEPARATE EFFORT USING, IT'S NOT A CHIP, BUT IT'S A FABRICATED, MICROFABRICATED TOOL. WE ARE WORKING WITH THE ENGINEERING DEPARTMENT. AND WE CAN GET WHAT YOU HAVE TO DO IS YOU HAVE TO FLOW WE MAKE OUR VASCULAR ORGANOIDS AND THEY WILL PENETRATE INTO THE ORGAN. THEIR SURVIVAL LENGTH AND DURATION IS LIMITED, AND YOU'RE RELYING ON PROVIDING ARTIFICIAL CSF AND BLOOD VESSELS THROUGH. THE BLOOD-BRAIN BARRIER IS NOT SO STURDY IN THOSE CASES

1	MOVE ALONG AND COMPLEMENT THE TRANSPLANTATION WORK
2	AS WELL.
3	I WOULD SAY, THOUGH, THAT IRONICALLY THIS
4	MODEL IS GOING TO BE DEPENDENT ON WHERE YOU PUT IT
5	AND HOW OLD THE ANIMALS ARE WHEN YOU DO THE
6	TRANSPLANTATION. THIS IS NOT ADDRESSING YOUR POINT
7	EXACTLY, FRED, BUT I HOPE I ADDRESSED IT. I DON'T
8	FEEL LIKE ANY OF US ARE IN COMPETITION. I FEEL LIKE
9	WE ARE ALL STRIVING TOWARDS IT. AND IF YOU CAN GET
10	AN IN VITRO SYSTEM WHERE IT ACTUALLY HAS AN IMPACT
11	ON THE BLOOD-BRAIN BARRIER WITH PERICYTES AND THEY
12	PENETRATE AND THEY ARE HUMAN AND THEY FULFILL THE
13	OBLIGATORY NUTRIMENTS THAT ARE NECESSARY TO KEEP
14	THEM ALIVE FOR EXTENDED PERIODS OF TIME AND MATURE
15	THE NEURONS, THEN THAT'S GREAT. I THINK THAT WILL
16	BE A GOOD COMPLEMENT TO WHAT'S GOING ON.
17	ONE INTERESTING THING IS THAT THIS MODEL
18	THAT I PRESENTED TO YOU WAS ACTUALLY DEVELOPED I
19	DEVELOPED THIS IN 1984 WHEN I WAS IN SWEDEN. AND WE
20	WERE TRYING TO FIND LOCATIONS IN THE BRAIN WHERE WE
21	COULD TRANSPLANT SUPERIOR CERVICAL GANGLION TO TEST
22	WHETHER OR NOT ANY DIFFERENT AREAS IN THE BRAIN HAD
23	NERVE GROWTH FACTOR, HUMAN NERVE GROWTH. THIS WAS A
24	LONG AGO. SO WE IMPLANTED IT INTO THIS COLLICULUS,
25	WHICH IS (UNINTELLIGIBLE) ACTUALLY, BUT WE TRIED
	22

1	LOTS OF DIFFERENT AREAS. AND THERE ARE VERY FEW
2	PORTS IN THE AREA WHERE THEY SURVIVE FOR EXTENDED
3	PERIOD OF TIME AND ARE HIGHLY VASCULARIZED WITHIN
4	THE TISSUE. WE ARE STILL EXPLORING OTHER AREAS, BUT
5	I THINK THAT'S AN ISSUE THAT HAS TO BE CONSIDERED.
6	THE OTHER ISSUE IS THE AGE OF THE
7	ORGANISM. IF WE TRANSPLANT EARLY ON DURING EARLY
8	DEVELOPMENT, THEN THE ORGANOIDS TEND TO GROW MUCH
9	LARGER. AND WE'VE CHOSEN TO GRAFT INTO THE ADULT SO
10	IT RESTRICTS THE AMOUNT OF GROWTH THAT THE ORGANOID
11	WILL GO THROUGH. BUT REMEMBER, IN THE DEVELOPING
12	BRAIN, THE BRAIN IS GROWING AT THE SAME TIME. AND
13	ONE OF THE FACTORS THAT ARE INVOLVED IN INDUCING ITS
14	OWN CELLS TO GROW ARE IMPACTING ON THE HOST AS WELL.
15	ANOTHER IT'S NOT MORE QUESTIONS.
16	ANOTHER INTERESTING FACT IS THAT IF WE DON'T PUT
17	ASTROCYTES AND MICROGLIA IN THE ORGANOID, THEN THE
18	HOST MICROGLIA AND ASTROCYTES WILL MIGRATE IN. BUT
19	IF YOU PUT HUMAN MICROGLIA INTO THE ORGANOID, IT
20	PREVENTS, YOU WILL SEE THE MICROGLIA ON THE BRAIN
21	SIDE ON THE MOUSE SIDE, BUT NONE OF THEM CO-STAIN
22	WITH HUMAN MARKERS. AND THAT'S TRUE FOR ASTROCYTES.
23	THERE IS AN INTERESTING EVOLUTIONARY BARRIER FOR
24	ASTROCYTES AND MICROGLIA THAT WILL NOT PENETRATE
25	INTO THE HUMAN TISSUE IF THE OBLIGATORY OR THEIR
	24

1	SISTER CELLS ARE PRESENT.
2	CHAIRMAN GOLDSTEIN: OKAY. FINAL
3	QUESTION. ABLA.
4	DR. CREASEY: THANK YOU, DR. GOLDSTEIN.
5	AGAIN, THANK YOU, DR. GAGE. VERY NICE PRESENTATION.
6	I WANTED TO KNOW JUST PHILOSOPHICALLY THIS
7	BEAUTIFUL SYSTEM, CAN IT BE USED FOR THE STUDY OF
8	BIOLOGY AND THE PATHOGENESIS OF DISEASES OF THE
9	BRAIN? OR IS IT MAINLY A SCREENING METHODOLOGY FOR
10	POTENTIALLY IDENTIFYING AGENTS THAT AFFECT EACH OF
11	THE CELL TYPES?
12	DR. GAGE: I WANT TO MAKE SURE I
13	UNDERSTAND YOUR QUESTION.
14	DR. CREASEY: IF WE ARE INTERESTED IN THE
15	BIOLOGY OF UNDERSTANDING MECHANISM OF DISEASE OF THE
16	BRAIN
17	DR. GAGE: YES.
18	DR. CREASEY: IS THIS DO YOU THINK
19	THIS WILL BE A GOOD SYSTEM TO DO THAT?
20	DR. GAGE: YES. WELL, SO WE'VE SHOWN, FOR
21	EXAMPLE, THAT I'LL GIVE YOU TWO EXAMPLES. IN
22	VITRO IN MONOLAYS WE'VE SHOWN THAT BIPOLAR CELLS,
23	HIPPOCAMPAL BIPOLAR NEURONS FROM PATIENTS WITH
24	BIPOLAR DISEASE, THAT ARE NONRESPONSIVE TO LITHIUM
25	TEND TO BE HYPEREXCITABLE IN A MONOLAYER SETTING.

1	BUT WE ARE RESTRICTED IN TERMS OF HOW MUCH
2	MECHANISTICALLY WE CAN UNDERSTAND THAT. AND WHILE
3	WE DO SEE THIS HYPEREXCITABILITY IN THE ORGANOID
4	SETTING AND WE WANT TO UNDERSTAND WHETHER OR NOT WE
5	CAN USE THIS AS A TOOL TO GET A BETTER UNDERSTANDING
6	OF THAT HYPEREXCITABILITY THAT YOU SEE IN THE
7	LITHIUM NONRESPONDING PATIENTS.
8	SO WE CERTAINLY BELIEVE THAT THE ORGANOIDS
9	WILL BE A VEHICLE FOR UNDERSTANDING PATHOPHYSIOLOGY
10	OF DISEASE, AND THAT'S OUR MAIN GOAL IN DOING THIS.
11	WE ALSO HAVE ANOTHER STUDY IN DEPRESSION WHERE WE
12	FIND THAT PATIENTS THAT ARE RESPONSIVE TO ISSCR'S
13	HAVE A DIFFERENT PROFILE THAN THOSE THAT DO RESPOND
14	TO ISSCR'S. AND, AGAIN, TRYING TO NAIL DOWN THE
15	MECHANISM FOR HOW THAT PATHOPHYSIOLOGY IS
16	MANIFESTED. SO WE BELIEVE THAT THIS IS A GOOD MODEL
17	FOR TRACKING THAT DOWN.
18	DR. CREASEY: THANK YOU. I WAS MAINLY
19	THINKING ABOUT LIKE WHAT ARE THE TRIGGERS FOR THE
20	PATHOGENESIS OF DISEASE AND HOW THE DISEASE
21	PROGRESSES. BUT IT APPEARS THAT EVENTUALLY YOU HAVE
22	ALL THE CELL TYPES THAT YOU NEED IN ORDER TO ANSWER
23	THAT KIND OF QUESTIONS IN THAT ORGANOID. IS THAT
24	RIGHT?
25	DR. GAGE: YEAH. I WAS REALLY HOPING THAT
	26

1	THAT ONE EXAMPLE I SHOWED YOU WHERE YOU TAKE THE
2	NEUROTYPICAL MICROGLIA AND PUT IT INTO A DISEASE
3	ORGANOID AND SHOW THAT IT IS THE HOST THAT'S
4	ACTIVATING THOSE MICROGLIA SUGGESTS THAT THE
5	PATHOGENIC SIGNAL TO GET AN INFLAMED BRAIN IS COMING
6	FROM THE HOST. AND WE ARE LOOKING INTO WHAT
7	FEATURES IN THE HOST, RATHER THAN CONCENTRATING ON
8	THE MICROGLIA, WHAT IS THE HOST DOING TO ACTIVATE
9	AND AGGRAVATE THESE MICROGLIA.
10	DR. CREASEY: GREAT. THANK YOU.
11	CHAIRMAN GOLDSTEIN: YEAH. THANK YOU VERY
12	MUCH, RUSTY. THAT WAS REALLY EDIFYING, EXCITING,
13	AND I THINK IT'S GOING TO MAKE A BIG DIFFERENCE
14	MOVING FORWARD IN THE COMING YEARS TO HAVE MODELS
15	LIKE THIS AND OTHERS THAT ARE BEING DEVELOPED. SO
16	THANK YOU VERY MUCH FOR YOUR TIME.
17	AND WE ARE AT A TRANSITION POINT. RUSTY,
18	YOU'RE WELCOME TO STAY AS LONG AS YOU WANT, BUT OUR
19	NEXT
20	DR. GAGE: WOULD YOU RATHER THAT I LEAVE?
21	CHAIRMAN GOLDSTEIN: NO. IT'S TOTALLY UP
22	TO YOU.
23	DR. GAGE: I'VE GOT EIGHT MINUTES FOR MY
24	NEXT MEETING. SO I COULD HANG ON.
25	CHAIRMAN GOLDSTEIN: GOOD.

1	DR. GAGE: I ALSO THANK YOU ALL FOR
2	INVITING ME AND THANK YOU FOR YOUR SERVICE TO THE
3	COMMITTEE AND TO THE COMMUNITY FOR SERVING ON THIS
4	BOARD.
5	CHAIRMAN GOLDSTEIN: YOU GOT IT.
6	SO NEXT UP IS VICE PRESIDENT ROSA
7	CANET-AVILES WHO WILL PRESENT A PROPOSED CONCEPT
8	PLAN THAT, IF WE SIGN OFF ON IT, WILL THEN MOVE TO
9	THE SCIENCE SUBCOMMITTEE AND THEN, IF IT GOES WELL
10	THERE, ON TO THE FULL BOARD. SO, ROSA, PLEASE TAKE
11	IT AWAY.
12	DR. CANET-AVILES: THANK YOU, DR.
13	GOLDSTEIN. AND THIS PRESENTATION FROM DR. GAGE WAS
14	VERY ON POINT WITH WHAT I'M GOING TO PRESENT. I
15	THINK IT WAS FURTHERING THE EVIDENCE OF THE UTILITY
16	OF HUMAN STEM CELL MODELS IN MODELING THE PATHOLOGY
17	OF NEURO DISEASES, ESPECIALLY THE IMPORTANCE OF THE
18	NEUROIMMUNE AXIS, FOR EXAMPLE. SO WE WILL HEAR
19	ABOUT THIS IN A FEW MINUTES AS I GO ALONG.
20	SO THIS IS AN OPPORTUNITY THAT WE HAVE TO
21	PRESENT THE FIRST PHASE OF THE CIRM NEUROSCIENCE
22	STRATEGY AND IMPLEMENTATION. AND IT WILL COME IN
23	THE FORM OF THE NEURO DISCOVERY CONCEPT, ALSO KNOWN
24	AS REMIND. AND REMIND STANDS FOR RESEARCH USING
25	MULTIDISCIPLINARY INNOVATIVE APPROACHES IN
	20

1	NEUROLOGICAL DISEASES.
2	WHAT I WILL BE PRESENTING TODAY IS
3	ACTUALLY A CONCEPT THAT WILL START WITH A PILOT.
4	AND THIS IS WHAT WE ARE PROPOSING IS A PHASED
5	APPROACH THAT I WILL BE EXPLAINING IN LATER SLIDES.
6	AND WE ARE GOING TO PILOT THIS AS A POTENTIAL
7	FRAMEWORK FOR MULTIDISCIPLINARY DISCOVERY RESEARCH
8	AT CIRM WITH A GROWING INVESTMENT ADAPTING TO CIRM'S
9	GROWTH IN OTHER PARTS OF THIS INFRASTRUCTURE. SO I
10	WANT TO CLARIFY THAT THIS IS NOT ONLY FOR, AS YOU
11	WILL SEE LATER, NEUROPSYCHIATRIC DISEASES. IT'S
12	ABOUT DISEASE MECHANISM RESEARCH, AND WE ARE GOING
13	TO PILOT THIS WITH NEUROPSYCHIATRIC DISEASES OR
14	THAT'S WHAT WE ARE PROPOSING. BUT IF THE MODEL OF
15	THIS INITIATIVE IS SUCCESSFUL, WE WILL BE GROWING
16	INTO OTHER DISEASES. I WANTED TO MAKE THIS CLEAR SO
17	THAT THERE IS NO CONFUSION. SO LET'S GET STARTED.
18	THIS IS CIRM'S NEUROSCIENCE STRATEGY
19	HAS BEEN DEVELOPED IN THE CONTEXT OF OUR MISSION
20	STATEMENT. AND IT MAPS OUT AND INTEGRATES WITH THE
21	ELEMENTS OF OUR MISSION AND STRATEGIC PLAN AND
22	SPECIFICALLY WITH THE FIRST THEME OF OUR STRATEGY,
23	ADVANCING WORLD-CLASS SCIENCE AND THE TWO MAIN
24	GOALS, WHICH IS DEVELOP COMPETENCY HUBS AND BUILDING
25	A KNOWLEDGE INFRASTRUCTURE OR THE KNOWLEDGE

1	NETWORKS.
2	THE REMIND INITIATIVE CORRESPONDS TO THE
3	DISCOVERY PHASE OF CIRM NEURO STRATEGY. AND THE
4	TRAN AND THE CLIN WILL BE ADDRESSED SEPARATELY. I
5	ALSO WANT TO MAKE SURE THAT WE PROVIDE THE RIGHT
6	CONTEXT FOR TODAY'S DISCUSSION.
7	THIS IS ALL A REMINDER THAT THIS COMES
8	FROM WITHIN THE CONTEXT OF PROP 14'S MANDATE AND
9	CIRM'S \$1.5 BILLION SET ASIDE FOR MENTAL HEALTH
10	RESEARCH WITH THE POTENTIAL TO TRANSFORM THE
11	TREATMENT FOR DISEASES AND CONDITIONS OF THE BRAIN
12	AND THE CNS.
13	THE GOAL OF THIS SLIDE IS TO PROVIDE A
14	FRAME FOR THE BACKGROUND AND THE RATIONALE FOR THE
15	CONCEPTUALIZATION OF THE CURRENT CONCEPT AND THE
16	VISION OF THE NEURO DISCOVERY STRATEGY HAS BEEN
17	INFORMED BY MULTIPLE LAYERS, AS YOU CAN SEE HERE, OF
18	STAKEHOLDER DISCUSSION AND INPUT THAT STARTED EVEN
19	PRIOR TO THE PASSAGE OF PROP 14 OVER THE PAST TWO
20	YEARS AND IS OUTLINED IN THIS TIMELINE CHART.
21	AND THERE ARE THREE MAJOR TAKEAWAYS, KEY
22	TAKEAWAYS. ONE IS THAT THERE ARE MAJOR GAPS IN OUR
23	UNDERSTANDING OF MECHANISMS UNDERLYING DISEASE
24	PROCESSES IN THE BRAIN. FOR EXAMPLE, WE KNOW A LOT
25	ABOUT HOW THE HEART WORKS, WHICH HAS BEEN KEY

1	ACTUALLY FOR DEVELOPING THERAPIES. BUT THE BRAIN IS
2	FAR MORE COMPLICATED, AS WE'VE JUST SEEN WITH DR.
3	GAGE'S PRESENTATION, AND WE KNOW VERY LITTLE. SO
4	THAT HAS BEEN IMPEDING THE PROGRESS IN FINDING
5	THERAPIES FOR PEOPLE WITH MENTAL ILLNESS. AND THE
6	KEY TAKEAWAY IS THAT THE LACK OF UNDERSTANDING OF
7	THESE UNDERLYING MECHANISMS OF DISEASE PROCESSES IN
8	THE BRAIN IS A MAJOR BOTTLENECK IN THE DEVELOPMENT
9	OF SUCCESSFUL THERAPIES.
10	NOW, IN ORDER TO DISCOVER THESE
11	MECHANISMS, ONE OF THE BEST WAYS IS TO LEVERAGE
12	COLLABORATION. SO THE MOST EFFECTIVE AND PRODUCTIVE
13	WAY THAT WE HEARD WAS THE DEVELOPMENT OF A
14	CONSORTIUM APPROACH WHERE GENOMICS AND BIG DATA,
15	NOVEL STEM CELL MODELS, PATIENT DATA COULD BE
16	COLLECTIVELY LEVERAGED TO ADVANCE THE FIELD OF NEURO
17	RESEARCH IN A COLLABORATIVE MANNER.
18	IN ORDER FOR A CONSORTIUM TO HAVE ITS
19	MAXIMUM OUTPUT, WE NEED TO PROMOTE KNOWLEDGE SHARING
20	AND EXPAND SHAREABLE RESOURCES TO ACCELERATE
21	RESEARCH OF COMPLEX DISEASES.
22	SO WHAT HAS CIRM DONE TO COVER THIS LACK
23	OF MECHANISTIC NEURO UNDERSTANDING SINCE ITS
24	INCEPTION? FOR THAT, WE NEEDED A GAP ANALYSIS OF
25	THE PORTFOLIO. AND IN THE PAST NEURO TASK FORCES,

1	WE PROVIDED THIS PORTFOLIO GAP ANALYSIS. AT THE
2	LAST TASK FORCE MEETING, WE PRESENTED AN INTERNAL
3	PORTFOLIO GAP ANALYSIS. THIS SLIDE SUMMARIZES THE
4	HISTORICAL FUNDING FOR DISCOVERY, WHICH WAS UP UNTIL
5	NOW \$1.2 BILLION. THE NEURO FUNDED DISCOVERY, 28
6	PERCENT. AND OF THOSE 28 PERCENT, THERE WAS 4
7	PERCENT IN NEURO DISEASE MECHANISMS. NOW, THAT
8	WASN'T A LOT SIGNIFICANT. WHERE DID THE OTHER 24
9	PERCENT GO? WELL, IT WENT PARTLY TO FUND SCIENTIFIC
10	PROGRESS, REFINING DIFFERENTIATION PROTOCOLS, AND
11	CREATING MORE COMPLEX MODELS IN A DISH, SUCH AS
12	ORGANOIDS, AS WE HEARD, SO THAT THE FIELD COULD BE
13	READY TO STUDY DISEASE MECHANISMS.
14	SO CIRM INVESTED IN THE INFRASTRUCTURE AND
15	THE BASIC, BASIC FOUNDATIONAL RESEARCH OF THIS TO
16	MAKE THE FIELD READY TO STUDY WITH THE MODELS. AND
17	THAT'S KIND OF WHERE WE ARE NOW.
18	SO WHAT IS THE FOCUS THAT WE ARE GOING TO
19	HAVE? THE FOCUS THAT WE ARE PROPOSING IS GENERATION
20	OF NOVEL THERAPIES FOR NEURO DISEASES WHICH REQUIRES
21	UNCOVERING THE UNDERLYING MECHANISMS. THEREFORE,
22	THE FIRST GOAL OF CIRM'S NEURO DISCOVERY STRATEGY,
23	WHICH CORRESPONDS TO THE GOAL OF THE CONCEPT FOR THE
24	PROGRAM THAT WE ARE PROPOSING, COULD BE TO
25	ACCELERATE THE DISCOVERY OF MECHANISMS UNDERLYING

1	CNS DISORDERS LEADING TO THE IDENTIFICATION AND
2	VALIDATION OF NOVEL TARGETS AND BIOMARKERS WITH THE
3	GOAL THAT THESE EFFORTS WOULD PROVIDE NEW AVENUES
4	AND RIGOROUS FOUNDATIONS FOR OTHER TRANSLATIONAL AND
5	CLINICAL DEVELOPMENT WORK.
6	AS YOU CAN SEE, I MENTIONED HERE NEURO.
7	IT'S NOT NEUROPSYCHIATRIC. WHAT THE GOAL IS IS
8	THE REMIND IS A CONCEPT FOR A LARGE INITIATIVE
9	THAT COULD BE PHASED. THE IMPLEMENTATION OF ITS
10	FIRST INSTALLMENT WE ARE GOING TO PROPOSE TO BE
11	NEUROPSYCHIATRIC, BUT IT'S NOT GOING TO BE ALL.
12	SO HOW ARE WE GOING TO GO ABOUT THIS?
13	WHAT ARE THE SPECIFICS OF HOW WE WILL GO ABOUT
14	ACHIEVING THIS GOAL? THE OBJECTIVES PROPOSED FOR
15	THIS INITIAL PROGRAM ARE TO FIRST ADVANCE
16	FOUNDATIONAL SCIENTIFIC UNDERSTANDING OF
17	NEUROLOGICAL AND DISEASE MECHANISMS. AND THE GOAL
18	IS THAT THESE EFFORTS WILL ULTIMATELY PROVIDE NEW
19	AVENUES AND RIGOROUS FOUNDATIONS FOR OTHER
20	TRANSLATIONAL AND CLINICAL DEVELOPMENT WORK.
21	THE SECOND COULD BE TO CATALYZE
22	MULTIDISCIPLINARY INNOVATION AND ATTRACT NEW TALENT
23	AND IDEAS INTO THE STUDY OF NEURO DISEASES.
24	WE NEED TO INCENTIVIZE AND CATALYZE AN
25	OPEN, COLLABORATIVE SCIENCE ECOSYSTEM AND SUPPORT

1	THESE KIND OF INTERDISCIPLINARY COLLABORATIVE
2	THEMES, EMPOWERING THE NEXT GENERATION OF
3	SCIENTISTS, AND BRINGING TOGETHER OUTSTANDING,
4	INNOVATIVE, FORWARD-THINKING SCIENTISTS FROM
5	DIFFERENT DISCIPLINES INTO A COLLABORATIVE NETWORK.
6	ULTIMATELY MULTIDISCIPLINARY TEAMS WITH
7	BIG DATA, COMPUTATIONAL ANALYSIS, FOCUSED DISCOVERY
8	WORK CAN LEAD TO THE IDENTIFICATION OF NOVEL TARGETS
9	AND BIOMARKERS WITH IMMEDIATE IMPLICATIONS FOR
10	CLINICAL TRIALS. AND THIS GOES HAND IN HAND WITH
11	INCENTIVIZING AN OPEN, COLLABORATIVE SCIENTIFIC
12	SYSTEM THROUGH DATA AND KNOWLEDGE SHARING
13	INFRASTRUCTURES.
14	NOW, ANOTHER OBJECTIVE DERIVED FROM THIS
15	COLLABORATIVE ENVIRONMENT IS TO MOTIVATE AND SUPPORT
15 16	COLLABORATIVE ENVIRONMENT IS TO MOTIVATE AND SUPPORT INNOVATIVE AND BOLD AND INFORMATIVE NEW IDEAS AND
16	INNOVATIVE AND BOLD AND INFORMATIVE NEW IDEAS AND
16 17	INNOVATIVE AND BOLD AND INFORMATIVE NEW IDEAS AND TOOLS THAT ADDRESS FUNDAMENTAL CHALLENGES IN CNS
16 17 18	INNOVATIVE AND BOLD AND INFORMATIVE NEW IDEAS AND TOOLS THAT ADDRESS FUNDAMENTAL CHALLENGES IN CNS DISEASE BIOLOGY. A VERY GOOD EXAMPLE OF THIS WAS,
16 17 18 19	INNOVATIVE AND BOLD AND INFORMATIVE NEW IDEAS AND TOOLS THAT ADDRESS FUNDAMENTAL CHALLENGES IN CNS DISEASE BIOLOGY. A VERY GOOD EXAMPLE OF THIS WAS, FOR EXAMPLE, OPTOGENETICS. IF WE CAN INVESTIGATE
16 17 18 19 20	INNOVATIVE AND BOLD AND INFORMATIVE NEW IDEAS AND TOOLS THAT ADDRESS FUNDAMENTAL CHALLENGES IN CNS DISEASE BIOLOGY. A VERY GOOD EXAMPLE OF THIS WAS, FOR EXAMPLE, OPTOGENETICS. IF WE CAN INVESTIGATE HOW THE NEURONS WORK TOGETHER BY USING LIGHT TO TURN
16 17 18 19 20	INNOVATIVE AND BOLD AND INFORMATIVE NEW IDEAS AND TOOLS THAT ADDRESS FUNDAMENTAL CHALLENGES IN CNS DISEASE BIOLOGY. A VERY GOOD EXAMPLE OF THIS WAS, FOR EXAMPLE, OPTOGENETICS. IF WE CAN INVESTIGATE HOW THE NEURONS WORK TOGETHER BY USING LIGHT TO TURN SOME NEURONS ON AND RECORD THE RESPONSE OF OTHER
16 17 18 19 20 21	INNOVATIVE AND BOLD AND INFORMATIVE NEW IDEAS AND TOOLS THAT ADDRESS FUNDAMENTAL CHALLENGES IN CNS DISEASE BIOLOGY. A VERY GOOD EXAMPLE OF THIS WAS, FOR EXAMPLE, OPTOGENETICS. IF WE CAN INVESTIGATE HOW THE NEURONS WORK TOGETHER BY USING LIGHT TO TURN SOME NEURONS ON AND RECORD THE RESPONSE OF OTHER NEURONS, WE'VE ADVANCED A LOT THE FIELD. SO IF WE
16 17 18 19 20 21 22	INNOVATIVE AND BOLD AND INFORMATIVE NEW IDEAS AND TOOLS THAT ADDRESS FUNDAMENTAL CHALLENGES IN CNS DISEASE BIOLOGY. A VERY GOOD EXAMPLE OF THIS WAS, FOR EXAMPLE, OPTOGENETICS. IF WE CAN INVESTIGATE HOW THE NEURONS WORK TOGETHER BY USING LIGHT TO TURN SOME NEURONS ON AND RECORD THE RESPONSE OF OTHER NEURONS, WE'VE ADVANCED A LOT THE FIELD. SO IF WE HAD INVESTED IN THIS AT CIRM, THAT COULD HAVE MADE A

1	WITH CIRM'S EXISTING INFRASTRUCTURE OF PROGRAMS.
2	AND WE WILL SEE THIS AS WE SHOW HOW EVERYTHING MAPS
3	TOGETHER WITHIN OUR ECOSYSTEM OF CIRM-FUNDED
4	PROGRAMS, BUT WE ARE TALKING ABOUT THE SHARED
5	RESOURCE LABS, THE COMPETENCY HUBS, INFRASTRUCTURE
6	PLATFORMS LIKE THE DATA COORDINATING AND MANAGEMENT
7	CENTER THAT WILL BE WE ARE CONCEPTUALIZING IT
8	RIGHT NOW AND OTHERS.
9	SO WHAT ARE THE OPPORTUNITIES THAT CIRM
10	CAN LEVERAGE TO PUT THIS GOAL IN PLACE? THE FIRST
11	ONE, AS WE MENTIONED, IS THE \$1.5 BILLION. AND IT'S
12	NOT ALL THAT COULD GO TO JUST THE NEURO DISCOVERY,
13	OBVIOUSLY, BUT PART OF PROP 14'S \$1.5 BILLION
14	EARMARKING SET-ASIDE FOR RESEARCH IN MENTAL HEALTH
15	AND CNS DISEASES. AND THE SECOND COULD BE THE
16	SCIENTIFIC STRENGTH, INNOVATION, AND EXPERTISE IN
17	GENETICS AND STEM CELL BIOLOGY, AND NEUROSCIENCE IN
18	CALIFORNIA. WE HAVE A DEEP POOL OF CALIFORNIA STEM
19	CELL RESEARCHERS, INCLUDING CIRM-SUPPORTED TRAINEES
20	AND INVESTIGATORS.
21	THE WORLD-CLASS CALIFORNIA STEM CELL
22	RESEARCH INFRASTRUCTURE, INCLUDING CIRM-FUNDED
23	SHARED RESOURCE LABS, THE IPSC BIOBANK, THE PLANNED
24	DATA INFRASTRUCTURE, AND OTHERS. ALSO LARGE AMOUNT
25	OF DATA AND RESOURCES FROM OTHER NEURO-FOCUSED

1	CONSORTIA INITIATIVES. AND ADVANCES IN STEM CELL
2	TECHNOLOGIES TO STUDY THE ENTIRE DIVERSITY OF
3	CALIFORNIANS WITH DISEASES OF THE BRAIN. AND AS YOU
4	WILL SEE, SOME OF THOSE ADVANCES HAVE BEEN POINTED
5	OUT BY THE TASK FORCE MEETINGS.
6	NOW, IN ORDER FOR THE COLLABORATIVE
7	RESEARCH TO HAVE AN IMPACT AND ACCELERATE OUR
8	UNDERSTANDING OF THESE DISEASES, THE SCOPE OF THE
9	FIRST INITIATIVE SHOULD BE FOCUSED. THERE ARE MANY
10	NEURO DISEASES WITH A MULTITUDE OF MECHANISMS. AND
11	THESE MECHANISTIC WORLDS DO INTEGRATE, BUT WE NEED
12	TO START FROM THE BOTTOM WITH A FOCUS. AND IN ORDER
13	TO DO THAT, THE BOARD REQUESTED THAT WE DO ANOTHER
14	GAP ANALYSIS. AND WE FOUND THAT WHEN WE MAPPED THE
15	DISCOVERY RESEARCH FROM CIRM'S INCEPTION BY DISEASE
16	TO THE DISEASE BURDEN IN THE U.S. AT THE TIME, WE
17	FOUND THAT NEUROPSYCHIATRIC DISEASES HAD NOT BEEN
18	FUNDED BY CIRM. SO BASICALLY NEUROPSYCHIATRIC
19	DISEASES WERE HISTORICALLY UNDERFUNDED AT CIRM
20	DESPITE THE LARGE BURDEN AND UNMET NEED.
21	SO WE PROPOSE THAT THIS COULD BE A GOOD
22	PLACE TO START. THEREFORE, THE NEURO TASK FORCE
23	STARTED WITH A SERIES OF MEETINGS THAT MADE THE CASE
24	THAT THE NEUROPSYCHIATRIC SPACE WAS PRIME FOR RAPID
25	PROGRESS DUE TO SEVERAL RECENT ADVANCEMENTS.

1	ONE WAS THE GENETIC RISK ARCHITECTURE WAS
2	STARTING TO BEING DEFINED. IT IS STILL FAR FROM THE
3	AGNOSTIC OR PREDICTIVE, BUT WE ARE GETTING CLOSER.
4	AND WE ARE GETTING BETTER AT TRANSLATING LOCI TO
5	GENES TO PATHWAYS.
6	THE SECOND POINT THAT WE HEARD ABOUT WAS
7	THE DEMONSTRATED UTILITY OF HUMAN STEM CELL MODELS.
8	AND WE HEARD A LITTLE BIT MORE ABOUT THIS TODAY.
9	BASICALLY MOUSE MODELS HAVE REVEALED COMPLEX
10	INTERACTION OF GENES AND CIRCUITS AND BEHAVIOR, BUT
11	THEY HAVE SEVERE LIMITATIONS. FOR EXAMPLE, THEY
12	CAPTURE POORLY THE IMPACT OF NONCODING VARIANTS.
13	AND WE'VE LEARNED FROM KRISTIN BRENNAND'S
14	PRESENTATION THAT IT'S NOT IDEAL.
15	THERE'S ALSO THE ADVANCEMENT IN RELATED
16	RESEARCH TECHNOLOGIES. WHAT CAN THEY TEACH US ABOUT
17	PSYCHIATRIC DISORDERS? AND WITH ALL THIS EVIDENCE
18	THAT WE HEARD, THE FOCUS OF THE FIRST IMPLEMENTATION
19	FOR THIS CONCEPT WE PROPOSE TO BE NEUROPSYCHIATRIC
20	DISEASE MECHANISMS.
21	SO HOW DID WE PROPOSE THE STRUCTURE OF
22	THESE RFA PROGRAMS TO FUND ACCELERATION OF DISCOVERY
23	OF DISEASE MECHANISMS IN NEUROPSYCHIATRIC DISORDERS
24	AS THE FIRST PHASE OF THIS PILOT PROGRAM?
25	SO FOR THIS WE ARE PROPOSING TWO TYPES OF

1	AWARDS. A FIRST TYPE OF AWARD, THE LARGE
2	COLLABORATIVE RESEARCH PROJECTS, COULD REQUIRE DATA,
3	PRELIMINARY DATA. IT COULD BE A FOUR-YEAR AWARD
4	WITH A BASE COMPONENT OF \$2 MILLION PER YEAR WITH \$8
5	MILLION IN TOTAL OVER THE FOUR YEARS. WE WOULD
6	EXPECT A NUMBER OF SIX AWARDS TO BE FUNDED WITH A
7	TOTAL BUDGET PER CYCLE WHICH WE'LL SEE NOW AND ABOUT
8	FIVE OR MORE INVESTIGATORS, MINIMUM OF FIVE
9	INVESTIGATORS.
10	NOW, WE THOUGHT THAT WE WOULD LIKE TO
11	INCENTIVIZE COLLABORATION. AND TO DO THAT, WE
12	DECIDED THAT IF WE COULD IF THE TEAMS BRING
13	MATCHING FUNDS OF A MINIMUM OF \$.5 MILLION A YEAR,
14	THIS CAN BE FROM INDUSTRY, FROM OUTSIDE
15	COLLABORATORS, FROM OTHER CONSORTIA, AND IT DOES NOT
16	NEED TO BE FROM OUTSIDE OF CALIFORNIA. IT CAN BE
17	FROM INSIDE OF CALIFORNIA. SO A GROUP COULD BE
18	COLLABORATING WITH A COMPANY. SO IF YOU BRING \$.5
19	MILLION A YEAR IN FUNDING, CIRM WILL MATCH THOSE
20	FUNDS WITH A TOTAL OF 2 MILLION IN TOTAL FOR THE
21	FOUR YEARS.
22	SO THIS LED TO A TOTAL FOR THIS TYPE OF
23	PROGRAM OF \$2.5 MILLION A YEAR, WHICH COULD BE THREE
24	WITH THE MATCHING, \$10 MILLION IN DIRECT FUNDS COST
25	PER AWARD FOR A TOTAL OF FOUR YEARS AND A TOTAL OF

1	\$72 MILLION WITH INDIRECT COSTS AS THE TOTAL THAT WE
2	HAD ASKED FOR THIS PROGRAM.
3	THE SECOND TYPE OF AWARDS COULD BE MORE
4	EXPLORATORY PROJECTS, MORE PROOF OF CONCEPT OR
5	INITIAL VALIDATION OF THE PROPOSED TOOL, MODEL,
6	HYPOTHESIS. THIS COULD GO WITH THE INNOVATIVE PART
7	OF THE OBJECTIVES. THIS COULD BE WITHOUT REQUIRED
8	PRELIMINARY DATA, TWO YEARS, AND \$.5 MILLION A YEAR
9	WITH A MILLION DOLLAR TOTAL FOR THE AWARD, 15
10	EXPECTED NUMBER OF AWARDS, \$18 MILLION IN TOTAL.
11	AND THIS COULD BE TWO OR MORE INVESTIGATORS MINIMUM.
12	NOW, HOW DO WE SEE THIS FLOWING THROUGH TO
13	THE TIMELINE? SO REMIND-L COULD BE FOUR YEARS. THE
14	LARGE COLLABORATIVE PROGRAMS COULD GO AND THEN
15	THERE WOULD BE THE OPPORTUNITY FOR ONE MORE TIME
16	RENEWAL FOR FOUR MORE YEARS IN THE NEXT CYCLE. AND
17	IN CASES WHERE THINGS HAVE ADVANCED THAT CAN BE
18	LEVERAGED BY A TRAN OR CLIN, THERE WOULD BE THE
19	POSSIBILITY OF DYNAMISM TO THIS MECHANISM THAT WE
20	WILL EXPLAIN THROUGH DISCOVERY ADVISORY PANELS. SO,
21	FOR EXAMPLE, IF YOU ARE IN YEAR TWO AND YOU HAVE A
22	DISCOVERY ADVISORY PANEL, YOU'VE ALREADY SHOWN
23	VALIDATION OF A NEW TARGET, YOU COULD ACTUALLY MOVE
24	TOWARD A TRANSLATIONAL AWARD OR APPLICATION OF CIRM
25	FUNDS.

1	AND THEN REMIND-X COULD START IN YEAR TWO.
2	SO WE WOULD HAVE AN RFA STARTING POSTING NEXT
3	YEAR IN '24, AND THEN IN '25 WE COULD HAVE REMIND-X
4	STARTING AGAIN.
5	NOW, THIS IS A PILOT. AGAIN, WHAT I
6	WANTED TO SHOW WITH THIS SLIDE IS THAT WE ARE
7	PILOTING A NEW FRAMEWORK. AND THESE AWARDS THAT WE
8	WOULD HAVE, THE EXPLORATORY WITH THE LARGER
9	COLLABORATIVE LARGER AWARDS, AND THEN ALL
10	INTEROPERATING WITH THE DISCOVERY PROGRAMS, ALL OF
11	THESE COULD BE REPEATED. WE WOULD HAVE ANOTHER
12	AND I'M NOT SAYING THAT WE ARE GOING TO FUND
13	SPECIFICALLY THIS. THESE ARE ONLY EXAMPLES. BUT
14	THEN WE COULD HAVE ANOTHER ONE IN FOUR YEARS TIME
15	THAT COULD THEN START WITH NEUROVASCULAR AND
16	NEUROIMMUNE AXIS TYPE OF FOCUS OF DISEASE
17	MECHANISMS, OTHER NEUROLOGICAL DISEASES, OTHER FOCUS
18	AREAS OR BOTTLENECKS. WHAT WE ARE TRYING TO SHOW
19	HERE IS THAT WE ARE TRYING TO PILOT A FRAMEWORK FOR
20	A WAY OF FUNDING DISCOVERY RESEARCH IN NEUROLOGICAL
21	DISEASES.
22	
23	
24	
25	

1	THIS PROGRAM, AS I WAS SHOWING, WE ARE
2	PROPOSING A PHASED APPROACH THAT WILL ALLOW MORE
3	CONTINUITY AND EXPANSION TO OTHER AREAS OF CNS
4	RESEARCH, PILOTING THIS POTENTIAL FRAMEWORK FOR
5	MULTIDISCIPLINARY DISCOVERY RESEARCH AT CIRM AND
6	GROWING AN INVESTMENT, ADAPTING TO CIRM'S GROWTH AND
7	ITS INFRASTRUCTURE KNOWLEDGE NETWORK AND COMPETENCY
8	HUB CAPABILITY.
9	AGAIN, THIS IS NOT ONLY FOR
10	NEUROPSYCHIATRIC. NEUROPSYCHIATRIC WOULD START THIS
11	YEAR WHERE WE ARE PROPOSING \$72 MILLION AND SIX
12	TEAMS AND THEN 15 TEAMS AND \$18 MILLION FOR THE
13	INNOVATION. BUT THEN IT COULD AS WE MOVE TO THE
14	NEXT ROUND, WE COULD STILL INCLUDE NEUROPSYCHIATRIC,
15	BUT THEN WE WOULD FUND OTHER DISEASES. THESE ARE
16	EXAMPLES ONLY. AND WE COULD ALLOCATE MORE FUNDING
17	AS THE INFRASTRUCTURE WOULD ALREADY BE SETTLED AND
18	IT WOULD ALREADY BE INTEROPERATING WITH THE DATA
19	COORDINATING MANAGEMENT CENTER AND OTHER PARTS OF
20	CIRM'S INFRASTRUCTURE. AND WE WOULD HAVE ALREADY
21	LEARNED HOW TO DO IT WITH OTHER CONSORTIA, AND WE
22	WOULD BE ABLE TO FUND EVEN MORE, AND WE WOULD BE
23	GROWING, AND WE WOULD BE ABLE TO FIGURE OUT COMMON
24	MECHANISMS AMONGST THESE DISEASES AS WELL. AND THEN
25	AS WE GROW EVEN FURTHER, WE COULD BE FUNDING MORE.

1	THE NEXT SLIDE OH, ACTUALLY I FORGOT TO
2	MAKE A POINT HERE. IN HERE YOU CAN SEE THAT THIS
3	PHASED APPROACH COULD BE ALSO COORDINATED, THE
4	PROGRAMS COULD BE COORDINATED ADDING A DISCOVERY
5	ADVISORY PANEL. THE DISCOVERY ADVISORY PANEL COULD
6	BE PROVIDING INPUT TO THE RESEARCHERS, TO THE
7	AWARDEES. SO THIS IS A PART OF THE PROGRAM THAT
8	CIRM COULD PUT IN PLACE. SAME AS WE HAVE
9	TRANSLATIONAL ADVISORY PANELS AND CLINICAL ADVISORY
10	PANELS, WE PROPOSE TO HAVE A DISCOVERY ADVISORY
11	PANEL THAT IS SOME EXPERTS THAT WILL PROVIDE INPUT
12	SO THAT WE CAN LEARN AS WE MOVE FORWARD AND HELP THE
13	AWARDEES LEVERAGE EACH OTHER'S RESEARCH AND IN SOME
14	INSTANCES, IF THINGS ARE ADVANCING FASTER, TO HELP
15	THEM MOVE FASTER TOWARDS TRANSLATION OR CLINICAL.
16	WE COULD ALSO HAVE AN ANNUAL NETWORK CONFERENCE, AND
17	ALL OF THIS DATA COULD BE WORKING AND INTEROPERATING
18	WITH THE DATA COORDINATING AND MANAGEMENT CENTER.
19	AGAIN, THIS SLIDE IS THE ONE THAT SHOWS
20	HOW THIS PROGRAM BUDGET COULD BE GROWING AS WE ARE
21	GROWING THE PROGRAM AND AS NEW DISEASES ARE COMING
22	INTO PLACE IN THIS INITIATIVE.
23	AND THEN THIS SLIDE ALSO INTENDS TO SHOW
24	WHAT THE ESTIMATED PROJECTIONS OF MONEY SPENDING
25	COULD BE FOR THIS PROGRAM. SO THE CNS PROJECTS

1	THIS IS FOR THE REMIND. SO IT COULD BE \$72 MILLION.
2	THEN IF WE MAKE 12 TEAMS, IN FOUR YEARS TIME, 144,
3	12 MORE TEAMS, \$144 MILLION. WE COULD KEEP ABOUT
4	THE SAME LEVEL IN THE REMIND-X. BUT THEN WE ALSO
5	NEED TO TAKE INTO ACCOUNT THAT CNS PROJECTS THAT ARE
6	PART OF OUR DISC-0 AND 2 PILLAR PROGRAMS CURRENTLY,
7	AS WE ARE MAKING CHANGES, CONCEPT AMENDMENTS, WE ARE
8	GOING TO BE INCREASING THE AMOUNT OF FUNDING TO
9	THESE PILLAR PROGRAMS. AND THIS IS AN ESTIMATE
LO	BECAUSE THIS HAS NOT YET BEEN PRESENTED OR APPROVED
L1	BY THE BOARD.
L2	BUT IMAGINING THAT WE END UP FUNDING AT
L3	THE LEVEL THAT WE BELIEVE MIGHT BE FUNDING, THIS
L4	COULD CORRESPOND TO ABOUT \$235 MILLION IN THE NEXT
L5	12 YEARS, WHICH MEANS THAT THE TOTAL DISCOVERY NEURO
L6	FUNDING APPROXIMATELY COULD BE ABOUT \$648 MILLION OF
L7	THE 1.5 BILLION THAT ARE EARMARKED. SO THIS IS JUST
L8	A ROUGH APPROXIMATE.
L9	AGAIN, THIS IS A PRESENTATION OF AN
20	OVERALL CONCEPT FOR A NEW INITIATIVE, NEW WAY OF
21	FUNDING NEURO DISCOVERY SCIENCE AT CIRM.
22	AGAIN, A REMINDER OF THE KEY PROGRAM
23	DRIVES. THE REMIND PROGRAM DRIVES KEY OBJECTIVES TO
24	ACCELERATE FOUNDATIONAL SCIENTIFIC UNDERSTANDING OF
25	NEUROPSYCHIATRIC, BUT IN GENERAL NEURO DISEASE

1	MECHANISMS AND THE DEVELOPMENT OF NOVEL TOOLS.
2	CATALYZING MULTIDISCIPLINARY INNOVATION. YOU'VE
3	SEEN THIS STRUCTURE THAT WE ARE PROPOSING FOR THESE
4	LARGE TEAMS. ATTRACTING NEW TALENT AND IDEAS INTO
5	NEUROPSYCHIATRIC RESEARCH AND SEEDING NEW
6	PARTNERSHIPS.
7	JUST AS LITTLE BIT OF INFORMATION, WE ARE
8	ALREADY, WE'VE BEEN TALKING TO DIFFERENT PARTNERS,
9	ESPECIALLY THE FEDERAL GOVERNMENT ARE FUNDING, BUT
10	ALSO OTHER PARTNERS SO THAT WE CAN LEVERAGE ALL OF
11	THESE TOGETHER, THEIR INVESTMENT AS WELL INTO THIS
12	INITIATIVE.
13	AND THEN DRIVING OPEN AND COLLABORATIVE
14	SCIENCE AND ALIGNING BEST PRACTICES THROUGH DATA AND
15	KNOWLEDGE SHARING INFRASTRUCTURE, WHICH IS SOMETHING
16	THAT WE ARE WORKING VERY HARD AND THAT WE WILL BE
17	PROVIDING A CONCEPT. SO THIS COULD BE IMPLEMENTED
18	RIGHT AFTER WE INITIATE. AND WE ARE TAKING INTO
19	ACCOUNT HOW WE COULD MAKE IT WORK GIVEN THAT THE
20	DATA COORDINATING AND MANAGEMENT CENTER COULD HAPPEN
21	RIGHT AFTER.
22	THIS COULD ALL BE COORDINATED THROUGH THE
23	DATA COORDINATING AND MANAGEMENT CENTER STEERING
24	COMMITTEE. AND, AGAIN, THIS IS JUST A PRESENTATION
25	OF WHAT THIS MODEL IS TAKING INTO ACCOUNT IN TERMS

1	OF PROGRAM FOR LARGE RESEARCH TEAMS, PROJECTS, AND
2	THE CIRM DISCOVERY PILLAR PROJECTS.
3	CHECKING WITH TIME, LARRY, AM I DOING
4	WELL? WE HAVE A FEW MORE SLIDES, ABOUT FIVE MORE
5	SLIDES.
6	CHAIRMAN GOLDSTEIN: THAT'S FINE. GOT TO
7	LEAVE SOME TIME FOR DISCUSSION THOUGH.
8	DR. CANET-AVILES: WONDERFUL. YES, ABOUT
9	HALF AN HOUR.
10	SO THE REMIND HIGH-LEVEL OUTCOMES COULD BE
11	THE NOVEL MECHANISTIC INSIGHTS. SO REMIND-L, WHICH
12	IS THE LARGE COLLABORATIVE PROGRAM, WOULD LEAD TO
13	NOVEL MECHANISTIC INSIGHTS INTO THE BIOLOGY OF
14	NEUROPSYCHIATRIC DISEASES, COULD ALLOW US TO GET
15	FURTHER UNDERSTANDING OF CURRENT MECHANISMS,
16	INCLUDING MECHANISMS CUTTING ACROSS CLASSICALLY
17	DEFINED DISEASE BOUNDARIES. AS YOU CAN SEE, AS WE
18	ADD MORE DISEASES, WE WILL HAVE A CHANCE TO FIND
19	THOSE COMMON MECHANISMS EVEN MORE, BUT WE NEED TO
20	START WITH SOMETHING DEFINED. AND EXTENSION OF
21	VALIDATION OF FINDINGS TO DIVERSE HUMAN POPULATIONS,
22	AS WELL AS IDENTIFICATION AND VALIDATION OF NEW
23	THERAPEUTIC TARGETS OR BIOMARKERS.
24	AND THEN REMIND-X, HIGH-LEVEL OUTCOMES
25	COULD BE TO PROVIDE PROOF OF CONCEPT OR INITIAL

1	VALIDATION OF PROPOSED TOOLS, MODELS, OR HYPOTHESIS.
2	SO THIS IS A MODEL OF HOW WE SEE IT ALL
3	WORKING. ULTIMATELY THIS IS A MULTIDIMENSIONAL AND
4	LAYERED PROPOSAL THAT PULLS DIFFERENT COMPONENTS
5	TOGETHER IN SERVICE OF THE OVERALL NEURO STRATEGY
6	AND CONSISTENT WITH THE FEEDBACK THAT WE'VE RECEIVED
7	FROM THE MEMBERS OF THE BOARD AND THE TASK FORCE
8	OVER THE PAST FEW MONTHS.
9	THE GOAL IS TO ACCELERATE THE PACE OF
10	DISCOVERY AND INFORM NEW PATHS TO CURE NEURO
11	DISEASES, LEVERAGING ALREADY EXISTING
12	INFRASTRUCTURE. AS YOU CAN SEE HERE, THERE'S THE
13	DISCOVERY, THE SHARED LABS INFRASTRUCTURE, EVEN THE
14	TRAINING/EDUCATION INFRASTRUCTURE, THEN ALSO
15	LEVERAGING EXTERNAL CONSORTIA, RESOURCE NETWORKS AND
16	DATA PLATFORMS, AND ULTIMATELY LEADING TO THIS OPEN
17	SCIENCE COMMUNITY ECOSYSTEM THAT WILL LEAD TO
18	DISCOVERY OF NOVEL TARGETS AND BIOMARKERS AND
19	INCREASE THE EFFICIENCY AND SUCCESS OF CLINICAL
20	TRIALS. THAT'S WHERE WE ARE ALL TRYING TO LEAD TO.
21	NOW, IN TERMS OF PROJECT ELIGIBILITY, TO
22	BE ELIGIBLE, REMIND PROJECTS MUST PROPOSE STUDIES
23	THAT ARE FOCUSED ON ELUCIDATION OF MECHANISMS OF
24	NEUROPSYCHIATRIC DISEASES. THAT'S FOR THE FIRST
25	INSTALLMENT OF THIS PROGRAM AGAIN. SO THIS COULD BE

1	THE CONCEPT THAT WE WOULD COME IN SEPTEMBER WITH.
2	THAT COULD BE THE RFA; BUT AS WE MOVE IN FOUR YEARS
3	TIME, WE COULD BE ADDING OTHER DISEASES. AND
4	INCLUDE THE STUDIES USING HUMAN STEM CELLS OR
5	GENETIC RESEARCH.
6	NOTE THAT ANY STUDIES USING NONHUMAN
7	SYSTEMS MUST BE VALIDATED WITH A RELEVANT HUMAN CELL
8	EQUIVALENT.
9	IN TERMS OF PRINCIPAL INVESTIGATOR
10	ELIGIBILITY, FOR BOTH TYPES, ALL PRINCIPAL
11	INVESTIGATORS SHOULD BE EMPLOYED AT CALIFORNIA
12	NONPROFIT OR FOR-PROFIT RESEARCH INSTITUTION. THERE
13	HAS TO BE ONE PI THAT'S GOING TO BE DESIGNATED AS
14	THE COORDINATING PI WHO WILL MANAGE THE
15	COLLABORATION AND WILL BE THE ADMINISTRATIVE CONTACT
16	FOR CIRM AND ANY GRANT PARTNERS. THE MINIMUM
17	PERCENT EFFORT FOR THE COORDINATING PI IN THE
18	REMIND-L, THE LARGE COLLABORATIVE, IS 20 PERCENT.
19	AND FOR THE REMIND-X, WHICH IS THE EXPLORATORY,
20	HIGH-RISK PROJECTS, IS GOING TO BE 10 PERCENT.
21	OTHER PI'S WE ARE ASKING FOR A 10-PERCENT MINIMUM.
22	THE TEAM SIZE, FIVE MINIMUM FOR REMIND-L
23	AND REMIND-X IS TWO MINIMUM. AND FOR REMIND-L WE
24	ARE ASKING THAT AT LEAST ONE MEMBER OF THE
25	COLLABORATION SHOULD HAVE RELEVANT CLINICAL

1	EXPERTISE, AND ONE MEMBER SHOULD HAVE RELEVANT
2	COMPUTATIONAL BIOLOGY EXPERTISE GIVEN THE NEED TO
3	LINK TO CLINICAL AND ALSO TO BE ABLE TO LEVERAGE THE
4	DATA. CIRM WILL ENCOURAGE FAVORABLE CONSIDERATION
5	OF APPLICATIONS THAT INCLUDE AT LEAST ONE TO TWO
6	EARLY CAREER FACULTY.
7	FOR THE REMIND-X WE STRONGLY ENCOURAGE
8	APPLICATIONS FROM INVESTIGATORS WHO CAN BRING NEW
9	TECHNOLOGY, RESOURCES, OR FRAMEWORKS TO THE STUDY OF
10	NEUROPSYCHIATRIC DISEASE AND IN VITRO MODELING OF
11	CNS.
12	NOW, IN TERMS OF DATA SHARING, ALL
13	PROPOSALS WILL NEED TO INCLUDE THE DATA SHARING AND
14	MANAGEMENT PLAN AND DESCRIBE AN APPROACH TO SHARING
15	AND MANAGEMENT OF DATA GENERATED CONSISTENT WITH
16	FAIR PRINCIPLES, FINDABLE, ACCESSIBLE,
17	INTEROPERABLE, AND REPRODUCIBLE PRINCIPLES, AND IT
18	ALSO MUST COORDINATE WITH THE DATA COORDINATING AND
19	MANAGEMENT CENTER THAT WILL BE PRESENTED THE CONCEPT
20	IN MARCH OF 2024.
21	NOW, HERE THERE IS A TIMELINE SITUATION
22	BECAUSE THE DCMC IS COMING LATER. BUT GIVEN THAT
23	THIS RFA, IF APPROVED THE CONCEPT, THE APPLICATIONS
24	COULD BE REVIEWED IN MAY OF 2024. WE WILL BE
25	CREATING A PROCESS BY WHICH CIRM WILL MEET WITH THE
	Γ0

1	AWARDEES DURING THE FUNDING ADMINISTRATIVE REVIEW TO
2	MAKE SURE THAT THEIR DATA SHARING AND MANAGEMENT
3	WILL ALIGN WITH WHAT WE NEED FOR THE DATA
4	COORDINATING AND MANAGEMENT CENTER. SO WE'VE BEEN
5	THINKING ABOUT HOW THIS COULD BE DOING, AND THIS IS
6	BRINGING ALSO ADVICE THAT WE GATHERED FROM
7	COLLEAGUES FROM THE FEDERAL GOVERNMENT THAT ARE
8	DOING SIMILAR INITIATIVES.
9	AND THEN DIVERSITY, EQUITY, AND INCLUSION,
LO	THE APPLICATIONS NEED TO INCLUDE PLANS TO ADDRESS
L1	DEI.
L2	THE DISCOVERY ADVISORY PANEL, CIRM, THIS
L3	IS VERY IMPORTANT, WILL COORDINATE THE DISCOVERY
L4	ADVISORY PANEL THAT WILL BE COMPOSED OF
L5	NON-CALIFORNIA EXPERTS TO PROVIDE INDEPENDENT,
L6	CONFIDENTIAL, EXPERT ADVICE ON REMIND PROGRAMS.
L7	THIS IS WHAT I WAS TRYING TO SAY EARLIER, BUT THIS
L8	IS A BIT BETTER ARTICULATED.
L9	THE SPECIFIC ACTIVITIES OF THIS COMMITTEE
20	COULD INCLUDE REVIEW OF THE PROGRESS REPORTED BY
21	THESE LARGE COLLABORATIVE TEAM AWARDEES AND PROVIDE
22	NONBINDING ADVICE TO THE AWARDEES AND CIRM. SO
23	BASICALLY WE WILL PROVIDE THIS AS AN EXTRA RESOURCE
24	FOR OUR APPLICANTS. AND THIS FROM OUR COLLEAGUE,
25	ABLA CREASEY, SHE HAS TOLD US THAT THESE ARE AN

1	EXTREMELY HELPFUL RESOURCE FOR THE TRANSLATIONAL AND
2	CLINICAL RESEARCHERS. AND THAT ALSO WILL HELP US
3	IDENTIFY AND LEVERAGE EXTERNAL RESOURCES TO FURTHER
4	COLLABORATIVE RESEARCH.
5	NOW, THE BUDGET. SO THE OVERALL CONCEPT,
6	WE ARE NOT ASKING FOR MONEY HERE. THIS IS JUST AN
7	ESTIMATE OF WHAT WE COULD BE INVESTING ON THE FIRST
8	PHASE. WE ARE ONLY GIVING A PROJECTION OF THE FUNDS
9	THAT WILL BE REQUIRED BECAUSE THE BUDGET FOR EACH
10	ONE OF THESE RFA'S IS BEING ASKED SEPARATELY AT THE
11	CORRESPONDING JOINT ICOC. SO THE BUDGET FOR THE
12	REMIND-L WAS INCLUDED IN THE DISCOVERY BUDGET FOR
13	FISCAL YEAR 23/24 THAT WAS PRESENTED BY OUR
14	COLLEAGUE, POUNEH SIMPSON, AT THE LAST JUNE MEETING.
15	SO WHAT WE ARE ASKING IS THE REQUEST OF
16	THE BOARD TO APPROVE THE PROPOSED REMIND PROGRAM
17	CONCEPT AS AN INITIATIVE THAT WILL HELP US FURTHER
18	THE DISCOVERY OF DISEASE MECHANISMS IN NEURO
19	DISEASES AND WE WILL BE IMPLEMENTING IN ITS FIRST
20	PHASE WITH NEUROPSYCHIATRIC DISEASES AS A FOCUS.
21	THANK YOU.
22	CHAIRMAN GOLDSTEIN: THANK YOU, ROSA.
23	THAT WAS A TERRIFIC PRESENTATION.
24	SO QUESTIONS AND/OR DISCUSSION FROM THE
25	TASK FORCE? STEVE.

1	MR. JUELSGAARD: WONDERFUL PRESENTATION,
2	ROSA. THANK YOU VERY MUCH. CAN YOU GO BACK TO
3	SLIDE 15 PLEASE?
4	DR. CANET-AVILES: YES. GIVE ME A SEC.
5	THERE YOU GO.
6	MR. JUELSGAARD: NO, IT'S THE NEXT ONE OR
7	THE ONE BEFORE IT. IT'S THE ONE THAT SHOWS THE USE
8	OVER TIME OF EXPANDING THE PROGRAM. SO I COUNTED
9	DR. CANET-AVILES: YES. THIS ONE,
10	CORRECT?
11	MR. JUELSGAARD: RIGHT. SO THIS IS MORE
12	OF A QUESTION, I GUESS, GLOBALLY AND MAYBE FOR MARIA
13	MILLAN. BUT THIS SUGGESTS THAT WE COULD BE FUNDING
14	THESE PROGRAMS ON THROUGH 2035. AND WE HAVE THIS
15	NEURO BUDGET OF 1.5 BILLION WHICH LEAVES THEN, WHAT,
16	4 MILLION FOR THE REMAINDER OF THINGS THAT CIRM
17	DOES.
18	DO WE HAVE A TIMELINE PLAN FOR THE
19	EXISTENCE OF CIRM OUTSIDE OF THE CNS AREA? IN OTHER
20	WORDS, IS CIRM GOING TO BE AROUND IN AS BEFORE,
21	WHEN WE WERE THINKING ABOUT WHAT WAS GOING TO HAPPEN
22	WITH PROPOSITION 14 AND IT WAS A VERY CLOSE CALL, WE
23	HAD TO HAVE A PLAN OF WHAT WOULD HAPPEN IF WE DIDN'T
24	GET REFUNDED. AND I THINK THAT'S ALWAYS WISE TO
25	KEEP IN THE BACK OF OUR MIND, THAT THE THIRD TIME
	61

1	MAY NOT BE THE CHARM.
2	AND SO THE INTEGRATION OF SPENDING \$1.5
3	BILLION IN THE CNS AREA AND THE EXISTENCE OF CIRM
4	WRIT LARGE SPENDING MONEY OTHERWISE, I DON'T KNOW,
5	IS THAT BEING THOUGHT OF AS WE GO ALONG SO THAT
6	WE'RE GOING TO KEEP CIRM GOING INDEPENDENT OR IN
7	CONJUNCTION WITH THE CNS AREA ON UP INTO 2032, 2035?
8	DR. MILLAN: THANK YOU SO MUCH FOR THAT
9	QUESTION, STEVE. SO POUNEH SIMPSON AND THE TEAM
10	HAVE BEEN, SINCE THE PASSAGE OF PROP 14, HAVE BEEN
11	DEPLOYING A FORECASTING TOOL IN TERMS OF
12	EXPENDITURES OVER TIME, BOTH FOR THE RESEARCH AND
13	ADMINISTRATIVE BUDGET. THERE ARE A VARIETY OF
14	DIFFERENT MODELS TO THAT, BUT LET'S SAY THE BASE
15	CASE IS AN EXPENDITURE OF WHAT THE MAXIMUM ALLOWABLE
16	FUNDING IS ACCORDING TO PROP 14 THERE ARE SOME
17	EXCEPTIONS TO THAT AND THEN ALSO CALCULATING INTO
18	IT RETURNED FUNDS, ET CETERA.
19	AND SO THE TIMELINE THAT ROSA PRESENTED IS
20	COMPATIBLE WITH THE PROJECTION IN TERMS OF THE
21	ADMINISTRATIVE RUNWAY ACCORDING TO THIS MODELING AS
22	WELL AS THE RESEARCH RUNWAY WITH THOSE FUNDS. SO
23	THERE'S KIND OF THESE PARALLEL TYPE OF FORECASTING.
24	THIS FORECASTING TOOL IS FED BY WHAT OUR ACTUALS
25	ARE, OUR ACTUAL PERFORMANCE IS. SO IT'S A PRETTY

1	THE ASSUMPTIONS THAT ARE BUILT IN ARE BUILT IN WITH
2	A VERY AGGRESSIVE EXPENDITURE OF THE ACTUAL BUDGETS
3	WE BUDGET PER YEAR. AND AS YOU KNOW, THERE'S
4	VARIANCE. SO SHE HAS A BUNCH OF DIFFERENT MODELS.
5	SO I HOPE THAT ANSWERS YOUR QUESTION. SO
6	IT IS THE TIMELINES THAT ROSA PRESENTED ARE
7	REASONABLE TO THOSE PROJECTIONS, ESPECIALLY A 2032
8	TIMELINE. SO THAT'S KIND OF HOPEFULLY THAT'S
9	RESPONSIVE TO YOUR QUESTION.
10	MR. JUELSGAARD: YES, IT IS. THANK YOU,
11	MARIA. I THINK IT'S SOMETHING WE JUST NEED TO KEEP
12	AN EYE ON AS WE GO FORWARD. MY WORRY IS THAT WE
13	WILL GET TO A POINT WHERE THE ONLY FUNDS THAT ARE
14	LEFT ARE FOR THIS AREA, THE CNS AREA, AND WE DON'T
15	HAVE ANY FUNDS AVAILABLE FOR FUNDING OTHER PROJECTS.
16	AND THEN HOW DO WE RUN THE ORGANIZATION AT THAT
17	POINT? BUT THAT'S A LONG WAYS DOWN THE ROAD, BUT I
18	THINK IT'S JUST SOMETHING AS WE MOVE ALONG WE NEED
19	TO KEEP AN EYE ON BECAUSE WE HAVE A HUGE RESEARCH
20	BUDGET THIS TIME AROUND. THE APPROVAL WAS UP CLOSE
21	TO \$500 MILLION, SOMETHING LIKE THAT. SO IF WE
22	SPEND ALL THAT, THAT'S GOING THROUGH MONEY AT A VERY
23	FAST PACE.
24	DR. MILLAN: ABSOLUTELY. WHAT ROSA
25	PRESENTED IN TERMS OF WHAT OUR HISTORICAL

1	EXPENDITURES HAVE BEEN ON OUR PILLAR PROGRAMS, GIVEN
2	THE PERCENT OF THOSE KIND OF ORGANIC PROGRAMS THAT
3	ARE COMING IN, SHE PRESENTED AN ESTIMATE OF HOW THAT
4	COULD STILL BE FUNDED. AND THEN I THINK SHE ROSA
5	IS RIGHT HERE. I'M SAYING LIKE SHE'S NOT IN THE
6	ROOM. BUT I THINK THE ESTIMATE OF THESE MEGA
7	PROGRAMS THAT SHE'S PRESENTING, I THINK AT LEAST
8	FOUR OR FIVE OF THESE BIG CONSORTIA-TYPE APPROACHES
9	COULD THEN BE FUNDED, NOT ONLY FOR NEUROPSYCH, BUT
10	OTHER TYPES OF NEURAL FIELDS. AND THEN IN TOTAL
11	THAT WOULD COMPOSE THE 1.5 BILLION IN TERMS OF THE
12	EARMARK FOR NEURO, FOR CNS, THE COMBINATION OF THE
13	ORGANIC THINGS THAT COME IN THROUGH THE PILLAR PLUS
14	THIS SPECIAL PROGRAM PROJECT OR CONSORTIUM. AND
15	THEN THE REMAINDER OF THE FUNDING WOULD BE THEN
16	AVAILABLE FOR OTHER NON-CNS TYPES OF INITIATIVES
17	ACROSS THE DIFFERENT TYPES OF RESEARCH PROGRAMS.
18	CHAIRMAN GOLDSTEIN: GOOD. THANK YOU.
19	GREAT QUESTION, STEVE. PAT.
20	DR. LEVITT: THANKS, ROSA. THAT WAS GREAT
21	AND I LOVE THE CONCEPTS. I WANT TO TALK A LITTLE
22	BIT ABOUT THOSE ISSUES AROUND SORT OF THE CONTENT OF
23	REMIND-L AND REMIND-X. I LOVE THE CONCEPTS.
24	CAN YOU GO TO THE SLIDE WHERE YOU GOT I
25	DON'T KNOW WHAT THE NUMBER IS. IT'S THE SLIDE THAT

1	HAS THE REQUIREMENTS IN TERMS OF INVESTIGATORS AND
2	EFFORT. IF YOU CAN GO TO THAT.
3	DR. CANET-AVILES: YEAH. LET ME SEE. IS
4	THIS THE ONE?
5	DR. LEVITT: THAT'S GOOD. SO PRINCIPAL
6	INVESTIGATORS, FOR THE REMIND-L, YOU WANT ONE WHO
7	HAS CLINICAL EXPERTISE AND ONE WHO HAS COMPUTATIONAL
8	EXPERTISE, RIGHT?
9	DR. CANET-AVILES: YES. ONE SECOND.
10	DR. LEVITT: THAT'S FINE. THAT'S GOOD. I
11	JUST NEED MORE CLARIFICATION ABOUT WHAT YOU MEAN BY
12	THE TEAM. SO WHEN YOU TALK ABOUT FIVE PI'S FOR A
13	MODEL LIKE THE P50 AT NIH, A PI IS A PROJECT. THESE
14	ARE ALL INTEGRATED, OF COURSE, AROUND A SPECIFIC
15	THEME OR HYPOTHESIS FOR DISCOVERY. IS THAT WHAT
16	YOU'RE TALKING ABOUT HERE? FIVE PROJECTS AND ONE OF
17	THOSE FIVE WOULD BE THE COORDINATING PI, OR ARE YOU
18	TALKING ABOUT FIVE INVESTIGATORS, SOME OF WHOM MIGHT
19	BE SERVING THE PURPOSE OF GENERAL LEADERSHIP IN A
20	CLINICAL AREA FOCUS, AND ONE WOULD BE SERVING IN
21	GENERAL ALL THE PROJECTS THAT ARE DOING THAT HAVE
22	COMPUTATIONAL COMPONENTS TO THEM?
23	DR. CANET-AVILES: WE ARE TALKING ABOUT
24	THANK YOU, PAT, FOR THE QUESTION. VERY RELEVANT.
25	WE ARE TALKING ABOUT NOT FIVE DISTINCT PROJECTS. WE

1	ARE TALKING ABOUT ONE LARGE COLLABORATIVE PROJECT
2	THAT CAN HAVE DIFFERENT AIMS, THAT DIFFERENT PEOPLE
3	MIGHT BE WORKING ON, DIFFERENT PI'S. THERE SHOULD
4	BE ONE PI THAT COORDINATES AND WILL BE THE
5	ADMINISTRATIVE POINT TO THE AWARD WITH CIRM. AND IT
6	WILL BE THE PERSON THAT WILL BE RESPONSIBLE FOR IF
7	WE HAVE A DISCOVERY ADVISORY PANEL AND THERE IS
8	SOMETHING THAT NEEDS TO BE IMPLEMENTED, HE WILL BE
9	RESPONSIBLE TO COORDINATE THINGS. IT WILL BE THE
10	ONE THAT WILL WRANGLE EVERYBODY TOGETHER TOWARDS
11	MAKING SURE THAT WE GET TO THE OUTCOMES, THE GOALS.
12	IT DOESN'T NEED TO BE WE DON'T NEED ONE
13	LEAD THAT'S CLINICAL, ONE LEAD THAT'S COMPUTATIONAL.
14	WHAT WE WANT IS THE EXPERTISE. IT COULD BE THAT THE
15	OTHER PI, SO WE HAVE FIVE PI'S IS MINIMUM, IT COULD
16	BE THAT THERE ARE SEVEN, FIVE WE THINK IS A GOOD
17	NUMBER FOR THESE KIND OF COLLABORATIVE PROJECTS. IT
18	COULD BE THAT ONE OF THE OTHER PI'S, THE 10 PERCENT
19	IS A CLINICIAN OF THE DISEASE. THAT WILL BE THE ONE
20	THAT'S GOING TO BRING THE RELEVANT TYPE OF QUESTIONS
21	THAT ARE RELEVANT TO THE DISEASE MECHANISMS THAT
22	WE'LL BE DISCOVERING FOR THE CLINICAL TRIALS, RIGHT.
23	AND THAT WILL ALSO BE THE CONTACT TO THE PATIENT
24	POPULATIONS. WE NEED TO HAVE THE END GOAL, AND I
25	THINK HAVING A CLINICIAN IN THE TEAM IS VERY

1	RELEVANT.
2	THE COMPUTATIONAL BIOLOGY EXPERTISE HAS TO
3	DO WITH BEING MORE HAVING A COMPUTATIONAL
4	BIOLOGIST WILL MAKE SURE THAT THERE IS SOME VOICE
5	THERE THAT KEEPS EVERYBODY THINKING ABOUT WHAT
6	METADATA DO WE NEED TO GATHER. WHAT ARE THE
7	STANDARDS THAT WE NEED TO HAVE? WHO DO WE NEED TO
8	TALK? SO THAT'S WHAT WE WANT TO HAVE.
9	DR. LEVITT: THAT ALL MAKES SENSE. THIS
10	IS ABOUT THE ARCHITECTURE OF THIS, WHICH I THINK IS
11	REALLY IMPORTANT SO THAT INVESTIGATORS ARE CLEAR
12	ABOUT IT. IF YOU'VE GOT COLLABORATIONS ACROSS
13	SITES, IT MEANS EACH SITE IS GOING TO HAVE A
14	STATEMENT OF WORK, A SET OF RESPONSIBILITIES THAT
15	THEY HAVE WITH SEPARATE BUDGETS. IT'S UNLIKELY WHAT
16	YOU'RE LOOKING FOR, IS IT LIKELY THAT IT'S GOING TO
17	BE AT ONE INSTITUTION? THIS MATTERS BECAUSE OF HOW
18	YOU WOULD STRUCTURE THIS.
19	AND SO THE REASON THERE'S A THEME
20	AROUND A PROGRAM PROJECT GRANT THAT HAS A SINGULAR
21	THEME, AND THEN THERE ARE ELEMENTS TO IT. ONE MIGHT
22	BE EXPERT IN IMAGING THAT'S GOING TO BE DONE, ONE
23	MIGHT BE EXPERT IN ELECTROPHYSIOLOGY, ET CETERA, BUT
24	THEY ALL ADDRESS THE CORE THEME, THE CORE QUESTION.
25	AND IT SOUNDS LIKE HERE YOU'VE GOT ONE

1	LARGE PROJECT THAT'S GOING TO HAVE MULTIPLE PI'S TO
2	IT. BUT IF THEY'RE AT DIFFERENT INSTITUTIONS, THE
3	LOGISTICS OF DIVIDING THAT PIE THE WAY THAT PI'S ARE
4	USED TO OPERATING IS GOING TO BE AN ISSUE. SO I
5	THINK YOU MAY WANT TO THINK ABOUT HOW YOU WANT TO
6	STRUCTURE THIS SO THAT IT'S CLEAR WHAT CIRM IS
7	LOOKING FOR.
8	THE OTHER IS THAT AND WE HEARD THIS
9	FROM SEVERAL PRESENTATIONS. 20-PERCENT EFFORT FOR
10	LET'S SAY, A SENIOR SCIENTIST WHO HAS THE ABILITY TO
11	COORDINATE A PROGRAM LIKE THIS IS A HIGH PERCENTAGE,
12	AND IT'S LIKELY TO ELIMINATE A NUMBER OF INDIVIDUALS
13	WHO WE KNOW, SOME OF WHOM PRESENTED TO US, WHERE
14	THEY JUST DON'T HAVE THE EFFORT. AND AS YOU KNOW,
15	LEGALLY WE CAN'T GO OVER A HUNDRED PERCENT. OF
16	COURSE, WE ALL DO GO OVER A HUNDRED PERCENT, BUT WE
17	CAN'T LEGALLY GO OVER A HUNDRED PERCENT.
18	SO ONE THOUGHT THAT I HAD AS GOING THROUGH
19	THE SLIDES IS A COORDINATING PI WOULD HAVE TO
20	CERTAINLY DESIGNATE 10 PERCENT, BUT THE OTHER PI'S
21	MIGHT BE AT 5 PERCENT. AND THERE WERE LIKE, FROM
22	WHAT I CAN RECALL, AT LEAST THREE PRESENTERS WHO
23	TALKED ABOUT THE EFFORT REQUIREMENTS.
24	I THINK FOR THE REMIND-X FOR THE DISCOVERY
25	PHASE, I DON'T THINK 10 PERCENT IS AN ISSUE. I

1	THINK THOSE ARE FINE. SO THINK ABOUT THAT.
2	I THINK THE DOLLAR AMOUNTS ARE REALLY
3	ALIGNED WELL WITH WHAT INVESTIGATORS ARE USED TO
4	WHEN THEY'RE PUTTING TOGETHER A PROGRAM PROJECT, A
5	P50. AND I THINK I MENTIONED THIS TO YOU BEFORE.
6	DIFFERENT INSTITUTES AT NIH DO IT IN DIFFERENT WAYS;
7	BUT WHEN THEY DO THEIR ANALYSES OF RETURN ON
8	INVESTMENT, THESE PROGRAMS GENERALLY DO REALLY WELL
9	BECAUSE THEY'RE STRUCTURED AND ORGANIZED WELL.
10	THE OTHER THING TO THINK ABOUT IS FOR THE
11	ADVISORY PANEL, AND THAT WAS SINGULAR, SO I'M
12	ASSUMING AN ADVISORY PANEL, BUT YOU'RE LOOKING AT 16
13	PROJECTS HERE, AND THAT'S A LOT.
14	DR. CANET-AVILES: IT WOULD ONLY BE FOR
15	THE LARGE ONES. THE SMALLER ONES DON'T NEED AN
16	ADVISORY PANEL. IT'S FOR THE REMIND-L. IT'S THE
17	SIX PROJECTS.
18	DR. LEVITT: SO I'M JUST SAYING FROM
19	EXPERIENCE THEY'RE THERE TO JUST SERVE WHEN SOMEBODY
20	WOULD SEND THEM A QUESTION OR THEY'RE MEETING TO
	WOULD SEND THEM A QUESTION OR THEY'RE MEETING TO REVIEW THE PROGRESS OF THE PROGRAMS. ARE THEY THERE
21	
21 22	REVIEW THE PROGRESS OF THE PROGRAMS. ARE THEY THERE
21 22 23	REVIEW THE PROGRESS OF THE PROGRAMS. ARE THEY THERE TO PROVIDE CIRM WITH FEEDBACK AND HOW THINGS ARE
20 21 22 23 24 25	REVIEW THE PROGRESS OF THE PROGRAMS. ARE THEY THERE TO PROVIDE CIRM WITH FEEDBACK AND HOW THINGS ARE GOING, OR ARE THEY THERE JUST TO BE EXPERT SOURCES?

1	THE GRANTEE, THE AWARDEES, AND TO CIRM
2	RECOMMENDATIONS. BUT I THINK WE WILL ALSO USE THEM
3	AD HOC. WE MIGHT NOT HAVE ALL THE EXPERTISE
4	INTERNALLY. IF WE NEED TO USE THEM AS CONSULTANTS
5	FOR CERTAIN QUESTIONS WHEN WE NEED TO MAXIMIZE THE
6	OUTCOME OF THESE RESEARCH PROJECTS, WE WILL. SO
7	THAT COULD BE THE IDEA.
8	DR. LEVITT: YEAH. I DON'T KNOW HOW
9	SOME OF US ON THIS CALL HAVE SERVED ON THESE KINDS
10	OF SCIENTIFIC ADVISORY BOARDS. AND SIX PROJECTS OF
11	THIS SIZE IS A VERY HEAVY LIFT FOR A SINGLE
12	COMMITTEE. EVEN IF YOU YOU CAN HAVE A LARGE
13	COMMITTEE AND THEN EACH PERSON GETS ONE OR TWO,
14	BUT
15	DR. CANET-AVILES: YEAH. IT'S NOT ONE
16	COMMITTEE. DISCOVERY ADVISORY PANEL, WE ARE GOING
17	TO HAVE IT'S LIKE THE CLINICAL ADVISORY PANELS OR
18	THE TRANSLATION ADVISORY PANELS. IT'S NOT THE SAME
19	THREE PEOPLE FOR ALL THE AWARDEES AND FOR ALL THE
20	AWARDS. IT'S A COMBINATION. SO WE'LL HAVE A POOL
21	OF, SAY, 15 EXPERT CONSULTANTS, AND WE WILL MIX AND
22	MATCH DEPENDING ON WHAT'S THE PROJECT THAT WE ARE
23	LOOKING AT. SO PROBABLY EACH ONE OF THEM MIGHT HAVE
24	A MAXIMUM OF TWO PROJECTS THAT THEY WILL BE ADVISING
25	ON.

1	DR. LEVITT: OKAY. ONE THING TO THINK
2	ABOUT IS THAT FOR ALL P50S THAT I'M AWARE OF, THEY
3	HAVE TO HAVE A SCIENTIFIC ADVISORY COMMITTEE AND
4	THEY'RE THE ONES WHO DEFINE IT. A SCIENTIFIC
5	ADVISORY COMMITTEE ESSENTIALLY DOES WHAT YOU JUST
6	SAID. THEY MEET ANNUALLY. AND THAT'S ANOTHER MODEL
7	WHERE EACH OF THE LARGE PROGRAMS WOULD HAVE AN
8	ADVISORY COMMITTEE THAT WOULD SEND A REPORT TO CIRM.
9	AND THEY MAY BE AS OR MORE EFFECTIVE BECAUSE THEN
10	YOU HAVE THE INVESTIGATORS HAVING SOME INPUT INTO
11	THE EXPERTISE THAT THEY FEEL IS GOING TO BE MOST
12	IMPORTANT.
13	THE ONLY THING I JUST WANTED TO MENTION, I
14	HAVE SOME WORDSMITHING THAT I'LL SEND YOU. I'M NOT
15	GOING TO BRING IT UP NOW. IT MAY BE WORTH THINKING
16	ABOUT, PARTICULARLY FOR THE LARGE PROJECTS THAT HAVE
17	A BRIDGE WITH CLINICAL DISORDERS, HAVING, IN
18	ADDITION TO A DEI PLAN, A COMMUNITY ADVISORY
19	COMMITTEE MAY BE WORTH THINKING ABOUT. CAC'S ARE
20	REALLY HELPFUL IN THINKING ABOUT, PARTICULARLY SINCE
21	A LOT OF THIS INVOLVES PATIENT MATERIAL THAT IS
22	BEING USED, ET CETERA, AND HAVING A CAC, A SMALL
23	CAC, FOR THE PROGRAMS MIGHT BE REALLY, I THINK,
24	IMPORTANT. AND WE HAVE PATIENT ADVOCATES ON OUR
25	BOARD THAT I THINK MAY FEEL THE SAME WAY. FOR US

1	AND MY OWN PROJECTS, IT'S BEEN INCREDIBLY HELPFUL TO
2	GET INSIGHT FROM A COMMUNITY ADVISORY COMMITTEE
3	THAT'S RELEVANT TO THE STUDIES THAT WE ARE DOING.
4	SO THAT'S SOMETHING TO THINK ABOUT. THANK YOU.
5	DR. CANET-AVILES: THANK YOU, PAT. SO LET
6	ME JUST TOUCH SOMETHING. WHEN YOU SAID THE PI
7	COMMITMENT, WHAT WERE YOU SUGGESTING FOR REMIND-L?
8	DR. LEVITT: SO EVERY P50, WHICH IS THE
9	NIH TERM FOR WHAT YOU'RE DESCRIBING, HAS A
10	SCIENTIFIC ADVISORY COMMITTEE. IT'S USUALLY THREE
11	OR FOUR.
12	DR. CANET-AVILES: NO. NO. THE
13	PERCENTAGE OF THE PI.
14	DR. LEVITT: I WAS GOING TO RECOMMEND,
15	BASED ON THE FEEDBACK WE GOT AND BASED ON MY
16	UNDERSTANDING OF WHERE THIS IS GOING TO DRAW
17	CIRM WANTS TO DRAW THE MOST IMPRESSIVE SCIENTISTS
18	INTO THIS PROGRAM. WE HEARD FROM ONE TODAY. DOES
19	HE HAVE 20 PERCENT TO COMMIT? HE'S NOT ON THE CALL
20	NOW. I'M NOT ASKING HIM. EVEN IF HE WAS, I'M NOT
21	ASKING HIM TO REVEAL. BUT 20 PERCENT FOR THAT KIND
22	OF A LABORATORY FOR THE PI IS A LOT TO ASK. AND I
23	DON'T KNOW HOW OTHERS ON OUR TASK FORCE FEEL, BUT
24	DR. CANET-AVILES: COULD IT BE THAT WE
25	ALLOW WE ARE ASKING FOR SOMEONE THAT'S MORE NEW

1	TO THE FIELD, BUT IS A PI BE THE COORDINATING PI AT
2	A 20 PERCENT? AND THEN THE MORE I'M JUST
3	THINKING. WE ARE ASKING FOR AT LEAST FIVE PEOPLE.
4	WE CAN DISCUSS. WE CAN DISCUSS. I HEAR YOU. AND
5	WE WERE THE SAME AS YOU. 15 PERCENT, COULD THAT BE
6	FAIR, 15 PERCENT, A COORDINATING PI?
7	DR. LEVITT: IF YOU HAVE FOUR AT 5
8	PERCENT LET'S SAY YOU HAVE TWO AT 10 PERCENT AND
9	THREE AT 5 PERCENT. THAT'S 20. THAT'S 35 PERCENT.
10	THAT'S .35 FOR A FACULTY COMMITMENT. THAT'S PRETTY
11	SUBSTANTIAL FOR A PROGRAM. I LOOK AT IT AS A SUM,
12	NOT AS INDIVIDUALS. AND I DON'T KNOW. THE GROUP
13	WILL HAVE TO CONTEMPLATE THIS. I HAVE MY OWN VIEWS,
14	THAT 10 PERCENT FOR THE COORDINATING PI, AND I WOULD
15	SAY THAT IT WOULD NOT BE A GOOD IDEA TO HAVE A
16	JUNIOR INVESTIGATOR TO BE THE COORDINATING PI.
17	DR. CANET-AVILES: I HEAR YOU.
18	DR. LEVITT: IT'S A LOT OF WORK. IT TAKES
19	SOME JUGGLING TO DO IT WELL BECAUSE THERE'S ALWAYS
20	CONFLICTS THAT ARISE, NOT BAD CONFLICTS, BUT THERE'S
21	ALWAYS ISSUES THAT ARISE. AND I THINK IT'S
22	CHALLENGING FOR A JUNIOR PERSON TO DO THAT. I
23	SHOULD LET OTHERS SPEAK.
24	DR. CANET-AVILES: LET ME SEE. I WAS JUST
25	TRYING TO SEE IN COMPARISON WITH OTHER.

1	CHAIRMAN GOLDSTEIN: ROSA, WE'LL HAVE TO
2	CONTINUE THIS CONVERSATION OFFLINE, I THINK, BUT
3	IT'S AN IMPORTANT POINT. FRED.
4	DR. FISHER: THANKS. I WON'T BELABOR IT,
5	BUT I THINK THIS SLIDE, I REALLY WANT TO THANK PAT
6	AND STEVE FOR KICKING THIS OFF BECAUSE I THINK THEY
7	ALSO STARTED WHERE I WANTED TO START.
8	IT ISN'T CLEAR, BUT I'D LIKE TO SEE, NOT
9	TODAY AND I DON'T EVEN WANT TO HEAR ABOUT IT TODAY
10	BECAUSE THERE ISN'T TIME, BUT I WANT TO UNDERSTAND
11	HOW THE STAFF AND ANY OTHER OTHERS INVOLVED IN
12	PUTTING ALL OF THIS TOGETHER ACTUALLY TOOK IN THE
13	REASON WHY THERE IS NOT MORE NEUROPSYCH MONEY BEING
14	SPENT. IT'S NOT BECAUSE THEY DON'T KNOW ABOUT US.
15	IT'S NOT BECAUSE THEY DON'T WANT THE MONEY. WHAT WE
16	HEARD WAS IT'S TOO MUCH EFFORT FOR TOO LITTLE
17	DOLLARS.
18	SO HOW DID THE CIRM TEAM TAKE THAT
19	FEEDBACK AND BUILD IT INTO THIS PLAN SO THAT IN THE
20	END WE DON'T FIND OURSELVES LOOKING AT ANOTHER PIE
21	CHART THAT SAYS, OH, NEUROPSYCH WAS STILL
22	UNDERFUNDED AND WE PUT THIS WHOLE GREAT PROGRAM
23	TOGETHER BECAUSE WE DIDN'T PAY ATTENTION TO THE
24	FEEDBACK WE GOT FROM THEM, THAT IT'S TOO MUCH WORK
25	FOR TOO LITTLE DOLLARS. AGAIN, I DON'T WANT TO TAKE
	7.4

1	THE TIME NOW. THAT'S ONE.
2	IF YOU COULD GO BACK TO THE SLIDE THAT
3	STEVE TALKED ABOUT THAT SHOWED ALL THE ARROWS AND
4	THE SPENDING. IT'S AFTER THAT BECAUSE IT GETS DOWN
5	TO A TOTAL OF BARELY
6	SO WHAT'S NOT HELPFUL ABOUT THIS SLIDE IS
7	YOU'RE TALKING ABOUT A NEUROPSYCH PROGRAM, AND YOU
8	NEVER AND IT'S SO DO I UNDERSTAND WE'RE
9	TALKING ABOUT 240 MILLION OUT OF 1.5 BILLION? IS
10	THAT WHAT WE ARE TALKING ABOUT SPENDING ON
11	NEUROPSYCH?
12	DR. CANET-AVILES: NO. AS I MENTIONED IN
13	THE PREVIOUS SLIDE, LET ME JUST SHOW HERE, WHAT WE
14	WERE PROPOSING IS THAT WE WOULD BE STARTING WITH
15	NEUROPSYCHIATRIC AS A PILOT. AS WE MOVE FORWARD, WE
16	WOULD BE INCLUDING OTHER DISEASES AND MORE WORKING
17	FOCUSED ON SYSTEMS. SO RESEARCH MECHANISMS, DISEASE
18	MECHANISMS, NEUROIMMUNE AXIS, AND INCLUDE
19	NEURODEGENERATIVE, NEUROPSYCHIATRIC,
20	NEURODEVELOPMENTAL, FOR EXAMPLE, NEUROVASCULAR, THE
21	SAME. THOSE ARE EXAMPLES, BUT WE COULD START WE
22	COULD INCREASE THE SCOPE OF DISEASES BY FOCUSING ON
23	SYSTEMS. THAT'S HOW WE WERE PROPOSING TO MOVE
24	FORWARD.
25	SO, NO, THE \$648 MILLION COULD ACTUALLY BE

1	FOR NEUROLOGICAL DISEASES, DISCOVERY OF DISEASE
2	MECHANISMS, NEUROLOGICAL DISEASES. ONLY THE FOUR
3	FIRST YEARS COULD BE FOCUSED ON NEUROPSYCHIATRIC.
4	THANK YOU.
5	DR. FISHER: SO REMIND-L AND REMIND-X ARE
6	NOT EXCLUSIVELY NEUROPSYCH. THEY ARE
7	DR. CANET-AVILES: CORRECT.
8	DR. FISHER: THIS IS WHAT YOU'RE CALLING
9	THIS WHOLE EXPANSION. AND NOW MY QUESTION IS WHERE
10	DID THESE OTHER INDICATIONS COME FROM BECAUSE TO MY
11	KNOWLEDGE THEY HAVEN'T BEEN DISCUSSED BY THIS
12	COMMITTEE.
13	DR. CANET-AVILES: NO.
14	DR. FISHER: THESE ARE THE THINGS THAT WE
15	SHOULD BE FOCUSING ON IN FUTURE YEARS.
16	DR. CANET-AVILES: CORRECT. CORRECT. WE
17	WOULD BE COMING IN FOUR YEARS OR THREE YEARS TIME.
18	AS WE ARE MOVING TOWARDS THE NEXT SET OF RFA'S, WE
19	WOULD COME TO THE BOARD WITH THE SPECIFICATION WE
20	COULD COME WITH AN OUTCOMES ANALYSIS OF WHAT WE HAVE
21	DONE WITH THE MONEY OF NEUROPSYCH AND WHAT WE THINK
22	THAT MIGHT BE BEST TO LEVERAGE IT WITH, BUT UP TO
23	YOU TO DECIDE WHERE YOU WANT US TO FOCUS BASED ON
24	WHATEVER ANALYSIS YOU WANT US TO DO.
25	SO THIS IS JUST TO SHOW THAT THE REMIND-L

1	AND X, THIS REMIND CONCEPT STRUCTURE IS FOR
2	DISCOVERY IN NEUROLOGICAL DISEASES. AND WE ARE
3	GOING TO APPLY IT FIRST TO NEUROPSYCHIATRIC, AND
4	THEN WE WILL COME TO YOU TO TELL US WHAT ELSE YOU
5	WANT US TO START BRINGING IN, BUT GIVING YOU
6	OUTCOMES, GIVING YOU WHAT IS IT THAT WE'VE ACHIEVED
7	IN THE NEXT THREE TO FOUR YEARS.
8	DR. FISHER: SO YOU HAVE TO TAKE OFF ANY
9	OTHER DISEASE INDICATIONS, CALL IT INDICATION X,
10	INDICATION Y, INDICATION Z. WHEN YOU START PUTTING
11	THINGS IN WRITING, YOU CREATE THE EXPECTATION THAT
12	THAT'S WHERE THIS IS STARTING. JUST LIKE IT STILL
13	REMAINS A MYSTERY HOW WE ENDED UP STARTING ON
14	NEUROPSYCH, BUT IT IS WHAT IT IS. AND WHEN YOU
15	START PUTTING THINGS DOWN, IT SEEMS TO HAVE THE
16	SETTING-IN-STONE FUNCTION.
17	SO IF YOU'RE JUST TALKING ABOUT ADDING
18	DISEASE INDICATION, HAVE IT JUST SAY LITERALLY
19	DISEASE INDICATION NO. 1, NO. 2, NO. 3 SO YOU SHOW
20	IT GROWING.
21	SO WHAT YOU STARTED WITH HERE WAS WE ARE
22	LOOKING AT A PROGRAM THAT APPARENTLY HAS A SUBSET OF
23	COST. NOW, IF YOU CLICK ON ANOTHER SLIDE WHERE YOU
24	GET TO THE 648 MILLION, WE GET TO 648 MILLION OF
25	TOTAL COSTS FOR THIS NEW INITIATIVE, WHICH IS 43

1	PERCENT OF THE TOTAL MINIMUM FOR NEURO. GIVEN THAT
2	MY UNDERSTANDING IS THAT CIRM HAS ALREADY SPENT IN
3	THE PRIOR FUNDING CYCLE 1.5 BILLION OR MAYBE IT DID
4	OR MAYBE IT DIDN'T, I DON'T KNOW. I DON'T WANT TO
5	REHASH THIS, BUT I NEED TO UNDERSTAND WHETHER WE ARE
6	ACTUALLY GOING TO NOT BE ABLE TO FUND THINGS THAT WE
7	WOULD WANT TO FUND BECAUSE WE ARE LOOKING AT CARVING
8	OUT 43 PERCENT OF THE 1.5 BILLION FOR NEURO, WHICH I
9	WANT TO KNOW WHAT THAT TOTAL IS FOR NEUROPSYCH, PLUS
10	SOME OTHER THINGS.
11	SO THIS SLIDE WHERE YOU HAVE THESE ARROWS,
12	LIKE, IT'S MISLEADING BECAUSE YOU'RE TALKING ABOUT
13	REMIND-L AND REMIND-X, WHICH IN THESE FUTURE YEARS
14	IS GOING TO BE SOMETHING OTHER THAN NEUROPSYCH, BUT
15	WHAT YOU'VE PUT UNDER THE ARROWS, I THINK, IS
16	FUNDING STRICTLY CONNECTED TO NEUROPSYCH.
17	DR. CANET-AVILES: NO. NO.
18	DR. FISHER: IT'S 12 TEAMS, 144 MILLION.
19	YOU'RE TALKING ABOUT NEUROPSYCH.
20	DR. CANET-AVILES: NO. NO. FOR
21	REMIND-L, IT COULD BE FOR DIFFERENT DISEASES. IT
22	COULD BE THAT IN YEARS 2028 TO 2031 WE DECIDE THAT
23	WHAT CIRM IS GOING TO FUND IS RESEARCH AROUND THE
24	NEUROIMMUNE AXIS. THIS IS MECHANISMS ACROSS ALL
25	NEURO DISEASES, AND THAT WOULD BE THE FUNDING.
	70

1	TWELVE TEAMS COULD BE REALLY LARGE BECAUSE THOSE ARE
2	\$2.5 MILLION-A-YEAR TEAMS. SO IT'S LIKE \$10
3	MILLION-A-YEAR AWARDS, \$10 MILLION AWARDS, 12 OF
4	THEM. THAT'S A LOT OF MONEY THAT WE WOULD BE
5	FUNDING, BUT IT'S NOT NEUROPSYCH. IT'S TO DO WITH
6	ALL NEURO.
7	AND I TOOK YOUR POINT THAT WE NEED TO
8	REMOVE FROM THIS SLIDE 17 THE INDICATIONS. WE ARE
9	STARTING WITH NEUROPSYCH NOW. THE TOTAL WILL BE
10	\$168 MILLION FOR NEUROPSYCH, BUT THE 648 MILLION
11	COULD BE FOR ALL NEURO DISEASES AND DISCOVERY. SO
12	THIS COULD BE WHAT WE ARE ASKING FOR THE NEURO
13	STRATEGY AT CIRM. THE DISCOVERY PART WE ESTIMATE
14	MIGHT TAKE ABOUT 42 PERCENT OF THE FUNDING,
15	INCLUDING WHAT WE WILL SPEND IN THE DISC PILLAR
16	PROGRAM AS WELL.
17	DR. FISHER: IF YOU WANT TO KNOW MORE
18	ABOUT THE CONFUSION OF THIS SLIDE, I WON'T TAKE THE
19	TIME HERE BECAUSE I SEE LEONDRA HAS HER HAND UP.
20	THIS IS A VERY CONFUSING SLIDE. I DON'T UNDERSTAND
21	WHAT THE SALMON ARROW IS AT 235 MILLION. AND IF I
22	UNDERSTAND WHAT YOU'RE SAYING, THE TOTAL COMMITMENT
23	OF 1.5 BILLION DEDICATED TO NEUROPSYCH IS 168
24	MILLION, WHICH IS 11.2 PERCENT OF THE 1.5 BILLION.
25	THAT'S WHAT I WANT TO UNDERSTAND BECAUSE WHEN YOU'RE

1	TALKING ABOUT STARTING WITH A PILOT AROUND
2	NEUROPSYCH, THE QUESTION IS HOW MUCH ARE YOU GOING
3	TO DEVOTE TO THAT? AND THE ANSWER IS 11.2 PERCENT
4	BASED ON WHAT YOU'RE TELLING ME TODAY, BUT I COULD
5	NOT DERIVE THAT FROM ANY OF THESE SLIDES.
6	AND THEN THERE NEEDS TO BE A RATIONALE FOR
7	WHY 11.2 PERCENT IS THE RIGHT NUMBER, PARTICULARLY
8	SINCE WHAT WE HEARD IS THE OBSTACLE IS NOT THE
9	ABSENCE OF A PROGRAM. THE OBSTACLE IS CIRM DOESN'T
10	PAY ENOUGH MONEY AND REQUIRES TOO MUCH EFFORT. AND
11	I DON'T SEE THAT ADDRESSED, AND YOU'VE CREATED A
12	MASSIVE PROGRAM THAT ACTUALLY I DON'T HAVE ANY
13	EVIDENCE THAT YOU'VE ACTUALLY SOLVED THE PROBLEM.
14	I'LL STOP THERE.
15	CHAIRMAN GOLDSTEIN: THANK YOU. FRED AND
16	ROSA, PERHAPS YOU CAN GET THROUGH SOME OF THESE
17	ISSUES OFFLINE. LEONDRA.
18	DR. CLARK-HARVEY: THANK YOU. I'LL BE
19	QUICK.
20	FIRST, THANK YOU. THANK YOU FOR THE
21	CONCEPTUALIZATION AND THE TIME THAT STAFF PUT INTO
22	THIS REMIND. I LOVE IT, BY THE WAY, THE WAY IT'S
23	LABELED.
24	I DO AGREE WITH FRED. THERE IS SOME
25	CONFUSION HERE, AND I WOULD LIKE CLARITY. SO

1	WHATEVER CONVERSATION OR WHATEVER YOU WORK THROUGH
2	OFFLINE, IF YOU COULD REPORT BACK TO THE REST OF US.
3	FOR THOSE OF US THAT ARE NOT QUITE CAUGHT UP, I
4	WOULD APPRECIATE THAT.
5	AND ALSO TO FRED'S POINT AROUND THE MONEY
6	AND THE EFFORT, THAT TRULY WAS WHAT STOOD OUT TO ME
7	AT ONE OF OUR LAST MEETINGS. I KNOW IT WAS
8	REITERATED AT OUR ICOC MEETING A FEW WEEKS AGO. AND
9	SO I WANT TO MAKE SURE THAT THAT DOESN'T GET LOST IN
10	ALL OF THIS. AND SO I THINK THAT THERE'S
11	OPPORTUNITIES TO CONTINUE THE DISCUSSION.
12	ALSO TO PAT'S POINT AROUND THE COMMUNITY
13	ADVISORY COMMITTEE, IT'S SOMETHING THAT I RAISED AT
14	OUR LAST MEETING, AND I'M GLAD TO HEAR IT RAISED
15	HERE AGAIN. I THINK THERE REALLY NEEDS TO BE SPACE
16	AND ROOM FOR IT, ESPECIALLY CONSIDERING THE DIRECT
17	FEEDBACK THAT WE'VE RECEIVED, SOME OF WHICH FRED
18	JUST RELAYED. SO I DO HOPE THAT THERE'S GOING TO BE
19	SOME EFFORTS TO DO THAT. BUT, AGAIN, THANK YOU FOR
20	THIS. I KNOW YOU ALL ARE WORKING THIS OUT. I'M
21	GLAD WE'RE HAVING THIS MEETING SO YOU CAN HEAR
22	DIRECTLY FROM US WHAT SOME OF THE KINKS MIGHT BE OR
23	BETTER WAYS TO MAKE IT CLEAR SO THAT EVERYBODY,
24	BECAUSE IF WE'RE NOT CLEAR, BELIEVE YOU ME, OTHERS
25	WON'T BE EITHER AS THIS MOVES FORWARD. SO

1	APPRECIATE THAT. THANK YOU.
2	DR. CANET-AVILES: THANK YOU. GREAT
3	FEEDBACK.
4	DR. SOUTHARD: I JUST WANTED TO SAY THAT I
5	THINK THIS IS A REALLY GOOD START AT AN ISSUE THAT
6	WE WERE TRYING TO GET TO IS UNDERSTANDING WHY
7	NOTHING HAD BEEN DONE AT ALL ON NEUROPSYCH. AND
8	THIS IS AN EFFORT TO BEGIN TO CURE THAT, THAT I
9	THINK IS ACTUALLY PRETTY CLEAR AND OUTSTANDING.
10	AND MY ONLY QUESTION WOULD BE IS THERE ANY
11	POSSIBILITY OF ACCELERATING THE TIMELINE ON THIS?
12	BECAUSE AS IT'S A LOT, BUT IT'S A LONG TIME, AND
13	NEUROPSYCH HAS BEEN SO UNDERFOCUSED ON, THAT
14	WHATEVER WE CAN DO TO MOVE IT FORWARD, I THINK,
15	WOULD BE A GREAT THING. BUT I THINK THIS IS A GOOD
16	START PERSONALLY.
17	CHAIRMAN GOLDSTEIN: THANK YOU, MARV.
18	CAN I ASK SOMEBODY A PROCESS QUESTION? WE
19	ARE HAVING TO WRAP UP HERE. DO WE FORMALLY VOTE TO
20	SEND THIS ON TO THE SCIENCE SUBCOMMITTEE, OR DO WE
21	MAKE A RECOMMENDATION, OR DO WE HAVE ANY RULE AT ALL
22	ABOUT WHAT OUR FINAL ACT IS HERE TODAY?
23	MR. TOCHER: SURE, LARRY. THIS IS SCOTT
24	BACK AT CIRM. IT'S THE PLEASURE OF THE COMMITTEE,
25	BUT IN NORMAL COURSE THE RECOMMENDATION WOULD BE TO

1	FORWARD TO THE SCIENCE SUBCOMMITTEE WITH A
2	RECOMMENDATION TO THE COMMITTEE AND FULL BOARD TO
3	ADOPT IT.
4	CHAIRMAN GOLDSTEIN: GREAT. SO WE CAN
5	MAKE A VOTED RECOMMENDATION. SO CAN SOMEBODY MAKE A
6	MOTION PLEASE?
7	DR. SOUTHARD: I WOULD MOVE WITH AFTER
8	CLARIFICATIONS AS TO THE SLIDE, THAT THIS MOVE
9	FORWARD TO THE SCIENTIFIC COMMITTEE.
10	DR. GASSON: I SECOND.
11	CHAIRMAN GOLDSTEIN: THANK YOU. LET'S
12	SEE. A ROLL CALL VOTE. MARIANNE.
13	MR. TOCHER: JUST A SECOND. LARRY,
14	THERE'S BOARD COMMENT ON THE MOTION. WE'LL TAKE
15	THAT NOW. LOOKS LIKE STEVE'S HAND IS RAISED, AND
16	THEN WE WOULD HAVE PUBLIC COMMENT AFTER THAT.
17	CHAIRMAN GOLDSTEIN: OKAY.
18	MR. JUELSGAARD: SO MARV'S MOTION ACTUALLY
19	OPENS THE DOOR TO THIS QUESTION BECAUSE HE DIDN'T
20	APPROVE HE DID MOVE THAT THIS PRESENTATION PER SE
21	BE FORWARDED TO THE SCIENTIFIC SUBCOMMITTEE, BUT
22	WITH MODIFICATIONS. AND I GO BACK TO SOMETHING THAT
23	FRED WAS TALKING ABOUT AND PAT TOO, FOR THAT MATTER.
24	ARE WE READY FOR PRIME TIME WITH THIS? I DON'T WANT
25	TO GO RECOMMENDING SOMETHING TO THE SCIENTIFIC

1	SUBCOMMITTEE, AND LEONDRA SAID THE SAME THING,
2	THAT'S NOT QUITE FULLY BAKED. THIS IS PRETTY
3	IMPORTANT WHAT WE ARE PLANNING ON DOING, AND IT'S
4	NOT CLEAR TO ME THAT WE ARE AT THAT POINT. I'D
5	RATHER TAKE A LITTLE BIT MORE TIME AND BEG THE
6	ICOC'S INDULGENCE ULTIMATELY IN ORDER TO HAVE
7	SOMETHING THAT WE ARE ALL SETTLED AS A GOOD PLAN TO
8	MOVE FORWARD.
9	CHAIRMAN GOLDSTEIN: FRED.
10	DR. FISHER: WHAT STEVE SAID. AND IF
11	IT IF THIS MOTION DOES COME TO A VOTE, I WILL
12	UNFORTUNATELY HAVE TO VOTE NO. IT'S NOT READY.
13	CHAIRMAN GOLDSTEIN: MARIA MILLAN.
14	DR. MILLAN: IT MAY NOT ANSWER ALL THE
15	QUESTIONS, BUT I WANTED TO, I THINK, ANSWER THE
16	QUESTION ABOUT THIS 11 PERCENT. THE 235 MILLION
17	THAT IS ON THE SALMON ARROW, I BELIEVE, IS THE TOTAL
18	EXPENDITURES FOR ALL DISCOVERY PROGRAMS COMING
19	THROUGH THE USUAL PILLARS FOR NEURO, NOT NEUROPSYCH,
20	ALL OF NEURO. AND I BELIEVE THAT THAT GOT ADDED TO
21	THE PROPOSED EXPENDITURES FOR THESE BIGGER PROGRAMS
22	AND THAT GAVE RISE TO THE 648 MILLION. AND THE
23	BALANCE OF THAT WOULD BE WHAT'S AVAILABLE FOR OTHER
24	PROGRAMS, INCLUDING TRANSLATIONAL AND CLINICAL.
25	SO IT MAY NOT MAKE A DIFFERENCE, BUT I

1	JUST WANTED TO POINT OUT MY UNDERSTANDING OF THIS
2	235 MILLION. SO THE
3	DR. CANET-AVILES: I CAN EXPLAIN. I
4	DECIDED THAT WE CLARIFY
5	DR. FISHER: I NEED TO GO BACK. WE DON'T
6	HAVE TIME TO GO BACK AND GET INTO THE GRANULAR
7	DETAIL. IT'S A GOOD EXAMPLE OF WHY WE NEED ANOTHER
8	MEETING TO TALK THROUGH ALL OF THIS BECAUSE 235
9	MILLION ON NEURO IN THE PAST CYCLE DOESN'T MAKE
10	SENSE EITHER.
11	DR. CANET-AVILES: I CAN EXPLAIN, BUT I
12	DIDN'T THINK WE HAD THE TIME. SO I THINK PERHAPS WE
13	HAVE ANOTHER MEETING, AND I CAN MAKE THE
14	CLARIFICATIONS THAT EVERYBODY IS ASKING. THIS IS
15	EASY. THIS WAS A BIG BITE TO BRING INTO THE TASK
16	FORCE, AND I'M HAPPY TO CLARIFY. IT'S EASY. IT'S
17	VERY EASY ALL THESE QUESTIONS. AND I APPRECIATE
18	THEM. IT MAKES ME REALIZE WHAT'S NOT
19	UNDERSTANDABLE.
20	CHAIRMAN GOLDSTEIN: MARIA BONNEVILLE.
21	VICE CHAIR BONNEVILLE: I WAS JUST GOING
22	TO ADD I THINK IT'S IMPORTANT AT THE NEXT MEETING,
23	MARIA AND TEAM, IS TO COME BACK WITH THE ANSWERS TO
24	SOME OF THE THINGS THAT WERE BROUGHT UP OUTSIDE OF
25	THIS SPECIFICALLY, BUT ALSO ARE WE IS IT ENOUGH

1	MONEY? HOW DID WE COME TO THOSE CONCLUSIONS?
2	WHAT'S THE PERCENT EFFORT? HOW DID WE ARRIVE AT ALL
3	OF THAT BECAUSE I THINK THERE HAS BEEN IN THE PAST
4	SEVERAL MEETINGS A CALL TO RESEARCH SOME OF THESE
5	ISSUES THAT HAVE BEEN BROUGHT UP ON MORE THAN ONE
6	OCCASION. SO I THINK IT WOULD BE REALLY HELPFUL.
7	CHAIRMAN GOLDSTEIN: STEVE.
8	MR. JUELSGAARD: YES. I'M JUST GOING TO
9	BASICALLY REINFORCE SOMETHING THAT FRED SAID DURING
10	THE COURSE OF HIS SOLILOQUY. HAVE WE SOCIALIZED
11	WHAT WE WOULD LIKE TO DO IN TERMS OF FUNDING WITH
12	ANY OF THE FOLKS THAT HAVE MADE PRESENTATIONS BEFORE
13	OR OTHER RESEARCH INSTITUTIONS OR ACADEMIC
14	INSTITUTIONS WITHIN THE STATE? IN OTHER WORDS, THE
15	QUESTION ON THE TABLE IS ARE WE WILLING TO GRANT
16	ENOUGH MONEY TO MAKE A DENT IN THIS? DO WE KNOW
17	THAT? WE PROVIDED SOME AMOUNT OF MONEY AND SOME
18	TIME PERIOD. IS THAT REALLY SUFFICIENT OR NOT? I
19	WOULD LIKE TO KNOW THAT PEOPLE FROM OUTSIDE OF THIS
20	GROUP SAY YES. THAT'S GREAT. THAT'S PERFECT.
21	THAT'S EXACTLY WHAT WE NEED. OR, NO, WAIT A MINUTE.
22	THAT'S NOT QUITE ENOUGH. WE WOULDN'T TAKE OUR TIME
23	TO APPLY FOR A GRANT. BECAUSE I DON'T WANT TO RUN
24	INTO THAT PROBLEM AGAIN. I WANT TO MAKE SURE THAT
25	WHAT WE DO WE ARE GOING TO BE SUCCESSFUL AT DOING.
	86

1	DR. CANET-AVILES: THE ANSWER, STEVE, IS
2	YES, WE HAVE. WE HAVE ALSO BEEN TALKING TO THE NIMH
3	WHICH WOULD BE THE FUNDING AGENCY AT THE FEDERAL
4	LEVEL THAT HAS BEEN GRANTING AWARDS LIKE THIS.
5	WE'VE BEEN DOING LANDSCAPE ANALYSIS OF WHAT'S FUNDED
6	OUT THERE. WE'VE BEEN TALKING TO RESEARCHERS. WE
7	HAVE TO BE CAREFUL BECAUSE THIS IS NOT A CONCEPT
8	EVEN. SO IF WE PUT TOO MUCH SWEETNESS IN THEIR
9	MOUTH AND THEN WE DON'T GIVE IT TO THEM, THEY WILL
10	THINK THAT, BUT WE HAVE. WE HAVE ACTUALLY BEEN
11	TALKING TO THE PEOPLE THAT SPOKE AND OTHERS, AND
12	WE'VE BEEN GOING TO MEETINGS AS WELL. AND EVERYBODY
13	IS VERY EXCITED AND WAITING FOR THIS TO BE OUT.
14	MR. JUELSGAARD: GREAT. THANK YOU, ROSA.
15	CHAIRMAN GOLDSTEIN: PAT.
וי	
16	DR. LEVITT: I WAS JUST GOING TO COMMENT
	DR. LEVITT: I WAS JUST GOING TO COMMENT THAT THERE'S ENOUGH EXPERTISE ON THIS COMMITTEE
16	
16 17	THAT THERE'S ENOUGH EXPERTISE ON THIS COMMITTEE
16 17 18	THAT THERE'S ENOUGH EXPERTISE ON THIS COMMITTEE TO THERE'S NOT A FORMULA. THERE'S NOT GOING TO
16 17 18 19	THAT THERE'S ENOUGH EXPERTISE ON THIS COMMITTEE TO THERE'S NOT A FORMULA. THERE'S NOT GOING TO BE A FORMULA THAT SAYS WE NEED EXACTLY THIS AMOUNT
16 17 18 19	THAT THERE'S ENOUGH EXPERTISE ON THIS COMMITTEE TO THERE'S NOT A FORMULA. THERE'S NOT GOING TO BE A FORMULA THAT SAYS WE NEED EXACTLY THIS AMOUNT OF MONEY TO ADDRESS THE GAPS THAT HAVE BEEN
16 17 18 19 20	THAT THERE'S ENOUGH EXPERTISE ON THIS COMMITTEE TO THERE'S NOT A FORMULA. THERE'S NOT GOING TO BE A FORMULA THAT SAYS WE NEED EXACTLY THIS AMOUNT OF MONEY TO ADDRESS THE GAPS THAT HAVE BEEN IDENTIFIED BY THOSE WHO HAVE PRESENTED AND WHAT THIS
16 17 18 19 20 21	THAT THERE'S ENOUGH EXPERTISE ON THIS COMMITTEE TO THERE'S NOT A FORMULA. THERE'S NOT GOING TO BE A FORMULA THAT SAYS WE NEED EXACTLY THIS AMOUNT OF MONEY TO ADDRESS THE GAPS THAT HAVE BEEN IDENTIFIED BY THOSE WHO HAVE PRESENTED AND WHAT THIS TASK FORCE HAS ADDRESSED. THERE'S GAPS IN EVERY
16 17 18 19 20 21 22	THAT THERE'S ENOUGH EXPERTISE ON THIS COMMITTEE TO THERE'S NOT A FORMULA. THERE'S NOT GOING TO BE A FORMULA THAT SAYS WE NEED EXACTLY THIS AMOUNT OF MONEY TO ADDRESS THE GAPS THAT HAVE BEEN IDENTIFIED BY THOSE WHO HAVE PRESENTED AND WHAT THIS TASK FORCE HAS ADDRESSED. THERE'S GAPS IN EVERY AREA OF BRAIN DISEASES AND DISORDERS EVERYWHERE. SO

1	TO BE TO SOME DEGREE SUBJECTIVE. IT'S JUST THE WAY
2	IT IS. WE CAN'T PREDICT THAT IT'S GOING TO BE 550
3	VERSUS \$750 MILLION. AND IF WE GO TO 750, THAT WILL
4	BE ENOUGH. WHO KNOWS WHAT'S GOING TO BE ENOUGH? IS
5	THERE ANYONE ON THIS COMMITTEE WHO CAN TELL ME WHAT
6	THE FORMULA IS?
7	SO I THINK WE DO HAVE TO HAVE ANOTHER
8	MEETING TO GIVE ROSA AND THE TEAM A CHANCE TO MAKE
9	THE EDITS AND SUGGESTIONS. AND MAYBE BETWEEN NOW
10	AND THAT MEETING, SOME OFFLINE CONVERSATIONS WITH
11	SOME FOLKS HERE ABOUT UNDERSTANDING THE DOLLAR
12	AMOUNTS, WHICH I THINK CAN BE SOMEWHAT CONFUSING.
13	THAT'S MY RECOMMENDATION AND THEN WE HAVE
14	TO GET ON WITH THE VOTE. THE EXPECTATION THAT WE'RE
15	GOING TO COME UP WITH A FORMULA THAT'S GOING TO TELL
16	US EXACTLY HOW MUCH MONEY IS GOING TO BE THE RIGHT
17	AMOUNT OF MONEY IS JUST NOT GOING TO HAPPEN. THAT'S
18	IT.
19	CHAIRMAN GOLDSTEIN: THANK YOU, PAT.
20	SCOTT, PROCESS QUESTION. WHERE DO WE GO
21	FROM HERE?
22	MR. TOCHER: WELL, THE MOTION THAT HAS
23	BEEN MADE AND SECONDED ACTUALLY, TECHNICALLY BELONGS
24	TO THE WHOLE OF THE TASK FORCE NOW. LISTENING TO
25	THE COMMENT, I THINK MAYBE PROCEDURALLY YOU COULD

JUST ASK, IF THERE'S NO OBJECTION, THAT WE TABLE THE
MOTION UNTIL ANOTHER MEETING OF THE TASK FORCE TO
SEE A REFINED PROPOSAL AND TAKE UP THE MOTION AT
THAT TIME AFTER THE PRESENTATION AT THAT MEETING.
AND THAT WE WOULD SCHEDULE THAT MEETING, OF COURSE,
BEFORE THE SCIENCE SUBCOMMITTEE MEETING.
CHAIRMAN GOLDSTEIN: AND DO WE DO THAT
BEFORE OR AFTER WE GET PUBLIC COMMENT?
MR. TOCHER: YOU CAN DO THAT AFTER YOU
RECEIVE PUBLIC COMMENT OR NOW. EITHER IS FINE.
CHAIRMAN GOLDSTEIN: IS THERE ANYBODY ON
THE LINE FOR PUBLIC COMMENT? BECAUSE IF THERE'S
SOMEBODY WHAT WANTS TO ADDRESS THESE ISSUES, THAT
COULD BE HELPFUL.
MS. DEQUINA-VILLABLANCA: THERE LOOKS LIKE
THERE MIGHT BE A COUPLE. BUT IF YOU ARE, YOU CAN DO
STAR NINE TO BE PUT IN THE QUEUE IF YOU'D LIKE TO
MAKE A COMMENT. THERE ARE NONE POPPING UP, LARRY.
CHAIRMAN GOLDSTEIN: NO COMMENT. SO THEN
I THINK WE SHOULD DO WHAT SCOTT SUGGESTED. IF THOSE
WHO PROPOSED THE ORIGINAL MOTIONS ARE IN AGREEMENT,
PLEASE LET US KNOW.
DR. SOUTHARD: FINE WITH ME.
DR. GASSON: YES.
CHAIRMAN GOLDSTEIN: OKAY. GREAT. NEXT
80

1	STEP IS ANOTHER TASK FORCE MEETING THAT WILL ADDRESS
2	THE ISSUES THAT HAVE BEEN RAISED ABOUT DOLLARS,
3	EFFORT, SOCIALIZING WITH THE COMMUNITY, AND SOME
4	CLARIFICATION OF THE TIMING AND GROWTH OF REMIND-L
5	AND REMIND-X. DO I HAVE THAT RIGHT?
6	MR. JUELSGAARD: YES.
7	CHAIRMAN GOLDSTEIN: GOOD. OKAY. ROSA,
8	OKAY?
9	DR. CANET-AVILES: FANTASTIC. YES, WE'LL
10	BE THERE.
11	CHAIRMAN GOLDSTEIN: OKAY. I THINK WITH
12	THAT
13	DR. CANET-AVILES: THANK YOU, LARRY, AND
14	THANK YOU, EVERYBODY, FOR THE FEEDBACK. VERY
15	USEFUL.
16	CHAIRMAN GOLDSTEIN: OKAY. I THINK WITH
17	THAT, WE CAN ADJOURN AND SEE YOU ALL SOON WITH
18	ADDITIONAL INFORMATION.
19	(THE MEETING WAS THEN CONCLUDED AT 3:13
20	P.M.)
21	
22	
23	
24	
25	
	90

1	
2	
3	
4	REPORTER'S CERTIFICATE
5	
6	
7	
8	I, BETH C. DRAIN, A CERTIFIED SHORTHAND REPORTER IN AND FOR THE STATE OF CALIFORNIA, HEREBY CERTIFY THAT
9	THE FOREGOING TRANSCRIPT OF THE VIRTUAL PROCEEDINGS BEFORE THE TASK FORCE ON NEUROSCIENCE AND MEDICINE
10	OF THE INDEPENDENT CITIZEN'S OVERSIGHT COMMITTEE OF THE CALIFORNIA INSTITUTE FOR REGENERATIVE MEDICINE
11	IN THE MATTER OF ITS REGULAR MEETING HELD ON JULY 17, 2023, WAS HELD AS HEREIN APPEARS AND THAT THIS
12	IS THE ORIGINAL TRANSCRIPT THEREOF AND THAT THE STATEMENTS THAT APPEAR IN THIS TRANSCRIPT WERE
13	REPORTED STENOGRAPHICALLY BY ME AND TRANSCRIBED BY ME. I ALSO CERTIFY THAT THIS TRANSCRIPT IS A TRUE
14	AND ACCURATE RECORD OF THE PROCEEDING.
15	
16	
17	BETH C. DRAIN, CA CSR 7152
18	133 HENNA COUŔT SANDPOINT, IDAHO
19	(208) 920 ⁻ 3543
20	
21	
22	
23	
24	
25	
	91