Heart, heal theyself

A group of researchers from University College London made a splash this week with their work prodding heart muscle to repair itself. This is big news, given both the number of people who have heart attacks (more than 1 million per year in the US) and the number of stem cell scientists working to regenerate the damage (23 awards worth $46 million from CIRM).

Genes at the heart of heart deformities found through stem cell studies

CIRM grantees at The Gladstone Institutes have, over the past few years, been hard at work learning about the origins of heart deformities by studying how stem cells mature into heart tissue.

Support Cells Prevent Mature Heart from Repairing Damage

Researchers at the Gladstone Institute of Cardiovascular Disease may have discovered why developing heart muscles cells multiply in numbers while the adult counterparts do not. This finding could lead to therapies that roll back the clocks on heart muscle cells after injury such as a heart attack, allowing those cells to multiply and repair the damage. The researchers specifically looked at the role of cells called fibroblasts, which are packed in the heart amidst the muscle cells.

Genetic Factor Enables Immature Cells to Form Normal Heart Tissue

Researchers at the Gladstone Institute for Cardiovascular Disease found a genetic factor that helps in the earliest stages of heart development as the primitive tube loops around on itself and forms the separate chambers. This factor -- a short relative of DNA called microRNA -- has an identical counterpart in humans, leading the researchers to believe that their work in fish is likely to relate directly to human heart development.

Genetic Factor Influences Heart Muscle Formation from Embryonic Stem Cells

Researchers at the Gladstone Institute for Cardiovascular Disease discovered how two specific tiny genetic factors called microRNAs influence the differentiation of embryonic stem cells into heart muscle. They found that the factors not only drive the versatile cells to become heart, but also actively prevent them from becoming other tissue such as bone adding to their potential to make therapy more specific and targeted for patients.

Cell Stem Cell: March 6, 2008

Subscribe to RSS - Srivastava

© 2013 California Institute for Regenerative Medicine