Current Clinical Program Portfolio	Α	p
------------------------------------	---	---

Award	linical Pro	Ĭ					Funding	Therapeutic					Projected	Percent
Number, PI,					General Disease	General Class	(ICOC	Cell (for Cell				Award	Award End	Time Int
Institution	Program	Trial Stage	Indication	Therapeutic	Area	of Approach	Approved)	Therapy)	Cell Source	Rationale	Project Goal	Start Date	Date	Award
IEURO THERA	PEUTICS													
leurologic Dis	sorders: Injuri	es											,	
										Up to 12,000 Americans suffer a spinal cord injury each year. Leads to a high level of permanent disability and decreased life expectancy.				
										Currently no approved therapies. Cells derived from embryonic stem cells				
SP3A-07552										used to heal the spinal cord at the site of injury. The stem cells mature				
Lebkowski,										into oligodendrocyte precursors that are injected at the injury site where				
Asterias	Strategic			Allogeneic oligodendrocyte				Oligodendrocyte		it's hoped they repair the myelin that protects the nerves in the spinal	Safety. Dosing. Efficacy -			
Biotherapeutics	Partnership III	Ph 1/2a	Spinal Cord Injury	progenitors	Neurologic Injury	Cell Therapy	\$14,323,318	Progenitors	Allogeneic	cord.	motor improvement.	10/1/14	9/30/18	
										Stroke is a major cause of long-term disability and there are no proven	Safety and efficacy compared to sham surgery -			
										medical treatments for chronic stroke. Intracerebral delivery of modified	improvement in motor			
CLIN2-10344	Clinical Trial			Modified bone marrow-derived						MSCs provides a well tolerated treament with the potential to improve	activity on stroke affected			
Bates, SanBio	Stage Projects	Ph 2b	Ischemic Stroke	mesenchymal stem cells (MSCs)	Neurologic Injury	Cell Therapy	\$19,998,580	MSC	Allogeneic	motor function in these patients	side.	8/1/17	6/30/20	
										Stroke is the leading cause of adult disability. There is no medical therapy				
CLIN1-09433	Late Stage									that promotes stroke recovery. Cells derived from H9 ESC act via				
Steinberg, Stanford	Preclinical Projects	IND	Ischemic Stroke	H9 ESC-derived neural stem cells	Neurologic Injury	Cell Therapy	\$5,300,000	NSC or NPC (ESC- derived)	Allogeneic	secretion of paracrine factors to modulate brain repair processes in preclinical stroke models.	Obtain an active IND	8/1/17	7/31/19	
	sorders: Neuro			ceiis	Wedi ologic Irijury	Сен тнегару	33,300,000	derived)	Allogeneic	preclinical stroke models.	Obtain an active IND	0/1/1/	7/31/19	
eurologic Dis	Disease Team	Juegener dtiv	E											
DR2A-05320,	Therapy				1					ALS is a devastating disease with no cure. This cell therapy intends to				
CLIN2-09284	Development,			Allogeneic neural progenitor		Genetically				support sick motor neurons via astrocyte replacement and pro-survival				
ivendsen, Cedars	- Clinical Trial		ALS (Amyotrophic	cells genetically modified with	Neurodegenerative	Modified Cell	\$17,842,617,			growth factors. Allogeneic neural stem cells, genetically modified to	Safety. Dosing. Efficacy -			
Sinai	Stage Projects	Ph 1/2a	lateral sclerosis)	GDNF	Disorder	Therapy	\$6,154,067	NSC or NPC	Allogeneic	express GDNF, injected into the spinal cord.	Lower limb strength	4/1/17	3/31/20	
										ALS is a fatal neurodegenerative disease for which there is currently no adequate treatment. Autologous MSCs are propagated ex vivo and				
				Autologous MSCs cultured to						induced to secrete neurotrophic factors. NurOwn cells are returned to				
CLIN2-09894	Clinical Trial		ALS (Amyotrophic	enhance secretion of growth	Neurodegenerative						Safety and efficacy of three			
ern, Brainstorm	Stage Projects	Ph 3	lateral sclerosis)	factors (NurOwn)	Disorder	Cell Therapy	\$15,912,390	MSC	Autologous	and encouraging signs of efficacy.	repeated doses.	8/1/17	7/31/19	
ye Disease														
										Age-related macular degeneration is a progressive disease resulting in				
	Duane Roth									death of the retinal pigment epithelium (RPE) causing distortion to				
	Disease Team			All and a size from the same lives a large and						central vision and eventually to legal blindness. Incidence - 1:1359 in the	C. C. L. Eff			
DR3-07438	Therapy Development		Adult Macular	Allogeneic functionally polarized hESC-derived RPE monolayers		Cell Therapy,				US. Approach is replacement therapy with viable RPE cells delivered on a synthetic membrane mimicking native state with RPE cells on Bruch's	progression, maintain and			
Humayun, USC	III	Ph 1	Degeneration	on synthetic substrate	Eye Disease	Combination	\$18,922,665	RPE	Allogeneic		restore visual acuity	8/1/14	3/31/19	
, ,				,			, ,, ,			Retinitis pigmentosa (RP) is a progressive retinal degeneration that				
										affects over 1.5 million people worldwide. Unfortunately, treatment is				
										still rather limited. A single sub-retinal injection of human neural				
LSP1-0835	Late Stage									progenitor cells offers dramatic preservation of vision. Grafted Cells survive for an extended period, secrete pro-survival factors and				
Wang, Cedars-	Preclinical			Subretinal injection of human						extracellular matrix, reduce oxidative stress response and preserve vision				
Sinai	Projects	IND	Retinitis Pigmentosa	neural progenitor cells	Eye Disease	Cell Therapy	\$4,954,514	NPC	Allogeneic	and RPE integrity.	Obtain an active IND	8/1/15	9/30/17	
			-							Retinitis pigmentosa (RP) is a severe form of blindness that runs in				
DR2A-05739	Disease Team									families with an incidence of 1:4000. Good target for stem cell therapy				
Klassen, UC	Therapy			Allogeneic retinal progenitor						due to the defined loss of specific cells. Proposed mechanism: Rescue the		. /. /		
Irvine	Development	IND, Ph 1/2a	Retinitis Pigmentosa	ceiis	Eye Disease	Cell Therapy	\$17,306,668	RPC	Allogeneic	light sensing photoreceptors.	acuity. Safety and efficacy -	1/1/13	12/31/17	
CLIN2-09698	Clinical Trial			Allogeneic retinal progenitor						Follow-on study based on Phase 1/2a clinical trial. Continue to assess	improvement in visual			
Klassen, Jcyte	Stage Projects	Ph 2b	Retinitis Pigmentosa		Eye Disease	Cell Therapy	\$8,295,750	RPC	Allogeneic	safety and establish efficacy.	function at 12 months.	2/1/17	1/31/21	
										Limbal stem cell deficiency results in inability to heal following ocular				
CUNIA COCCO	Clinia - LT-1-1			Cultivated autologous human						surface injury leading to corneal opacity. Cultivated autologous limbal				
CLIN1-08686 Deng, UCLA	Clinical Trial Stage Projects	IND	Corneal Blindness	limbal stem cells on human amniotic membrane	Eye Disease	Cell Therapy	\$4,244,211	LSC	Autologous	stem cells transplanted back to the patient allow restoration and maintenance of a normal corneal surface.	Obtain an active IND	8/1/16	11/30/18	
	CER THERAPE		cornear dimuness	oue memorane	270 0130030	ce merapy	Y-1/2-17/2-11		. iutologous	production of a normal corneal surface.		5/1/10	11,30,10	
		UIIG												
Blood Disorde	rs				I					Untreated alpha thalassemia major is almost universally fatal in utero.				
					1					Current treatment requires in utero blood transfusions and monthly				
										blood transfusions for life or a bone marrow transplant if a suitable donor				
					1					is identified. The proposed treatment is a maternal bone marrow				
CLIN2-09183	Clinical Trial		Alpha Thalassemia	Maternal bone marrow derived	1					transplant in utero that takes advantage of maternal-fetal immune				
Mackenzie, UCSF	Stage Projects	Ph1	Major	HSC transplant in utero	Blood Disorder	Cell Therapy	\$12,131,817	HSC	Allogeneic	tolerance, and may provide a definitive cure.	Safety and feasibility, efficacy.	8/1/17	7/31/22	
				Lentiviral vector modified						CGD prevents white blood cells from killing foreign invaders. Patients				
				autologous CD34+	1					have persistent, untreatable tissue infections. Affects 1:200,000 in US.				
			X-linked Chronic	hematopoietic stem/progenitor	1	Genetically				Usually diagnosed before age 5, without treatment children die before	Primary: Safety and Efficacy.			
CLIN2-08231	Clinical Trial		Granulomatous	cells via transplantation &	1	Modified Cell								
	Stage Projects	Ph 1/2	Disease.	engraftment	Blood Disorder	Therapy	\$7,402,549	HSC	1	matched donors using gene-corrected autologous HSCT.	immune function	9/1/15	8/31/20	

	Duane Roth Disease Team			Autologous HSC, genetically corrected ex vivo by lentiviral						An inherited mutation in the hemoglobin gene causes red blood cells to "sickle" under conditions of low oxygen. Affects 1:500 African-Americans and is common in Hispanic-Americans. Median survival is 42 years for males and 48 years for females. More than 80% of patients lack an HLA-	Primary: Safety, feasibility.			
DR3-06945	Therapy Development			vector mediated addition of a hemoglobin gene that blocks		Genetically Modified Cell				identical sibling donor. Project plan is genetic correction of adult bone marrow hematopoietic cells by adding a novel therapeutic hemoglobin	Secondary: Hematopoietic Recovery; RBC function;			
Kohn, UCLA	III	Ph 1	Sickle Cell Disease	sickling	Blood Disorder	Therapy	\$13,935,441	HSC	Autologous	gene that blocks sickling of the red blood cells.	Quality of life assessment	7/1/14	6/30/18	
			ADA-SCID (severe	Autologous HSC, genetically corrected ex vivo by lentiviral		Genetically				In ADA-SCID allogeneic HSCTs from non-matched sibling donors are a high risk procedure. Efficacy of chronic enzyme replacement therapy is	Primary: Safety. Secondary: Efficacy, gene marking,			
CLIN2-09339	Clinical Trial	Ph2 -	combined immune	vector mediated addition of		Modified Cell				uncertain in the long-term. Preliminary data indicates that OTL-101 may	immune reconstitution.			
Kohn, UCLA	Stage Projects	registration	deficiency)	human ADA gene	Blood Disorder	Therapy	\$20,000,000	HSC	Autologous	significantly improve outcomes compared to available therapies.	Registrational trial.	1/1/17	12/31/21	
CLIN2-09504 Sorrentino, St.	Clinical Trial		X-SCID (X-linked severe combined	Autologous HSC, genetically corrected ex vivo by lentiviral		Genetically Modified Cell				Catastrophic immunodeficiency disorder caused by mutation in IL2RG; Without a curative transplant-based therapy, X-SCID is lethal typically in	feasibility. Secondary: Efficacy; gene marking;			
Jude's	Stage Projects	Ph 1/2	immunodeficiency)	vector mediated correction	Blood Disorder	Therapy	\$11,924,780	HSC	Autologous	first year of life.	immune reconstitution	4/1/17	3/31/22	
DR2A-05365 Shizuru, Stanford	Disease Team Therapy Development	IND, Ph 1	Conditioning regimen for allogeneic HSC transplantation for SCID (Severe Combined Immunodeficiency)	MAb that depletes endogenous HSC	Blood Disorder	Biologic	\$19,068,382			Monoclonal antibody that targets CD117 and promotes engraftment of hematopoietic stem cells. Could replace toxic conditioning regimens and enable chemotherapy-free transplants. Enabled donor cell HSC engraftment and cure of disease in an animal model of SGID.	Safety. Dosing. Efficacy - HSC engraftment, immune reconstitution.	8/1/13	7/31/18	
Sinzura, Stamora	Бечеюринен			1150	Dioda Discraci	Diologic	\$15,000,30 <u>2</u>			Primary immune deficiency due to Artemis gene. Most difficult to treat	reconstitution.	0/1/15	7/51/10	
CLIN1-08363, Puck, UCSF	Late Stage Preclinical Projects	IND	ART-SCID (Artemis- deficient severe combined immunodeficiency)	Autologous HSC, genetically corrected ex vivo by lentiviral vector mediated correction	Blood Disorder	Genetically Modified Cell Therapy	4,268,865	HSC	Autologous	by allogeneic hematopoietic stem cell transplantation (HSCT) due to increased sensitivity to alkylating agents and radiation. Autologous gene modified HSCT transplantation to overcome allogeneic stem cell transplant difficulty.	Obtain an active IND	5/1/16	10/31/17	
CLIN1-10084.	Late Stage Preclinical			Autologous HSC, genetically		Genetically				Consodition using CRICRR Cord to be because her the notaction to consod				
Porteus, Stanford	Preclinical	IND	Sickle Cell Disease	corrected ex vivo by CRISPR- mediated correction	Blood Disorder	Modified Cell Therapy	\$5,194,431	HSC	Autologous	Gene editing using CRISPR-Cas9 technology has the potential to correct the sickle cell mutation.	Obtain an active IND	11/1/17	4/30/19	
	,						40,000,000			Transplant of blood-forming stem cells from a donor to a patient that has		, -, -:	,,,,,,,,	
CLIN2-10847 Rosenthal, COH	Clinical Trial Stage Projects	Ph 1	Sickle Cell Disease	Allogeneic haploidentical HSC	Blood Disorder	Cell Therapy	\$5,742,180	HSC	Allogeneic	received a milder, less toxic chemotherapy conditioning regimen that removes some but not all of the patients diseased bone marrow stem cells. The donor cells are depleted of T immune cells to allow engraftment without causing an immune reaction in the recipient. Beta thalassemia is a severe form of anemia caused by mutations in the	Safety. Efficacy. Mixed chimerism.	04/1/18	4/30/22	
CLIN2-11031 Conner, Sangamo	Clinical Trial Stage Projects	Ph 1/2	Beta Thalassemia	Autologous HSC, genetically corrected ex vivo by zinc finger nuclease mediated correction	Blood Disorder	Genetically Modified Cell Therapy		HSC	Autologous	hemoglobin gene. Patients require life-long blood transfusions and have a life expectancy of only 30-50 years. The Sangamo therapy takes a patient's own blood stem cells and, using a gene-editing technology called zinc finger nuclease (ZFN), provides a functional copy of the hemoglobin gene. The modified cells are given back to the patient which potentially will eliminate the need for chronic transfusions and the associated complications.	Safety and tolerability. Efficacy, change from baseline HbF levels, frequency and volume of RBC transfusions.			
CLIN2-10830 Cowan, UCSF	Clinical Trial Stage Projects	Ph 1/2	Artemis-deficient severe combined immunodeficiency	Autologous HSC, genetically corrected ex vivo by lentiviral vector mediated correction	Blood Disorder	Genetically Modified Cell Therapy		HSC	Autologous	Artemis-deficient severe combined immunodeficiency is a genetic blood disorder in which even a mild infection can be fatal. It is the most difficult form of the disease to treat. The UCST team will genetically modify the patient's own blood stem cells with a functional copy of the Artemis gene with the goal of creating a functional immune system.	Safety and efficacy. Multilineage engraftment persistence and B cell reconstitution.			
HIV/AIDS				Autologous HSC transduced ex			ı			T				
DR1-06893 Symonds, Calimmune	Disease Team I	Ph 1/2a	HIV/AIDS	vivo with a lentiviral vector engineered to express an shRNA against CCR5 & a fusion inhibitor. Gene modified HSCs via a	HIV/AIDS	Genetically Modified Cell Therapy	\$8,278,722	HSC	Autologous	Cal-1 increases the number of HIV-protected cells in the body. Uses shRNA to CCRS and C46 to confer cellular resistance to HIV infection.	Safety. Efficacy - slow disease progression, mitigate need for ART.	2/1/13	7/31/16	
CLIN2-08289 Abedi, UC Davis	Clinical Trial Stage Projects	Ph 1	HIV/AIDS	lentiviral vector that encodes a triple combination of HIV- resistance genes and a tCD25 pre-selective marker	HIV/AIDS	Genetically Modified Cell Therapy	\$7,402,549	HSC	Autologous	Lentiviral vector encodes a triple combination of HIV-resistance genes and a pre-selective marker. Vector transduced CD34+ cells will safely engraft, divide and differentiate in vivo into mature myeloid and lymphoid cells.	Safety. Efficacy - immune reconstitution, viral load and HIV status.	9/1/15	8/31/19	
SP3A-07536 Zaia, City of Hope	Strategic Partnership III	Ph 1	HIV/AIDS	Autologous HSCs genetically modified to disrupt CCR5	HIV/AIDS	Genetically Modified Cell Therapy	\$5,583,438	HSC	Autologous	Autologous hematopoietic stem cells gene edited ex vivo to eliminate expression of HIV entry co-receptor CCRS. Cells carrying disrupted CCR5 provide a renewable, long-lasting source of HIV-1 resistant immune cells.	Safety. Efficacy - engraftment.	4/1/15	3/31/19	
Hematologic C	ancers									T	Safety. Dosing. Follow on			
DR3-06924 Kipps, UCSD	Duane Roth Disease Team Therapy Development III	Ph 1	CLL	Monoclonal antibody (anti- ROR1) targeting CLL cancer stem cells	Hematologic Malignancy	Biologic	\$4,179,600			Cancer is a leading cause of death in CA. Many cancers resist current therapies due to therapy-resistant cancer stem cells (CSCs). Discovered a protein, ROR1, present on CSCs but not on normal healthy cells. Developed an antibody, cirmtuzumab, that is specific for ROR1. Project plan is to treat chronic lymphocytic leukemia with cirmtuzumab.	Safety. Dosing. Follow on trials will include other cancers and will test cirmtuzumab alone or in combination with other anticancer therapies.	6/1/14	11/30/17	
лірра, особ		1112	CLL	Sceni cella	. Franghancy	DIOIOGIC	Ç4,17,000			Cancer is a leading cause of death in CA. Many cancers resist current	concer therapies.	3/1/17	11/30/17	
CLIN2-10192 Kipps, UCSD	Clinical Trial Stage Projects	Ph 1b/2a	B Cell Cancers	Monoclonal antibody (anti- ROR1), combined with tyrosine kinase inhibitor Ibrutinib	Hematologic Malignancy	Biologic	\$18,292,674			therapies due to therapy-resistant cancer stem cells (CSCs). Discovered a protein, ROR1, present on CSCs but not on normal healthy cells. Developed an antibody, cirmtuzumab, that is specific for ROR1. Project plan is to treat chronic lymphocytic leukemia or mantle cell carcinoma with cirmtuzumab in combination with ibrutinib.	Evaluate dosing and complete response rate.	10/1/17	3/31/22	

										CD34+ hematopoietic Stem and progenitor cells engraft into the bone				
								Expanded CD34+		marrow of patients, rebuilding a new blood and immune system after				
								stem and		appropriate preparation called myeloablation. The endothelial cells used				
				Matched cord blood derived				progenitor cells		in the co-culture are thought to aid the engraftment of the stem and				
			Hematologic	hematopoietic stem and				from cord blood		progenitor cells into the bone marrow via secretion of angiocrine factors.				
CLIN1-08342			malignancies	progenitor cells expanded by co-				and gene-		The remainder of the cord blood cells in the cell product also aid in the				
Davis, Angiocrine	Clinical Trial		including leukemia	culture with genetically	Hematologic			modified		engraftment as well as provide anti-viral and anti-bacterial effects after				
Bioscience	Stage Projects	IND	and lymphoma	modified endothelial cells.	Malignancies	Cell Therapy	\$3,797,117	endothelial cells	Allogeneic	transplantation.	Obtain an active IND	4/1/16	12/1/17	
	ataga aja ata						+=/			CD34+ hematopoietic Stem and progenitor cells engraft into the bone		.,-,	,-,-:	
								Expanded CD34+		marrow of patients, rebuilding a new blood and immune system after				
								stem and		appropriate preparation called myeloablation. The endothelial cells used				
				Matched cord blood derived				progenitor cells						
CLIN2-10386			Hematologic	hematopoietic stem and				from cord blood		in the co-culture are thought to aid the engraftment of the stem and				
Finnegan,			malignancies	progenitor cells expanded by co-						progenitor cells into the bone marrow via secretion of angiocrine factors.				
Angiocrine	Clinical Trial		including leukemia	culture with genetically	Hematologic			and gene- modified		The remainder of the cord blood cells in the cell product also aid in the				
0		Ph 1b		modified endothelial cells cells.		Call Theorem	\$5,000,000			engraftment as well as provide anti-viral and anti-bacterial effects after	Safety.	40/04/47	42/24/24	
Bioscience	Stage Projects	PHILD	and lymphoma	modified endochellar cells cells.	Malignancies	Cell Therapy	\$5,000,000	endothelial cells	Allogeneic	transplantation.	Safety.	10/01/17	12/31/21	
										ADCs are intended to target and kill only the target cancer cells and				
										spare healthy cells. ADCs are composed of an antibody linked to a				
										cytotoxic payload or drug. After the ADC binds to the target cell and is				
										internalized, the cytotoxic drug is released and kills the cancer cell. CLL1				
CLIN1-09776	Late Stage									is highly expressed on leukemia stem cells but not on normal cells.				
Junutula,	Preclinical			Anti-CLL1 antibody linked to a	Hematologic	Antibody-drug				Binding of the anti-CLL1 ADC results in targeted killing of leukemia stem				
Cellerant	Projects	IND	AML	DNA binding payload.	Malignancy	conjugate (ADC)	\$6,863,755			cells.	Obtain an active IND	8/1/17	1/31/19	
	.,			0,-,	,	, 5. ,	,			The product is an ex vivo expanded hematopoietic stem and progenitor		-, ,		
										cell therapy capable of providing bridging (temporary) hematopoietic	Evaluate effect on the rate of			
								Expanded CD34+		support to protect patients against infections. It is intended for AML	infections associated with			
			Chemotherapy-	Ex-vivo expanded Umbilical cord				stem and	1	cancer patients undergoing chemotherapy that results in neutropenia.	Chemotherapy-Induced			
CLIN2-09574	Clinical Trial			blood hematopoietic stem and	Hematologic			progenitor cells		cancer patients undergoing chemotherapy that results in neutropenia.	Neutropenia in AML patients			
		Ph 2	in the AML setting			Cell Thorams	\$6,922,109	from cord blood	Allogeneic		and determine optimal dose	11/01/17	11/30/19	
Delaney, Nohla	stage Projects	r II Z	in the AMIL Setting	progenitor tens	Malignancy	Cell Therapy	30,322,109	moni cora biood	MIIOGETIEIC	CD47 is overexpressed on cancer and cancer stem cells. It stops	and determine optimal dose	11/01/1/	11/30/13	
										phagocytic macrophages from eliminating these abnormal cells by				
				1					1	delivering a potent "don't eat me" signal. Hu5F9-G4 is a humanized	Phase 1b trial: determine			
											,			
										monoclonal antibody (mAb) that binds to CD47 and blocks the "don't eat	optimal dose; safety and			
CLIN2-10144	Clinical Trial			Anti-CD47 monoclonal antibody	Hematologic					me" signal, thereby enabling macrophage-mediated phagocytosis of the	efficacy in combination with			
Chao, 47Inc	Stage Projects	Ph 1b	AML	in combination with azacitidine	Malignancy	Biologic	\$5,000,000			cancer cells.	azacitidine	11/01/17	5/31/21	
	Clinical Trial			Partially HLA-matched virus-	HSC transplant-									
Pulsipher, CHLA	Stage Projects	Ph 1/2	Viral infection	specific T cells	related infection	Cell Therapy	\$4,825,587	T Cell	Allogeneic			12/01/17	11/30/22	
										MM is a treatable but typically incurable plasma cell malignancy that is				
										usually fatal. Currently available therapeutic options have limitations in				
										efficacy and are generally associated with significant toxicity and				
										efficacy and are generally associated with significant toxicity and				
										efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unmet need for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important				
CLIN2-10395	Clinical Trial				Hematologic					efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unmet need for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therape	Determination of maximum			
		Ph 1	Multiple myeloma	CAR-T		Cell Therapy	\$19,997,927	CAR-T	Autologous	efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unmet need for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cel memory CAR-T cells, the treatment could potentially produce long term	Determination of maximum tolerated dose.	12/01/17	12/31/21	
CLIN2-10395 Spear, Poseida		Ph 1	Multiple myeloma	CAR-T	Hematologic Malignancy	Cell Therapy	\$19,997,927	CAR-T	Autologous	efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unmen teed for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cel memory CAR-T cells, the treatment could potentially produce long term control.		12/01/17	12/31/21	
		Ph 1	Multiple myeloma	CAR-T		Cell Therapy	\$19,997,927	CAR-T	Autologous	efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unmet need for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cel memory CAR-T cells, the treatment could potentially produce long term control. Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer		12/01/17	12/31/21	
		Ph 1	Multiple myeloma	CAR-T		Cell Therapy	\$19,997,927	CAR-T	Autologous	efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unmet need for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cell memory CAR-T cells, the treatment could potentially produce long term control. Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer therapy with very encouraging response rates in patients. The therapy		12/01/17	12/31/21	
		Ph 1	Multiple myeloma	CAR-T		Cell Therapy	\$19,997,927	CAR-T	Autologous	efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unmen teed for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cel memory CAR-T cells, the treatment could potentially produce long term control. Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer therapy with very encouraging response rates in patients. The therapy works by isolating a patient's own T cells and then genetically		12/01/17	12/31/21	
		Ph 1	Multiple myeloma	CAR-T		Cell Therapy	\$19,997,927	CAR-T	Autologous	efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unmet need for effective and durable MM therapy. CAR? Timmunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cel memory CAR-T cells, the treatment could potentially produce long term control. Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer therapy with very encouraging response rates in patients. The therapy works by isolating a patient's own T cells and then genetically engineering them to recognize a target protein on the surface of cancer		12/01/17	12/31/21	
		Ph 1	Multiple myeloma	CAR-T		Cell Therapy	\$19,997,927	CAR-T	Autologous	efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unmen teed for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cell memory CAR-T cells, the treatment could potentially produce long term control. Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer therapy with very encouraging response rates in patients. The therapy works by isolating a patient's own T cells and then genetically engineering them to recognize a target protein on the surface of cancer cells, triggering their destruction. In some patients with 8 cell leukemias,		12/01/17	12/31/21	
		Ph 1	Multiple myeloma	CAR-T		Cell Therapy	\$19,997,927	CAR-T	Autologous	efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unmen teed for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cel memory CAR-T cells, the treatment could potentially produce long term control. Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer therapy with very encouraging response rates in patients. The therapy works by isolating a patient's own T cells and then genetically engineering them to recognize a target protein on the surface of cancer cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape		12/01/17	12/31/21	
		Ph 1	Multiple myeloma	CAR-T		Cell Therapy	\$19,997,927	CAR-T	Autologous	efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unmet need for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cell ememory CAR-T cells, the treatment could potentially produce long term control. Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer therapy with very encouraging response rates in patients. The therapy works by isolating a patient's own T cells and then genetically engineering them to recognize a target protein on the surface of cancer cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's		12/01/17	12/31/21	
		Ph 1	Multiple myeloma	CAR-T		Cell Therapy	\$19,997,927	CAR-T	Autologous	efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unmen teed for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cell memory CAR-T cells, the treatment could potentially produce long term control. Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer therapy with very encouraging response rates in patients. The therapy works by isolating a patient's own T cells and then genetically engineering them to recognize a target protein on the surface of cancer cells, triggering their destruction. In some patients with 5 cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell		12/01/17	12/31/21	
Spear, Poseida		Ph 1	Multiple myeloma	CAR-T		Cell Therapy	\$19,997,927	CAR-T	Autologous	efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unmen teed for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cel memory CAR-T cells, the treatment could potentially produce long term control. Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer therapy with very encouraging response rates in patients. The therapy works by isolating a patient's own T cells and then genetically engineering them to recognize a target protein on the surface of cancer cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's recoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer		12/01/17	12/31/21	
		Ph 1	Multiple myeloma	CAR-T	Malignancy	Cell Therapy	\$19,997,927	CAR-T	Autologous	efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unmen teed for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cell ememory CAR-T cells, the treatment could potentially produce long term control. Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer therapy with very encouraging response rates in patients. The therapy works by isolating a patient's own T cells and then genetically engineering them to recognize a target protein on the surface of cancer cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing		12/01/17	12/31/21	
Spear, Poseida CLIN2-10846	Stage Projects Clinical Trial	Ph 1		CAR-T	Malignancy Hematologic		\$19,997,927			efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unmet need for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cell ememory CAR-T cells, the treatment could potentially produce long term control. Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer therapy with very encouraging response rates in patients. The therapy works by isolating a patient's own T cells and then genetically engineering them to recognize a target protein on the surface of cancer cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a nation of carcers to the therapy and device the national transfer.		12/01/17	12/31/21	
Spear, Poseida CLIN2-10846 Mackall, Stanford	Stage Projects				Malignancy	Cell Therapy Cell Therapy	\$19,997,927	CAR-T	Autologous	efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unmet need for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cell ememory CAR-T cells, the treatment could potentially produce long term control. Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer therapy with very encouraging response rates in patients. The therapy works by isolating a patient's own T cells and then genetically engineering them to recognize a target protein on the surface of cancer cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a nation of carcers to the therapy and device the national transfer.		12/01/17	12/31/21	
Spear, Poseida CLIN2-10846 Mackall,	Stage Projects Clinical Trial				Malignancy Hematologic		\$19,997,927			efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unmen teed for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cell memory CAR-T cells, the treatment could potentially produce long term control. Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer therapy with very encouraging response rates in patients. The therapy works by isolating a patient's own T cells and then genetically engineering them to recognize a target protein on the surface of cancer cells, triggering their destruction. In some patients with 5 cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's recoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for	tolerated dose.	12/01/17	12/31/21	
Spear, Poseida CLIN2-10846 Mackall, Stanford	Stage Projects Clinical Trial Stage Projects		B Cell Cancers	CAR-T	Malignancy Hematologic	Cell Therapy	\$19,997,927			efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unmet need for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cell ememory CAR-T cells, the treatment could potentially produce long term control. Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer therapy with very encouraging response rates in patients. The therapy works by isolating a patient's own T cells and then genetically engineering them to recognize a target protein on the surface of cancer cells, triggering their destruction. In some patients with 8 cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for	tolerated dose.	12/01/17	12/31/21	
CLINZ-10846 Mackall, Stanford Solid Cancers	Stage Projects Clinical Trial Stage Projects Disease Team		B Cell Cancers Advanced tumors	CAR-T Autologous HSCs and T cells	Malignancy Hematologic	Cell Therapy Genetically	\$19,997,927			efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unmen teed for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cell ememory CAR-T cells, the treatment could potentially produce long term control. Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer therapy with very encouraging response rates in patients. The therapy works by isolating a patient's own T cells and then genetically engineering them to recognize a target protein on the surface of cancer cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's recocurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for	tolerated dose. Primary: Safety and feasibility. Secondary:	12/01/17	12/31/21	
CLIN2-10846 Mackall, Stanford Solid Cancers	Clinical Trial Stage Projects Disease Team Therapy	Ph 1	B Cell Cancers Advanced tumors (Synovial Sarcoma,	CAR-T Autologous HSCs and T cells genetically modified to express	Malignancy Hematologic Malignancy	Cell Therapy Genetically Modified Cell		CAR-T	Autologous	efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unmen teed for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cel memory CAR-T cells, the treatment could potentially produce long term control. Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer therapy with very encouraging response rates in patients. The therapy works by isolating a patient's own T cells and then genetically engineering them to recognize a target protein on the surface of cancer cells, triggering their destruction. In some patients with 5 cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's recoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss the target protein and enhancing a patient's response to the therapy and reducing the potential for	Primary: Safety and feasibility. Secondary: Persistence of gene-marked			
CLINZ-10846 Mackall, Stanford Solid Cancers	Clinical Trial Stage Projects Disease Team Therapy Development		B Cell Cancers Advanced tumors (Synovial Sarcoma,	CAR-T Autologous HSCs and T cells	Malignancy Hematologic	Cell Therapy Genetically	\$19,997,927 \$19,999,563		Autologous	efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unmen teed for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cell ememory CAR-T cells, the treatment could potentially produce long term control. Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer therapy with very encouraging response rates in patients. The therapy works by isolating a patient's own T cells and then genetically engineering them to recognize a target protein on the surface of cancer cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for	Primary: Safety and feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells	12/01/17	12/31/21	
CLIN2-10846 Mackall, Stanford Solid Cancers	Clinical Trial Stage Projects Disease Team Therapy Development Duane Roth	Ph 1	B Cell Cancers Advanced tumors (Synovial Sarcoma,	CAR-T Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor.	Malignancy Hematologic Malignancy	Cell Therapy Genetically Modified Cell		CAR-T	Autologous	efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unmen teed for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cell ememory CAR-T cells, the treatment could potentially produce long term control. Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer therapy with very encouraging response rates in patients. The therapy works by isolating a patient's own T cells and then genetically engineering them to recognize a target protein on the surface of cancer cells, triggering their destruction. In some patients with 8 cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's recoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for creates. There are few options for patients whose cancers have metastasized due to resistance to current therapies. Engineering of patient's own blood-forming stem cells to produce a continual supply of the immune system cell to attack cancer.	Primary: Safety and feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum			
CLIN2-10846 Mackall, Stanford Solid Cancers	Clinical Trial Stage Projects Disease Team Therapy Development Duane Roth Disease Team	Ph 1	B Cell Cancers Advanced tumors (Synovial Sarcoma,	CAR-T Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor. Small molecule mitotic inhibitor	Malignancy Hematologic Malignancy	Cell Therapy Genetically Modified Cell		CAR-T	Autologous	efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unmet need for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cell ememory CAR-T cells, the treatment could potentially produce long term control. Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer therapy with very encouraging response rates in patients. The therapy works by isolating a patient's own T cells and then genetically engineering them to recognize a target protein on the surface of cancer cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for patients are few options for patients whose cancers have metastasized due to resistance to current therapies. Engineering of patient's own blood-forming stem cells to produce a continual supply of the immune system cell to attack cancer. Solid tumors are the most prevalent form of cancer, and are a major cause of death worldwide. The small molecule being developed inhibits	Primary: Safety and feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum tolerated dose and			
CLIN2-10846 Mackall, Stanford Solid Cancers	Clinical Trial Stage Projects Disease Team Therapy Development Duane Roth	Ph 1	B Cell Cancers Advanced tumors (Synovial Sarcoma,	CAR-T Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor.	Malignancy Hematologic Malignancy	Cell Therapy Genetically Modified Cell		CAR-T	Autologous	efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unmen teed for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cell ememory CAR-T cells, the treatment could potentially produce long term control. Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer therapy with very encouraging response rates in patients. The therapy works by isolating a patient's own T cells and then genetically engineering them to recognize a target protein on the surface of cancer cells, triggering their destruction. In some patients with 8 cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's recoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for creates. There are few options for patients whose cancers have metastasized due to resistance to current therapies. Engineering of patient's own blood-forming stem cells to produce a continual supply of the immune system cell to attack cancer.	Primary: Safety and feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum			
CLIN2-10846 Mackall, Stanford Solid Cancers	Clinical Trial Stage Projects Disease Team Therapy Development Duane Roth Disease Team	Ph 1	B Cell Cancers Advanced tumors (Synovial Sarcoma,	CAR-T Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor. Small molecule mitotic inhibitor	Malignancy Hematologic Malignancy	Cell Therapy Genetically Modified Cell		CAR-T	Autologous	efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unmet need for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cell ememory CAR-T cells, the treatment could potentially produce long term control. Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer therapy with very encouraging response rates in patients. The therapy works by isolating a patient's own T cells and then genetically engineering them to recognize a target protein on the surface of cancer cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for patients are few options for patients whose cancers have metastasized due to resistance to current therapies. Engineering of patient's own blood-forming stem cells to produce a continual supply of the immune system cell to attack cancer. Solid tumors are the most prevalent form of cancer, and are a major cause of death worldwide. The small molecule being developed inhibits	Primary: Safety and feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum tolerated dose and			
CLIN2-10846 Mackall, Stanford Solid Cancers DR2A-05309 Ribas, UCLA	Clinical Trial Stage Projects Disease Team Therapy Development Duane Roth Disease Team Therapy	Ph 1	B Cell Cancers Advanced tumors (Synovial Sarcoma,	CAR-T Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor an automotive military and the serious control targeting serine/threonine	Malignancy Hematologic Malignancy	Cell Therapy Genetically Modified Cell		CAR-T	Autologous	efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unment need for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cell ememory CAR-T cells, the treatment could potentially produce long term control. Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer therapy with very encouraging response rates in patients. The therapy works by isolating a patient's own T cells and then genetically engineering them to recognize a target protein on the surface of cancer cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's recocurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for larges are few options for patients whose cancers have metastasized due to resistance to current therapies. Engineering of patient's own blood-forming stem cells to produce a continual supply of the immune system cell to attack cancer. Solid tumors are the most prevalent form of cancer, and are a major cause of death worldwide. The small molecule being developed inhibits the activity of a protein required in tumor cell lines and cancer stem cells	Primary: Safety and feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum tolerated dose and recommended Phase 2 dose.			
CLIN2-10846 Mackall, Stanford Solid Cancers DR2A-05309 Ribas, UCLA	Clinical Trial Stage Projects Disease Team Therapy Development Duane Roth Disease Team Therapy Development	Ph1 IND, Ph1	B Cell Cancers Advanced tumors (Synovial Sarcoma, Melanoma, Ovarian)	CAR-T Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor. Small molecule mitotic inhibitor targeting serine/threonine kinase to eliminate both tumor	Malignancy Hematologic Malignancy Solid Tumor	Cell Therapy Genetically Modified Cell Therapy	\$19,999,563	CAR-T	Autologous	efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unmet need for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cell ememory CAR-T cells, the treatment could potentially produce long term control. Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer therapy with very encouraging response rates in patients. The therapy works by isolating a patient's own T cells and then genetically engineering them to recognize a target protein on the surface of cancer cells, triggering their destruction. In some patients with 6 cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's recocurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for large and the surface of the cancer. The contract of the cancer is a serious producing the potential for contract of the cancer cells are few options for patients whose cancers have metastasized due to resistance to current therapies. Engineering of patient's own blood-forming stem cells to produce a continual supply of the immune system cell to attack cancer. Solid tumors are the most prevalent form of cancer, and are a major cause of death worldwide. The small molecule being developed inhibits the activity of a protein required in tumor cell lines and cancer stem cells to the contract of the cancer, and are a major cause of death worldwide. The small molecule being developed inhibits the activity of a protein required in tumor cell lines and cancer stem cells	Primary: Safety and feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum tolerated dose and recommended Phase 2 dose. Safety. PK. Efficacy in solid	4/1/14	11/30/20	
CLIN2-10846 Mackall, Stanford Solid Cancers DR2A-05309 Ribas, UCLA	Clinical Trial Stage Projects Disease Team Therapy Development Duane Roth Disease Team Therapy Development	Ph1 IND, Ph1	B Cell Cancers Advanced tumors (Synovial Sarcoma, Melanoma, Ovarian)	CAR-T Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor. Small molecule mitotic inhibitor targeting serine/threonine kinase to eliminate both tumor	Malignancy Hematologic Malignancy Solid Tumor	Cell Therapy Genetically Modified Cell Therapy	\$19,999,563	CAR-T	Autologous	efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unment need for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cell ememory CAR-T cells, the treatment could potentially produce long term control. Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer therapy with very encouraging response rates in patients. The therapy works by isolating a patient's own T cells and then genetically engineering them to recognize a target protein on the surface of cancer cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for calcadors. There are few options for patients whose cancers have metastasized due to resistance to current therapies. Engineering of patient's own blood-forming stem cells to produce a continual supply of the immune system cell to attack cancer. Solid tumors are the most prevalent form of cancer, and are a major cause of death worldwide. The small molecule being developed inhibits the activity of a protein required in tumor cell lines and cancer stem cells (CSC). It is hypothesized that inhibiting the CSC can prevent tumor regrowth after treatment.	Primary: Safety and feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum tolerated dose and recommended Phase 2 dose. Safety. PK. Efficacy in solid	4/1/14	11/30/20	
CLIN2-10846 Mackall, Stanford Solid Cancers DR2A-05309 Ribas, UCLA	Clinical Trial Stage Projects Disease Team Therapy Development Duane Roth Disease Team Therapy Development	Ph1 IND, Ph1	B Cell Cancers Advanced tumors (Synovial Sarcoma, Melanoma, Ovarian)	CAR-T Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor. Small molecule mitotic inhibitor targeting serine/threonine kinase to eliminate both tumor	Malignancy Hematologic Malignancy Solid Tumor	Cell Therapy Genetically Modified Cell Therapy	\$19,999,563	CAR-T	Autologous	efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unment need for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cell emmory CAR-T cells, the treatment could potentially produce long term control. Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer therapy with very encouraging response rates in patients. The therapy works by isolating a patient's own T cells and then genetically engineering them to recognize a target protein on the surface of cancer cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's recocurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for created and the complex of the produce a continual supply of the immune system cell to attack cancer. Soild tumors are the most prevalent form of cancer, and are a major cause of death worldwide. The small molecule being developed inhibits the activity of a protein regular in tumor cell lines and cancer stem cells (CSC). It is hypothesized that inhibiting the CSC can prevent tumor regrowth after treatment.	Primary: Safety and feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum tolerated dose and recommended Phase 2 dose. Safety. PK. Efficacy in solid	4/1/14	11/30/20	
CLIN2-10846 Mackall, Stanford Solid Cancers DR2A-05309 Ribas, UCLA	Clinical Trial Stage Projects Disease Team Therapy Development Duane Roth Disease Team Therapy Development	Ph1 IND, Ph1	B Cell Cancers Advanced tumors (Synovial Sarcoma, Melanoma, Ovarian)	CAR-T Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor. Small molecule mitotic inhibitor targeting serine/threonine kinase to eliminate both tumor	Malignancy Hematologic Malignancy Solid Tumor	Cell Therapy Genetically Modified Cell Therapy	\$19,999,563	CAR-T	Autologous	efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unment need for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cell ememory CAR-T cells, the treatment could potentially produce long term control. Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer therapy with very encouraging response rates in patients. The therapy works by isolating a patient's own T cells and then genetically engineering them to recognize a target protein on the surface of cancer cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for larget are few options for patients whose cancers have metastasized due to resistance to current therapies. Engineering of patient's own blood-forming stem cells to produce a continual supply of the immune system cell to attack cancer. Solid tumors are the most prevalent form of cancer, and are a major cause of death worldwide. The small molecule being developed inhibits the activity of a protein required in tumor cell lines and cancer stem cells (CSC). It is hypothesized that inhibiting the CSC can prevent tumor regrowth after treatment. CD47 is overexpressed on cancer and cancer stem cells and prevents their elimination by phagocytic macrophages by delivering a potent 'don't eat me' signal. HuSF9-64 is a humanized monoclonal antibody 'don't eat me' signal. HuSF9-64 is a humanized monoclonal antibody	Primary: Safety and feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum tolerated dose and recommended Phase 2 dose. Safety. PK. Efficacy in solid	4/1/14	11/30/20	
CLIN2-10846 Mackall, Stanford Solid Cancers DR2A-05309 Ribas, UCLA	Clinical Trial Stage Projects Disease Team Therapy Development Duane Roth Disease Team Therapy Development	Ph1 IND, Ph1	B Cell Cancers Advanced tumors (Synovial Sarcoma, Melanoma, Ovarian)	CAR-T Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor. Small molecule mitotic inhibitor targeting serine/threonine kinase to eliminate both tumor	Malignancy Hematologic Malignancy Solid Tumor	Cell Therapy Genetically Modified Cell Therapy	\$19,999,563	CAR-T	Autologous	efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unmet need for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cell ememory CAR-T cells, the treatment could potentially produce long term control. Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer therapy with very encouraging response rates in patients. The therapy works by isolating a patient's own T cells and then genetically engineering them to recognize a target protein on the surface of cancer cells, triggering their destruction. In some patients with 8 cell leukemias, however, cancer cells are able to remove the target protein between cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for loss and the surface proteins on the surface proteins of the cancer's cancer cell with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for continuous control of the cancer cell with the cell to produce a continual supply of the immune system cell to attack cancer. Solid tumors are the most prevalent form of cancer, and are a major cause of death worldwide. The small molecule being developed inhibits the activity of a protein required in tumor cell lines and cancer stem cells (CSC). It is hypothesized that inhibiting the CSC can prevent tumor regrowth after treatment. CD47 is overexpressed on cancer and cancer stem cells and prevents their elimination by phagocytic macrophages by delivering a potent "don't eat me" signal. HuSF9-G4 is a humanized monoclonal antibody (mAb) that binds to CD47 and blocks its interacti	Primary: Safety and feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum tolerated dose and recommended Phase 2 dose. Safety. PK. Efficacy in solid	4/1/14	11/30/20	
CLIN2-10846 Mackall, Stanford Solid Cancers DR2A-05309 Ribas, UCLA DR3-07067 Slamon, UCLA	Clinical Trial Stage Projects Disease Team Therapy Development Duane Roth Disease Team Therapy Development III	Ph1 IND, Ph1	B Cell Cancers Advanced tumors (Synovial Sarcoma, Melanoma, Ovarian)	Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor. Small molecule mitotic inhibitor targeting serine/threonine kinase to eliminate both tumor cells and cancer stem cells	Malignancy Hematologic Malignancy Solid Tumor	Cell Therapy Genetically Modified Cell Therapy	\$19,999,563	CAR-T	Autologous	efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unment need for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cell ememory CAR-T cells, the treatment could potentially produce long term control. Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer therapy with very encouraging response rates in patients. The therapy works by isolating a patient's own T cells and then genetically engineering them to recognize a target protein on the surface of cancer cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for calcador. There are few options for patients whose cancers have metastasized due to resistance to current therapies. Engineering of patient's own blood-forming stem cells to produce a continual supply of the immune system cell to attack cancer. Solid tumors are the most prevalent form of cancer, and are a major cause of death worldwide. The small molecule being developed inhibits the activity of a protein required in tumor cell lines and cancer stem cells cause of death worldwide. The small molecule being developed inhibits the activity of a protein required in tumor cell lines and cancer stem cells (CSC). It is hypothesized that inhibiting the CSC can prevent tumor regrowth after treatment. CD47 is overexpressed on cancer and cancer stem cells and prevents where lemination by phagocytoxis of cancer cells. Anti-CD47 is highly (mAb) that binds to CD47 and blocks its interaction with its receptor.	Primary: Safety and feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum tolerated dose and recommended Phase 2 dose. Safety. PK. Efficacy in solid cancers.	4/1/14	11/30/20	
CLIN2-10846 Mackall, Stanford Solid Cancers DR2A-05309 Ribas, UCLA DR3-07067 Slamon, UCLA	Clinical Trial Stage Projects Disease Team Therapy Development Duane Roth Disease Team Therapy Development III Clinical Trial	Ph1 IND, Ph1 Ph1	Advanced tumors (Synovial Sarcoma, Melanoma, Ovarian) Solid Tumor	CAR-T Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor. Small molecule mitotic inhibitor targeting serine/threonine kinase to eliminate both tumor cells and cancer stem cells Anti-CD47 monoclonal antibody	Malignancy Hematologic Malignancy Solid Tumor	Cell Therapy Genetically Modified Cell Therapy Small Molecule	\$19,999,563	CAR-T HSC	Autologous	efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unment need for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cell emmory CAR-T cells, the treatment could potentially produce long term control. Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer therapy with very encouraging response rates in patients. The therapy works by isolating a patient's own T cells and then genetically engineering them to recognize a target protein on the surface of cancer cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's recoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for calculations. There are few options for patients whose cancers have metastasized due to resistance to current therapies. Engineering of patient's own blood-forming stem cells to produce a continual supply of the immune system cell to attack cancer. Solid tumors are the most prevalent form of cancer, and are a major cause of death worldwide. The small molecule being developed inhibits the activity of a protein required in tumor cell lines and cancer stem cells (CSC). It is hypothesized that inhibiting the CSC can prevent tumor regrowth after treatment. CD47 is overexpressed on cancer and cancer stem cells and prevents their elimination by phagocytic macrophages by delivering a potent "don't eat me" signal. Hus59°-64 is a humanized monoclonal antibody (mAb) that binds to CD47 and blocks its interaction with its receptor, thereby enabling phagocytosis of cancer cells. Anti-CD47 is highly yenergistic in	Primary: Safety and feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum tolerated dose and recommended Phase 2 dose. Safety. PK. Efficacy in solid cancers. Safety. Dosing. Efficacy -	4/1/14 5/1/14	11/30/20	
CLIN2-10846 Mackall, Stanford Solid Cancers DR2A-05309 Ribas, UCLA DR3-07067 Slamon, UCLA	Clinical Trial Stage Projects Disease Team Therapy Development Duane Roth Disease Team Therapy Development III	Ph1 IND, Ph1	B Cell Cancers Advanced tumors (Synovial Sarcoma, Melanoma, Ovarian)	Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor. Small molecule mitotic inhibitor targeting serine/threonine kinase to eliminate both tumor cells and cancer stem cells	Malignancy Hematologic Malignancy Solid Tumor	Cell Therapy Genetically Modified Cell Therapy	\$19,999,563	CAR-T	Autologous	efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unmet need for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cell ememory CAR-T cells, the treatment could potentially produce long term control. Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer therapy with very encouraging response rates in patients. The therapy works by isolating a patient's own T cells and then genetically engineering them to recognize a target protein on the surface of cancer cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for continuation of the complex of	Primary: Safety and feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum tolerated dose and recommended Phase 2 dose. Safety. PK. Efficacy in solid cancers.	4/1/14	11/30/20	
CLIN2-10846 Mackall, Stanford Solid Cancers DR2A-05309 Ribas, UCLA DR3-07067 Slamon, UCLA	Clinical Trial Stage Projects Disease Team Therapy Development Duane Roth Disease Team Therapy Development III Clinical Trial	Ph1 IND, Ph1 Ph1	Advanced tumors (Synovial Sarcoma, Melanoma, Ovarian) Solid Tumor	CAR-T Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor. Small molecule mitotic inhibitor targeting serine/threonine kinase to eliminate both tumor cells and cancer stem cells Anti-CD47 monoclonal antibody	Malignancy Hematologic Malignancy Solid Tumor	Cell Therapy Genetically Modified Cell Therapy Small Molecule	\$19,999,563	CAR-T HSC	Autologous	efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unment need for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cell ememory CAR-T cells, the treatment could potentially produce long term control. Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer therapy with very encouraging response rates in patients. The therapy works by isolating a patient's own T cells and then genetically engineering them to recognize a target protein on the surface of cancer cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for cancer are few options for patients whose cancers have metastasized due to resistance to current therapies. Engineering of patient's own blood-forming stem cells to produce a continual supply of the immune system cell to attack cancer. Solid tumors are the most prevalent form of cancer, and are a major cause of death worldwide. The small molecule being developed inhibits the activity of a protein required in tumor cell lines and cancer stem cells (CSC). It is hypothesized that inhibiting the CSC can prevent tumor regrowth after treatment. LOA 7 is overexpressed on cancer and cancer stem cells and prevents their elimination by phagocytic macrophages by delivering a potent 'don't eat me' signal. HuSF9-G4 is a humanized monoclonal antibody (mAb) that binds to pagocytic macrophages by delivering a potent 'don't eat me' signal. HuSF9-G4 is a humanized monoclonal antibody (mAb) that binds to pagocytic macr	Primary: Safety and feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum tolerated dose and recommended Phase 2 dose. Safety. PK. Efficacy in solid cancers. Safety. Dosing. Efficacy -	4/1/14 5/1/14	11/30/20	
CLIN2-10846 Mackall, Stanford Solid Cancers DR2A-05309 Ribas, UCLA DR3-07067 Slamon, UCLA	Clinical Trial Stage Projects Disease Team Therapy Development Duane Roth Disease Team Therapy Development III Clinical Trial	Ph1 IND, Ph1 Ph1	Advanced tumors (Synovial Sarcoma, Melanoma, Ovarian) Solid Tumor	CAR-T Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor. Small molecule mitotic inhibitor targeting serine/threonine kinase to eliminate both tumor cells and cancer stem cells Anti-CD47 monoclonal antibody	Malignancy Hematologic Malignancy Solid Tumor	Cell Therapy Genetically Modified Cell Therapy Small Molecule Biologic	\$19,999,563	CAR-T HSC	Autologous	efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unmet need for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cell ememory CAR-T cells, the treatment could potentially produce long term control. Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer therapy with very encouraging response rates in patients. The therapy works by isolating a patient's own T cells and then genetically engineering them to recognize a target protein on the surface of cancer cells, triggering their destruction. In some patients with 8 cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for continuous continuous continuous continuous proteins and enhancing a patient's response to the therapy and reducing the potential for continuous c	Primary: Safety and feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum tolerated dose and recommended Phase 2 dose. Safety. PK. Efficacy in solid cancers. Safety. Dosing. Efficacy - objective response rate (ORR)	4/1/14 5/1/14	11/30/20	
CLIN2-10846 Mackall, Stanford Solid Cancers DR2A-05309 Ribas, UCLA DR3-07067 Slamon, UCLA CLIN2-09577 Chao, 47Inc	Clinical Trial Stage Projects Disease Team Therapy Development Duane Roth Disease Team Therapy Development III Clinical Trial Stage Projects	Ph1 IND, Ph1 Ph1	Advanced tumors (Synovial Sarcoma, Melanoma, Ovarian) Solid Tumor	CAR-T Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor. Small molecule mitotic inhibitor targeting serine/threonine kinase to eliminate both tumor cells and cancer stem cells Anti-CD47 monoclonal antibody + cetuximab	Malignancy Hematologic Malignancy Solid Tumor	Cell Therapy Genetically Modified Cell Therapy Small Molecule Biologic Genetically	\$19,999,563	CAR-T HSC	Autologous	efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unmet need for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cell ememory CAR-T cells, the treatment could potentially produce long term control. Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer therapy with very encouraging response rates in patients. The therapy works by isolating a patient's own T cells and then genetically engineering them to recognize a target protein on the surface of cancer cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for content of the complex of the c	Primary: Safety and feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum tolerated dose and recommended Phase 2 dose. Safety. PK. Efficacy in solid cancers. Safety. Dosing. Efficacy - objective response rate (ORR)	4/1/14 5/1/14	11/30/20	
CLIN2-10846 Mackall, Stanford Solid Cancers DR2A-05309 Ribas, UCLA DR3-07067 Slamon, UCLA CLIN2-09577 Chao, 47lnc	Clinical Trial Stage Projects Disease Team Therapy Development Duane Roth Disease Team Therapy Development III Clinical Trial Stage Projects	Ph1 IND, Ph1 Ph1	Advanced tumors (Synovial Sarcoma, Melanoma, Ovarian) Solid Tumor Solid Tumor	CAR-T Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor. Small molecule mitotic inhibitor targeting serine/threonine kinase to eliminate both tumor cells and cancer stem cells Anti-CD47 monoclonal antibody + cetuximab T cells engineered to target	Hematologic Malignancy Solid Tumor Solid Tumor	Genetically Modified Cell Therapy Small Molecule Biologic Genetically Modified Cell	\$19,999,563 \$6,924,317 \$10,234,048	CAR-T HSC	Autologous Autologous	efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unment need for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cell ememory CAR-T cells, the treatment could potentially produce long term control. Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer therapy with very encouraging response rates in patients. The therapy works by isolating a patient's own T cells and then genetically engineering them to recognize a target protein on the surface of cancer cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's recocurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for cancer. I am of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for cells to attack cancer. Solid tumors are the most prevalent form of cancer, and are a major cause of death worldwide. The small molecule being developed inhibits the activity of a protein required in tumor cell lines and cancer stem cells (CSC). It is hypothesized that inhibiting the CSC can prevent tumor regrowth after treatment. CD47 is overexpressed on cancer and cancer stem cells and prevents their elimination by phagocytic macrophages by delivering a potent "don't eat me" signal. Hus5pe Als a humanized monoclonal antibody (mAb) that binds to CD47 and blocks its interaction with its receptor, thereby enabling phagocytosis of cancer cells. Anti-CD47 is highly spregistic in combination with other anti-cancer therapies including tumor-targeting mAbs such as cetusimab	Primary: Safety and feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum tolerated dose and recommended Phase 2 dose. Safety. PK. Efficacy in solid cancers. Safety. Dosing. Efficacy objective response rate (ORR) Safety, Feasibility, persistence, biodistribution	4/1/14 5/1/14 1/1/17	11/30/20 4/30/18 12/31/21	
CLIN2-10846 Mackall, Stanford Solid Cancers DR2A-05309 Ribas, UCLA DR3-07067 Slamon, UCLA CLIN2-09577 Chao, 47lnc	Clinical Trial Stage Projects Disease Team Therapy Development Duane Roth Disease Team Therapy Development III Clinical Trial Stage Projects	Ph1 IND, Ph1 Ph1	Advanced tumors (Synovial Sarcoma, Melanoma, Ovarian) Solid Tumor	CAR-T Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor. Small molecule mitotic inhibitor targeting serine/threonine kinase to eliminate both tumor cells and cancer stem cells Anti-CD47 monoclonal antibody + cetuximab T cells engineered to target	Malignancy Hematologic Malignancy Solid Tumor	Cell Therapy Genetically Modified Cell Therapy Small Molecule Biologic Genetically	\$19,999,563	CAR-T HSC	Autologous Autologous	efficacy and are generally associated with significant toxicity and complications. Hence, there remains an unmet need for effective and durable MM therapy. CAR-T immunotherapy is emerging as an important potential therapeutic approach for cancer, including MM. Being stem cell ememory CAR-T cells, the treatment could potentially produce long term control. Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer therapy with very encouraging response rates in patients. The therapy works by isolating a patient's own T cells and then genetically engineering them to recognize a target protein on the surface of cancer cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for content of the complex of the c	Primary: Safety and feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum tolerated dose and recommended Phase 2 dose. Safety. PK. Efficacy in solid cancers. Safety. Dosing. Efficacy - objective response rate (ORR)	4/1/14 5/1/14	11/30/20	

CLIN1-10893	Late Stage Preclinical		Advanced solid											
Abbot, Fate	Projects	IND	tumors	iPS-derived NK cells	Solid Tumor	Cell Therapy	\$4,000,000	iPS-NK	Allogeneic			04/1/18	6/30/19	
ORGAN SYSTEM		ITICS				σ	‡ 1,000,000						0,00,00	
Bone Disorders														
DR2A-05302	Disease Team Therapy			Synthetic molecule, LLP2A-Ale, to enhance homing of endozenous bone marrow MSCS						Femoral head osteonecrosis (aka avascular necrosis) is a disease caused by loss of blood supply to the bone, leading to bone cell death, end stage hip arthritis and total hip replacement. There is an unmet need for treatment of this disease, that affects individuals at prime of life (peak age 35 years). This small molecule therapeutic recruits bone forming cells to site of damage, where they serve the dual function of laying down bone, and stimulating revascularization to prevent further bone cell				
Lane, UC Davis	Development	Ph 1 a/b	Osteonecrosis	to bone surface	Bone Disorder	Small Molecule	\$19,999,867			death.	immunogenicity.	1/1/13	12/31/17	
Cartilage Disor	ders			l.						1				
CLIN1-09472														
Wang, Cellular Biomedicine Group	Preclinical Projects	IND	Osteoarthritis	Allogeneic adipose-derived MSCs	Cartilage Disorder	Cell Therapy	\$2,291,976	MSC	Allogeneic		Obtain an active IND	3/1/17	3/31/18	
CLIN1-08309			Osteoarthritis,	Small molecule injected intra- articularly that promotes resident cartilage mesenchymal stem cell differentiation into										
Schultz, Calibr	CLIN1	IND	cartilage injuries	chondrocytes	Cartilage Disorder	Small Molecule	\$1,667,832				File an IND	9/1/15	3/31/17	
CLIN2-10388 Sahelijo, Calibr	CLIN2	Ph 1	Osteoarthritis, cartilage injuries	Small molecule injected intra- articularly that promotes resident cartilage mesenchymal stem cell differentiation into chondrocytes	Cartilage Disorder	Small Molecule	\$8,447,523	-				12/01/17	11/30/20	
Cardiovascular	& Vascular D	isorders	•	,	,									
DR2A-05735 Smith, Capricor Inc.	Disease Team Therapy Development	Ph 2	Heart dysfunction after myocardial infarction/Chronic heart failure	Allogeneic cardiosphere derived cells	Cardiovascular Disease	Cell Therapy	\$19,782,136	CDC	Allogeneic	Heart failure is a progressive disease with a high risk of mortality. Cardiosphere-derived cells (CDCs) reduce scar size after heart attack in preclinical animal models and in a prior clinical trial.	Primary: Determine whether treatment is safe and causes reduction in cardiac scar size in patients with heart failure after a heart attack. Secondary: Assess for other structural or functional cardiac benefits.	1/1/13	12/31/17	
CLIN2-09444 Lewis, Cedars- Sinai	Clinical Trial Stage Projects	Ph1a/b	Pulmonary Arterial Hypertension	Allogeneic cardiosphere derived cells	Vascular Disease	Cell Therapy	\$7,354,772	CDC	Allogeneic	Pulmonary arterial hypertension (PAH) is a progressive condition with no cure, survival is poor. Cardiosphere-derived cells (CDCs) decrease wall thickening of lung small blood vessels in preclinical studies. Improvement in lung blood vessels is expected to reduce cardiac right ventricular dysfunction.	Primary: Safety. Secondary: Exploratory efficacy measures of right ventricular function.	1/1/17	4/30/21	
CLIN2-08334 Ascheim, Capricor, Inc.	Clinical Trial Stage Projects	Ph 2	Duchenne muscular dystrophy cardiomyopathy	Allogeneic cardiosphere derived cells	Skeletal Muscle Disorder	Cell Therapy	\$3,376,259	CDC	Allogeneic	Heart failure is a leading cause of death for Duchenne muscular dystrophy patients. Cardiosphere-derived cells (CDCs) decrease myocardial fibrosis, improve cardiac function and induce regeneration of heart muscle in pre	Primary: Safety and tolerability in DMD patients. Secondary: Structural or functional cardiac benefits, quality of life improvements.	4/1/16	10/31/18	
DR2A-05394	Disease Team Therapy			Allogeneic hESC-derived	Cardiovascular					5.7 million Americans suffer from heart failure, and the end stage 2 year survival rate is 50%. hESC-CM promote new blood vessel formation and	Obtain an active IND for a first-in-human trial in heart			
Wu, Stanford	Development	IND	Ischemic heart failure	cardiomyocytes	Disease	Cell Therapy	\$19,060,330	CM	Allogeneic	improve cardiac function in preclinical models of heart failure.	failure patients.	4/1/13	3/31/18	
AP1-08039 Foyt, ViaCyte Inc.	Accelerated Pathway I	Trial	Diabetes: Type 1	Allogeneic hESC-derived pancreatic cell progenitors in a device implanted subcutaneously	Endocrine Disorder	Cell Therapy,	\$16,603,160	Pancreatic endocrine progenitor	Allogeneic	Diabetes mellitus affects 370 million people worldwide. Disproportionately affects certain minority groups and the elderly. Current therapy is self-administration of insulin. Diabetes costs in CA are tens of billions of dollars each year. Directed differentiation of embryonic stem cells to pancreatic precursor cells. Project plan is transplantation of pancreatic precursor cells that generate functional islet tissue in vivo that can respond to insulin levels in a more physiological manner than direct insulin replacement.	Primary: Safety. Secondary: Efficacy.	1/1/15	12/31/17	
CLIN2-09730 Losordo, Caladrius	Clinical Trial Stage Projects	Ph 2		Autologous ex vivo expanded polyclonal regulatory T cells	Endocrine Disorder		\$12,211,255	T-reg		Children with T1D face lifelong struggles with glycemic control and, despite careful management, an increased risk of severe complications. No therapy that maintains or restores pancreatic beta islet cell function is currently approved. Evidence indicates that regulatory T-cells (T-regs) maintain immune balance at least in part by control of differentiation of multipotent progenitor/stem cells.	Primary: Safety. Secondary: Efficacy.	4/1/17	7/31/20	
CLIN1-08671, D'Amour, Viacyte	Clinical Trial Stage Projects	IND	Diabetes: Type 1	hESC-derived pancreatic progenitor cells delivered in a device that allows direct vascularization of the cell therapy	Endocrine Disorder	Cell Therapy, Combination	\$3,984,164	Pancreatic endocrine progenitor	Allogeneic	There are over 100,000 people in the US with type 1 diabetes so severe that they are at constant risk of hospitalization and/or death. Within months after administration, this product could provide a source of insulin producing beta cells to restore those patients' blood sugar to normal healthy levels and save their lives.	Obtain an active IND and trial start up	8/1/16	7/31/17	

									1			,	le de la companya de	
				hESC-derived pancreatic progenitor cells delivered in a						There are over 100,000 people in the US with type 1 diabetes so severe that they are at constant risk of hospitalization and/or death. Within				
				device that allows direct				Pancreatic		months after administration, this product could provide a source of insulir	1			
CLIN2-09672,	Clinical Trial			vascularization of the cell		Cell Therapy,		endocrine		producing beta cells to restore those patients' blood sugar to normal	Primary: Safety and			
Foyt, Viacyte	Stage Projects	Ph 1/2	Diabetes: Type 1	therapy	Endocrine Disorder	Combination	\$20,000,000	progenitor	Allogeneic	healthy levels and save their lives.	Tolerability	10/1/17	12/31/20	
Kidney Disorde	ers													
				A Human Acellular Vessel in										
				Patients Needing Renal							Primary: Safety and			
				Replacement Therapy: A						Synthetic vascular access grafts for hemodialysis in kidney patients are	tolerability, rate of patency of			
CLIN2-08938,				Comparison with ePTFE Grafts						associated with thrombosis, infection and abandonment. Human	the graft and rate of			
Lawson,	Clinical Trial			as Conduits for Hemodialysis						Acellular Vessel (HAV) is made of extracellular matrix from human	interventions needed to			
Humacyte, Inc.	Stage Projects	Ph 3	Renal dialysis	(HUMANITY)	Endocrine Disorder	Device	\$9,999,528		Allogeneic	smooth muscle cells, similar in composition and structure to native tissue.	restore patency.	8/1/16	7/31/21	
										Synthetic vascular access grafts for hemodialysis in kidney patients are				
CLIN2-09688,				A Human Acellular Vessel in						associated with thrombosis, infection and abandonment. Human				
Lawson,	Clinical Trial			Patients Needing Renal						Acellular Vessel (HAV) is made of extracellular matrix from human				
Humacyte, Inc.	Stage Projects	Ph 3	Renal dialysis	Replacement Therapy.	Endocrine Disorder	Device	\$14,082,865		Allogeneic	smooth muscle cells, similar in composition and structure to native tissue.		11/01/17	3/31/22	
										Unmet medical need for allogeneic kidney transplants. Need to eliminate				
										chronic rejection/allograft nephropathy that causes gradual loss of kidner	/			
				Donor CD34+ and CD3+ T cells						(50% of graft loss by 12-15 years in HLA mismatched recipients).				
CLIN2-09439	Clinical Trial			for immune tolerance to HLA	Immune tolerance,					Eliminate the lifelong need for anti-rejection drugs that have numerous	Primary: Safety. Secondary:			
Strober, Stanford	Stage Projects	Ph 1	Transplant tolerance	mismatched kidney donors.	transplant	Cell Therapy	\$5,069,674	HSC	Allogeneic	cumulative side effects.	Preliminary efficacy.	2/1/17	1/31/21	
										Cystinosis is caused by a genetic mutation that allows an amino acid,				
										cystine, to build up in and damage the kidneys, eyes, liver, muscles,				
										pancreas and brain of children and adults. Current therapy only delays				
										progression of the disease, has severe side effects and people taking it				
										still require kidney transplants, and develop diabetes, neuromuscular				
				Ex vivo transduced autologous						disorders and hypothyroidism. The goal is to take blood stem cells from				
				human CD34+ hematopoietic		Genetically				people with cystinosis, genetically-modify them to remove the mutation,				
Clin1-09230	Clinical Trial			stem cells for treatment of		Modified Cell				then return them to the patient to create a new, healthy, blood system			I	
Cherqui, UCSD	Stage Projects	IND	Cystinosis	cvstinosis	Cystinosis	Therapy	\$ 5.273.189	HSC	Autologous	free of the disease.	Obtain an active IND	11/1/16	10/31/18	
CLIN2-10411	stage Frojetts	IND	Cystiliosis	Donor CD34+ and CD3+ T cells	Cystiiiosis	петару	y 3,213,109	H3C	Autologous	Unmet medical need for allogeneic kidney transplants in HLA-matched	Obtain all active IND	11/1/10	10/31/10	
Deitcher.	Clinical Trial			for immune tolerance to HLA	Immune tolerance.					patients. Eliminate the lifelong need for anti-rejection drugs that have				
Medeor	Stage Projects	Ph 3	Transplant tolerance	mismatched kidney donors.	transplant	Cell Therapy	\$18,763,585	HSC	Allogeneic	numerous cumulative side effects.	Efficacy and Safety	3/1/18	12/31/22	
IVICUEUI	Juge 110jects	1113	Transplant tolerance	mismatched kidney donors.	transplant	centrictapy	710,703,303	1130	Anogeneic	numerous cumulative side effects.	Lineacy and Safety	3/1/10	12/31/22	