Award							Funding	Therapeutic				1	Projected	Percent
Number, PI,	_					General Class	(ICOC	Cell (for Cell				Award	Award End	Time In
Institution		Trial Stage	Indication	Therapeutic	Area	of Approach	Approved)	Therapy)	Cell Source	Rationale	Project Goal	Start Date	Date	Award
EURO THERA														
eurologic Dis	orders: Injuri	es				[]			r		1	1	1	
										Up to 12,000 Americans suffer a spinal cord injury each year. Leads to a high level of permanent disability and decreased life expectancy.				
										Currently no approved therapies. Cells derived from embryonic stem cells				
SP3A-07552										used to heal the spinal cord at the site of injury. The stem cells mature				
Lebkowski.										into oligodendrocyte precursors that are injected at the injury site where				
Asterias	Strategic			Allogeneic oligodendrocyte				Oligodendrocyte		it's hoped they repair the myelin that protects the nerves in the spinal	Safety. Dosing. Efficacy -			
iotherapeutics	Partnership III	Ph 1/2a	Spinal Cord Injury	progenitors	Neurologic Injury	Cell Therapy	\$14,323,318	Progenitors		cord.	motor improvement.	10/1/14	9/30/18	
											Safety and efficacy compared			
										Stroke is a major cause of long-term disability and there are no proven	to sham surgery -			
										medical treatments for chronic stroke. Intracerebral delivery of modified	improvement in motor			
CLIN2-10344	Clinical Trial			Modified bone marrow-derived						MSCs provides a well tolerated treament with the potential to improve	activity on stroke affected			
Bates, SanBio	Stage Projects	Ph 2b	Ischemic Stroke	mesenchymal stem cells (MSCs)	Neurologic Injury	Cell Therapy	\$19,998,580	MSC	Allogeneic	motor function in these patients	side.	8/1/17	6/30/20	
CLIN1-09433	Late Stage									Stroke is the leading cause of adult disability. There is no medical therapy that promotes stroke recovery. Cells derived from H9 ESC act via				
Steinberg,	Preclinical			H9 ESC-derived neural stem				NSC or NPC (ESC-		secretion of paracrine factors to modulate brain repair processes in				
Stanford	Projects	IND	Ischemic Stroke	cells	Neurologic Injury	Cell Therapy	\$5,300,000	derived)	Allogeneic	preclinical stroke models.	Obtain an active IND	8/1/17	7/31/19	
	orders: Neuro			0010	incur ologic injury	centricropy	\$3,300,000	derivedy	Autogeneie		obtain an detire mb	0/1/1/	,,51,15	
eurologic Dis	Disease Team	Juegenerativ	e					1			[[
DR2A-05320,	Therapy									ALS is a devastating disease with no cure. This cell therapy intends to				
CLIN2-09284	Development,			Allogeneic neural progenitor		Genetically				support sick motor neurons via astrocyte replacement and pro-survival				
endsen, Cedars	Clinical Trial		ALS (Amyotrophic	cells genetically modified with	Neurodegenerative	Modified Cell	\$17,842,617,			growth factors. Allogeneic neural stem cells, genetically modified to	Safety. Dosing. Efficacy -			
Sinai	Stage Projects	Ph 1/2a	lateral sclerosis)	GDNF	Disorder	Therapy	\$6,154,067	NSC or NPC	Allogeneic	express GDNF, injected into the spinal cord.	Lower limb strength	4/1/17	3/31/20	
										ALS is a fatal neurodegenerative disease for which there is currently no				
										adequate treatment. Autologous MSCs are propagated ex vivo and				
				Autologous MSCs cultured to						induced to secrete neurotrophic factors. NurOwn cells are returned to				
CLIN2-09894	Clinical Trial	D 1- D	ALS (Amyotrophic	enhance secretion of growth	Neurodegenerative	C.II.Thursday	645 042 200			the patients in the target area of damage. Previous trials showed safety	Safety and efficacy of three	0/4/47	7/24/40	
	Stage Projects	Ph 3	lateral sclerosis)	factors (NurOwn)	Disorder	Cell Therapy	\$15,912,390	MSC	Autologous	and encouraging signs of efficacy.	repeated doses.	8/1/17	7/31/19	
e Disease				Т		· · · · · ·		r		And colored manufact descences in a programming discose condition in			-	
	Duane Roth									Age-related macular degeneration is a progressive disease resulting in death of the retinal pigment epithelium (RPE) causing distortion to				
	Disease Team									central vision and eventually to legal blindness. Incidence - 1:1359 in the				
	Therapy			Allogeneic functionally polarized						US. Approach is replacement therapy with viable RPE cells delivered on a	Safety. Efficacy - slow disease			
DR3-07438	Development		Adult Macular	hESC-derived RPE monolayers		Cell Therapy,				synthetic membrane mimicking native state with RPE cells on Bruch's	progression, maintain and			
lumayun, USC	Ш	Ph 1	Degeneration	on synthetic substrate	Eye Disease	Combination	\$18,922,665	RPE	Allogeneic	membrane.	restore visual acuity	8/1/14	3/31/19	
			, i i i i i i i i i i i i i i i i i i i							Retinitis pigmentosa (RP) is a progressive retinal degeneration that				
										affects over 1.5 million people worldwide. Unfortunately, treatment is				
										still rather limited. A single sub-retinal injection of human neural				
										progenitor cells offers dramatic preservation of vision. Grafted Cells				
LSP1-0835	Late Stage									survive for an extended period, secrete pro-survival factors and				
Nang, Cedars-	Preclinical	IND	B	Subretinal injection of human	5 D'	C.II.Thursday	\$4,954,514	NPC		extracellular matrix, reduce oxidative stress response and preserve vision	Obtain a station IND	8/1/15	0/20/47	
Sinai	Projects	IND	Retinitis Pigmentosa	neural progenitor cells	Eye Disease	Cell Therapy	\$4,954,514	NPC	Allogeneic	and RPE integrity. Retinitis pigmentosa (RP) is a severe form of blindness that runs in	Obtain an active IND	8/1/15	9/30/17	
DR2A-05739	Disease Team									families with an incidence of 1:4000. Good target for stem cell therapy				
Klassen, UC	Therapy			Allogeneic retinal progenitor							Safety and efficacy - visual			
Irvine	Development	IND, Ph 1/2a	Retinitis Pigmentosa		Eye Disease	Cell Therapy	\$17,306,668	RPC	Allogeneic	light sensing photoreceptors.	acuity.	1/1/13	12/31/17	
					1						Safety and efficacy -		1-1-	
CLIN2-09698	Clinical Trial			Allogeneic retinal progenitor						Follow-on study based on Phase 1/2a clinical trial. Continue to assess	improvement in visual			
Klassen, Jcyte	Stage Projects	Ph 2b	Retinitis Pigmentosa	cells	Eye Disease	Cell Therapy	\$8,295,750	RPC	Allogeneic	safety and establish efficacy.	function at 12 months.	2/1/17	1/31/21	
				6 In state of the						Limbal stem cell deficiency results in inability to heal following ocular				
CU1114 00000	Charles I Trail			Cultivated autologous human						surface injury leading to corneal opacity. Cultivated autologous limbal				
CLIN1-08686	Clinical Trial	IND	Corneel Dlindness	limbal stem cells on human	Fire Disease	Cell Theremy	\$4,244,211	LSC	Atalaa	stem cells transplanted back to the patient allow restoration and	Obtain an active IND	8/1/16	11/30/18	
Deng, UCLA	Stage Projects		Corneal Blindness	amniotic membrane	Eye Disease	Cell Therapy	94,244,211	LSC	Autologous	maintenance of a normal corneal surface.	Obtain an active IND	0/1/10	11/30/18	
	CER THERAPE	UTICS												<u> </u>
ood Disorde	rs			I		[]			1	In the second	1	1	1	
										Untreated alpha thalassemia major is almost universally fatal in utero.				
										Current treatment requires in utero blood transfusions and monthly blood transfusions for life or a bone marrow transplant if a suitable donor				
										is identified. The proposed treatment is a maternal bone marrow				
CLIN2-09183	Clinical Trial		Alpha Thalassemia	Maternal bone marrow derived						transplant in utero that takes advantage of maternal-fetal immune				
	Stage Projects	Ph1	Major	HSC transplant in utero	Blood Disorder	Cell Therapy	\$12,131,817	HSC	Allogeneic	tolerance, and may provide a definitive cure.	Safety and feasibility, efficacy.	8/1/17	7/31/22	
	and ge in ojects		major		2.300 2.301 001	con meropy	+12,101,017		· mogeneic		contraction and reasoning, emology.	0/1/1/	,,,,,,,,	
				Lentiviral vector modified						CGD prevents white blood cells from killing foreign invaders. Patients				
				autologous CD34+						have persistent, untreatable tissue infections. Affects 1:200,000 in US.				
			X-linked Chronic	hematopoietic stem/progenitor		Genetically				Usually diagnosed before age 5, without treatment children die before	Primary: Safety and Efficacy.			
CLIN2-08231	Clinical Trial		Granulomatous	cells via transplantation &		Modified Cell					Secondary: Restoration of	1		
Kohn UCLA	Stage Projects	Ph 1/2	Disease.	engraftment	Blood Disorder	Therapy	\$7,402,549	HSC	Autologous	matched donors using gene-corrected autologous HSCT.	immune function	9/1/15	8/31/20	

							1 1				ו ר			
										An inherited mutation in the hemoglobin gene causes red blood cells to				
	Duane Roth			Autologous HSC, genetically						"sickle" under conditions of low oxygen. Affects 1:500 African-Americans and is common in Hispanic-Americans. Median survival is 42 years for				
	Disease Team			corrected ex vivo by lentiviral						males and 48 years for females. More than 80% of patients lack an HLA-	Primary: Safety, feasibility.			
	Therapy			vector mediated addition of a		Genetically				identical sibling donor. Project plan is genetic correction of adult bone	Secondary: Hematopoietic			
DR3-06945 Kohn, UCLA	Development III	Ph 1	Sickle Cell Disease	hemoglobin gene that blocks sickling	Blood Disorder	Modified Cell Therapy	\$13,935,441	HSC	Autologous	marrow hematopoietic cells by adding a novel therapeutic hemoglobin gene that blocks sickling of the red blood cells.	Recovery; RBC function; Quality of life assessment	7/1/14	6/30/18	
KOIIII, OCLA		FILI	SICKIE CEILDISEase	Autologous HSC, genetically	BIOOU DISOLUEI	тнегару	\$13,533,441	HBC	Autologous	In ADA-SCID allogeneic HSCTs from non-matched sibling donors are a	Primary: Safety. Secondary:	//1/14	0/30/18	
			ADA-SCID (severe	corrected ex vivo by lentiviral		Genetically				high risk procedure. Efficacy of chronic enzyme replacement therapy is	Efficacy, gene marking,			
CLIN2-09339	Clinical Trial	Ph2 -	combined immune	vector mediated addition of	Disc d D's solar	Modified Cell	¢20,000,000		A	uncertain in the long-term. Preliminary data indicates that OTL-101 may		a /a /a 7	42/24/24	
Kohn, UCLA CLIN2-09504	Stage Projects	registration	deficiency) X-SCID (X-linked	human ADA gene	Blood Disorder	Therapy Genetically	\$20,000,000	HSC	Autologous	significantly improve outcomes compared to available therapies.	Registrational trial. feasibility. Secondary:	1/1/17	12/31/21	
Sorrentino, St.	Clinical Trial		severe combined	Autologous HSC, genetically corrected ex vivo by lentiviral		Modified Cell				Catastrophic immunodeficiency disorder caused by mutation in IL2RG; Without a curative transplant-based therapy, X-SCID is lethal typically in	Efficacy: gene marking:			
Jude's	Stage Projects	Ph 1/2	immunodeficiency)	vector mediated correction	Blood Disorder	Therapy	\$11,924,780	HSC	Autologous	first year of life.	immune reconstitution	4/1/17	3/31/22	
			Conditioning regimen											
			for allogeneic HSC											
			transplantation for							Monoclonal antibody that targets CD117 and promotes engraftment of				
DR2A-05365	Disease Team Therapy		SCID (Severe Combined	a sale ale ale ale ale a series a series a series a						hematopoietic stem cells. Could replace toxic conditioning regimens and enable chemotherapy-free transplants. Enabled donor cell HSC	Safety. Dosing. Efficacy - HSC engraftment, immune			
Shizuru, Stanford	Development	IND, Ph 1	Immunodeficiency)	MAb that depletes endogenous HSC	Blood Disorder	Biologic	\$19,068,382			engraftment and cure of disease in an animal model of SCID.	reconstitution.	8/1/13	7/31/18	
		,				2.0008.0	+,			Primary immune deficiency due to Artemis gene. Most difficult to treat		0/ -/ -0	.,,	
			ART-SCID (Artemis-			C				by allogeneic hematopoietic stem cell transplantation (HSCT) due to				
CLIN1-08363,	Late Stage Preclinical		deficient severe combined	Autologous HSC, genetically corrected ex vivo by lentiviral		Genetically Modified Cell				increased sensitivity to alkylating agents and radiation. Autologous gene modified HSCT transplantation to overcome allogeneic stem cell				
Puck, UCSF	Projects	IND	immunodeficiency)	vector mediated correction	Blood Disorder	Therapy	4,268,865	HSC	Autologous	transplant difficulty.	Obtain an active IND	5/1/16	10/31/17	
	Late Stage			Autologous HSC, genetically		Genetically								
CLIN1-10084, Porteus, Stanford	Preclinical Projects	IND	Sickle Cell Disease	corrected ex vivo by CRISPR- mediated correction	Blood Disorder	Modified Cell Therapy	\$5,194,431	HSC	Autologous	Gene editing using CRISPR-Cas9 technology has the potential to correct the sickle cell mutation.	Obtain an active IND	11/1/17	4/30/19	
ronteus, stanioru	Tibjeets	IND	Sickle Cell Disease	mediated correction	BIOOD DISOTUCI	merapy	Ş5,154,451	lise	Autologous	Transplant of blood-forming stem cells from a donor to a patient that has		11/1/1/	4/50/15	
										received a milder, less toxic chemotherapy conditioning regimen that				
CLIN2-10847	Clinical Trial									removes some but not all of the patients diseased bone marrow stem cells. The donor cells are depleted of T immune cells to allow	Safety. Efficacy. Mixed			
Rosenthal, COH	Stage Projects	Ph 1	Sickle Cell Disease	Allogeneic haploidentical HSC	Blood Disorder	Cell Therapy	\$5,742,180	HSC	Allogeneic	engraftment without causing an immune reaction in the recipient.	chimerism.	04/1/18	4/30/22	
										Beta thalassemia is a severe form of anemia caused by mutations in the			,,	
										hemoglobin gene. Patients require life-long blood transfusions and have a life expectancy of only 30-50 years. The Sangamo therapy takes a	3			
										patient's own blood stem cells and, using a gene-editing technology	Safety and tolerability.			
										called zinc finger nuclease (ZFN), provides a functional copy of the	Efficacy, change from			
CLIN2-11031	Clinical Trial			Autologous HSC, genetically		Genetically				hemoglobin gene. The modified cells are given back to the patient which				
Conner, Sangamo	Stage Projects	Ph 1/2	Beta Thalassemia	corrected ex vivo by zinc finger nuclease mediated correction	Blood Disorder	Modified Cell Therapy		HSC	Autologous	potentially will eliminate the need for chronic transfusions and the associated complications.	and volume of RBC transfusions.			
<u> </u>		,												
										Artemis-deficient severe combined immunodeficiency is a genetic blood disorder in which even a mild infection can be fatal. It is the most difficult	Coloby and office as			
			Artemis-deficient	Autologous HSC, genetically		Genetically				form of the disease to treat. The UCSF team will genetically modify the	Multilineage engraftment			
CLIN2-10830	Clinical Trial		severe combined	corrected ex vivo by lentiviral		Modified Cell				patient's own blood stem cells with a functional copy of the Artemis gene				
Cowan, UCSF	Stage Projects	Ph 1/2	immunodeficiency	vector mediated correction	Blood Disorder	Therapy		HSC	Autologous	with the goal of creating a functional immune system.	reconstitution.			
HIV/AIDS				Autologous HSC transduced ex		1	1 1		1					
				vivo with a lentiviral vector										
DR1-06893				engineered to express an shRNA		Genetically					Safety. Efficacy - slow disease			
Symonds, Calimmune	Disease Team I	Ph 1/2a	HIV/AIDS	against CCR5 & a fusion inhibitor.	HIV/AIDS	Modified Cell	\$8,278,722	HSC	Autologous	Cal-1 increases the number of HIV-protected cells in the body. Uses shRNA to CCR5 and C46 to confer cellular resistance to HIV infection.	progression, mitigate need for ART.	2/1/13	7/31/16	
committune	piscase rediti I	F11 1/2d	niv/AIUS	Gene modified HSCs via a	niv/AIDS	Therapy	20,210,122	пэс	Autologous		IOLANT.	2/1/13	//31/10	
				lentiviral vector that encodes a						Lentiviral vector encodes a triple combination of HIV-resistance genes				
CUN2-08289	Clinical Trial			triple combination of HIV-		Genetically Modified Cell				and a pre-selective marker. Vector transduced CD34+ cells will safely	Safety. Efficacy - immune reconstitution. viral load and			
Abedi, UC Davis	Stage Projects	Ph 1	HIV/AIDS	resistance genes and a tCD25 pre-selective marker	HIV/AIDS	Therapy	\$7,402,549	HSC	Autologous	engraft, divide and differentiate in vivo into mature myeloid and lymphoid cells.	HIV status.	9/1/15	8/31/19	
SP3A-07536 Zaia, City of	Strategic			Autologous HSCs genetically		Genetically Modified Cell				Autologous hematopoietic stem cells gene edited ex vivo to eliminate expression of HIV entry co-receptor CCR5. Cells carrying disrupted CCR5	Safety. Efficacy -			
Zala, City of Hope	Partnership III	Ph 1	HIV/AIDS	modified to disrupt CCR5	HIV/AIDS	Therapy	\$5,583,438	HSC	Autologous	provide a renewable, long-lasting source of HIV-1 resistant immune cells.	,,	4/1/15	3/31/19	
Hematologic C	ancers													
											Safety. Dosing. Follow on			
	Duane Roth Disease Team									Cancer is a leading cause of death in CA. Many cancers resist current therapies due to therapy-resistant cancer stem cells (CSCs). Discovered a	trials will include other cancers and will test			
	Therapy			Monoclonal antibody (anti-						protein, ROR1, present on CSCs but not on normal healthy cells.	cirmtuzumab alone or in			
DR3-06924	Development			ROR1) targeting CLL cancer	Hematologic					Developed an antibody, cirmtuzumab, that is specific for ROR1. Project	combination with other anti-			
Kipps, UCSD	Ш	Ph 1	CLL	stem cells	Malignancy	Biologic	\$4,179,600			plan is to treat chronic lymphocytic leukemia with cirmtuzumab. Cancer is a leading cause of death in CA. Many cancers resist current	cancer therapies.	6/1/14	11/30/17	
										therapies due to therapy-resistant cancer stem cells (CSCs). Discovered a				
										protein, ROR1, present on CSCs but not on normal healthy cells.				
CLIN2-10192	Clinical Trial			Monoclonal antibody (anti- ROR1), combined with tyrosine	Hematologic					Developed an antibody, cirmtuzumab, that is specific for ROR1. Project	Evaluato dorina and some late			
	Stage Projects	Ph 1b/2a	B Cell Cancers	kinase inhibitor Ibrutinib	Malignancy	Biologic	\$18,292,674			plan is to treat chronic lymphocytic leukemia or mantle cell carcinoma with cirmtuzumab in combination with ibrutinib.	Evaluate dosing and complete response rate.	10/1/17	3/31/22	
KIPPS, UCSD	scage Projects	PD 10/2a	B Cell Cancers	KINGSE INNIDITOR IDPUTINID	ivialignancy	BIOIOGIC	\$18,292,674			with tirmtuzumab in combination with ibrutinib.	response rate.	10/1/1/	3/31/22	

										CD34+ hematopoietic Stem and progenitor cells engraft into the bone				
								Expanded CD34+		marrow of patients, rebuilding a new blood and immune system after				
								stem and		appropriate preparation called myeloablation. The endothelial cells used				
				Matched cord blood derived				progenitor cells		in the co-culture are thought to aid the engraftment of the stem and				
			Hematologic	hematopoietic stem and				from cord blood						
CU 1014 0000 400										progenitor cells into the bone marrow via secretion of angiocrine factors.				
CLIN1-08342			malignancies	progenitor cells expanded by co-				and gene-		The remainder of the cord blood cells in the cell product also aid in the				
avis, Angiocrine	Clinical Trial		including leukemia	culture with genetically	Hematologic			modified		engraftment as well as provide anti-viral and anti-bacterial effects after				
Bioscience	Stage Projects	IND	and lymphoma	modified endothelial cells.	Malignancies	Cell Therapy	\$3,797,117	endothelial cells	Allogeneic	transplantation.	Obtain an active IND	4/1/16	12/1/17	
										CD34+ hematopoietic Stem and progenitor cells engraft into the bone				
								Expanded CD34+		marrow of patients, rebuilding a new blood and immune system after				
								stem and						
										appropriate preparation called myeloablation. The endothelial cells used				
				Matched cord blood derived				progenitor cells		in the co-culture are thought to aid the engraftment of the stem and				
CLIN2-10386			Hematologic	hematopoietic stem and				from cord blood		progenitor cells into the bone marrow via secretion of angiocrine factors.				
Finnegan,			malignancies	progenitor cells expanded by co-				and gene-		The remainder of the cord blood cells in the cell product also aid in the				
Angiocrine	Clinical Trial		including leukemia	culture with genetically	Hematologic			modified						
		Dh 1h				Call Therem	ćr 000 000		Allegensie	engraftment as well as provide anti-viral and anti-bacterial effects after	Cafatu	10/01/17	12/21/21	
Bioscience	Stage Projects	Ph 1b	and lymphoma	modified endothelial cells cells.	Malignancies	Cell Therapy	\$5,000,000	endothelial cells	Allogeneic	transplantation.	Safety.	10/01/17	12/31/21	
										ADCs are intended to target and kill only the target cancer cells and				
										spare healthy cells. ADCs are composed of an antibody linked to a				
										cytotoxic payload or drug. After the ADC binds to the target cell and is				
										internalized, the cytotoxic drug is released and kills the cancer cell. CLL1				
CLIN1-09776	Late Stage									is highly expressed on leukemia stem cells but not on normal cells.				
Junutula,	Preclinical			Anti-CLL1 antibody linked to a	Hematologic	Antibody-drug				Binding of the anti-CLL1 ADC results in targeted killing of leukemia stem				
Cellerant	Projects	IND	AMI	DNA binding payload.	Malignancy	conjugate (ADC)	\$6,863,755			cells.	Obtain an active IND	8/1/17	1/31/19	
				Entering portioner		ss.jugare (, iDe)	-0,000,, 55			The product is an ex vivo expanded hematopoietic stem and progenitor	a state of a detrice into		101110	
						1					Evaluate effect on the rate of			
						1				cell therapy capable of providing bridging (temporary) hematopoietic				
						1		Expanded CD34+	1	support to protect patients against infections. It is intended for AML	infections associated with			
			Chemotherapy-	Ex-vivo expanded Umbilical cord		1		stem and	1	cancer patients undergoing chemotherapy that results in neutropenia.	Chemotherapy-Induced			
CLIN2-09574	Clinical Trial		induced neutropenia	blood hematopoietic stem and	Hematologic	1		progenitor cells			Neutropenia in AML patients			
	Stage Projects	Ph 2	in the AML setting	progenitor cells	Malignancy	Cell Therapy	\$6,922,109	from cord blood	Allogeneic		and determine optimal dose	11/01/17	11/30/19	
ciariey, NUTIIA	stage ritijettis	FILZ	III LITE AIVIL SELLING	progenitor cens	IVIDIIGIIDIICY	сентнегару	20,222,109		Anogeneic	CD47 is overevered on cancer and serves stern calls. It stars	and determine optimal dose	11/01/1/	11/20/13	
						1				CD47 is overexpressed on cancer and cancer stem cells. It stops				
										phagocytic macrophages from eliminating these abnormal cells by				
						1				delivering a potent "don't eat me" signal. Hu5F9-G4 is a humanized	Phase 1b trial; determine			
										monoclonal antibody (mAb) that binds to CD47 and blocks the "don't eat	optimal dose; safety and			
CLIN2-10144	Clinical Trial			Anti-CD47 monoclonal antibody	Hematologic					me" signal, thereby enabling macrophage-mediated phagocytosis of the	efficacy in combination with			
Chao, 47Inc		Ph 1b	AML	in combination with azacitidine		Distant.	ć5 000 000				azacitidine	44/04/47	5 /24 /24	
Chao, 47Inc	Stage Projects	PN 1D	AIVIL		Malignancy	Biologic	\$5,000,000			cancer cells.	azacitidine	11/01/17	5/31/21	
	Clinical Trial			Partially HLA-matched virus-	HSC transplant-									
ulsipher, CHLA	Stage Projects	Ph 1/2	Viral infection	specific T cells	related infection	Cell Therapy	\$4,825,587	T Cell	Allogeneic			12/01/17	11/30/22	
										MM is a treatable but typically incurable plasma cell malignancy that is				
										usually fatal. Currently available therapeutic options have limitations in				
										efficacy and are generally associated with significant toxicity and				
										complications. Hence, there remains an unmet need for effective and				
										durable MM therapy. CAR-T immunotherapy is emerging as an important				
										potential therapeutic approach for cancer, including MM. Being stem cell				
CLIN2-10395	Clinical Trial				Hematologic						Determination of maximum			
		Dh 1	Multiple purchase	CAD T		Cell Therem	¢10.007.027	CAD T	Autologous	memory CAR-T cells, the treatment could potentially produce long term		12/01/17	12/21/21	
pear, Poseida	Stage Projects	Ph 1	Multiple myeloma	CAR-I	Malignancy	Cell Therapy	\$19,997,927	CAR-T	Autologous	control.	tolerated dose.	12/01/17	12/31/21	
										Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer				
										therapy with very encouraging response rates in patients. The therapy				
										works by isolating a patient's own T cells and then genetically				
										engineering them to recognize a target protein on the surface of cancer				
										engineering them to recognize a target protein on the surface of cancer				
										cells, triggering their destruction. In some patients with B cell leukemias,				
										cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape				
										cells, triggering their destruction. In some patients with B cell leukemias,				
										cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's				
										cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell				
CUND 1094C										cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer				
										cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing				
Mackall,	Clinical Trial				Hematologic					cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for				
CLIN2-10846 Mackall, Stanford	Clinical Trial Stage Projects	Ph 1	B Cell Cancers	Car-T	Hematologic Malignancy	Cell Therapy		CAR-T	Autologous	cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for				
Mackall, Stanford		Ph 1	B Cell Cancers	Car-T		Cell Therapy		CAR-T	Autologous	cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for				
Mackall, Stanford		Ph 1	B Cell Cancers	CAR-T		Cell Therapy		CAR-T	Autologous	cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for relapse.	Drimone Safati and			
Mackall, Stanford	Stage Projects	Ph 1						CAR-T	Autologous	cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for relasse. There are few options for patients whose cancers have metastasized due				
Mackall, Stanford	Stage Projects Disease Team	Ph 1	Advanced tumors	Autologous HSCs and T cells		Genetically		CAR-T	Autologous	cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for relapse. There are few options for patients whose cancers have metastasized due to resistance to current therapies. Engineering of patient's own blood-	feasibility. Secondary:			
Mackall, Stanford	Stage Projects	Ph 1						CAR-T	Autologous	cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for relasse. There are few options for patients whose cancers have metastasized due				
Mackall, Stanford Ilid Cancers	Stage Projects Disease Team Therapy		Advanced tumors (Synovial Sarcoma,	Autologous HSCs and T cells genetically modified to express	Malignancy	Genetically Modified Cell	\$19.999 563			cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for relapse. There are few options for patients whose cancers have metastasized due to resistance to current therapies. Engineering of patient's own blood- forming stem cells to produce a continual supply of the immune system	feasibility. Secondary: Persistence of gene-marked	4/1/14	11/30/20	
Mackall,	Stage Projects Disease Team Therapy Development	Ph 1 IND, Ph 1	Advanced tumors (Synovial Sarcoma,	Autologous HSCs and T cells		Genetically	\$19,999,563	CAR-T HSC		cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for relasse. There are few options for patients whose cancers have metastasized due to resistance to current therapies. Engineering of patient's own blood- forming stem cells to produce a continual supply of the immune system cell to attack cancer.	feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells	4/1/14	11/30/20	
Mackall, Stanford Ilid Cancers	Stage Projects Disease Team Therapy Development Duane Roth		Advanced tumors (Synovial Sarcoma,	Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor.	Malignancy	Genetically Modified Cell	\$19,999,563			cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for relapse. There are few options for patients whose cancers have metastasized due to resistance to current therapies. Engineering of patient's own blood- forming stem cells to produce a continual supply of the immune system cell to attack cancer. Solid turnors are the most prevalent form of cancer, and are a major	feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum	4/1/14	11/30/20	
Mackall, Stanford Iid Cancers	Stage Projects Disease Team Therapy Development Duane Roth Disease Team		Advanced tumors (Synovial Sarcoma,	Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor. Small molecule mitotic inhibitor	Malignancy	Genetically Modified Cell	\$19,999,563			cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell sufface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for relaxe. There are few options for patients whose cancers have metastasized due to resistance to current therapies. Engineering of patient's own blood- forming stem cells to produce a continual supply of the immune system cell to attack cancer. Solid tumors are the most prevalent form of cancer, and are a major cause of death worldwide. The small molecule being developed inhibits	feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum tolerated dose and	4/1/14	11/30/20	
Mackall, Stanford lid Cancers DR2A-05309 Ribas, UCLA	Stage Projects Disease Team Therapy Development Duane Roth Disease Team Therapy		Advanced tumors (Synovial Sarcoma,	Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor. Small molecule mitotic inhibitor targeting serine/threonine	Malignancy	Genetically Modified Cell	\$19,999,563			cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for relapse. There are few options for patients whose cancers have metastasized due to resistance to current therapies. Engineering of patient's own blood- forming stem cells to produce a continual supply of the immune system cell to attack cancer. Solid tumors are the most prevalent form of cancer, and are a major cause of death worldwide. The small molecule being developed inhibits the activity of a protein required in tumor cell lines and cancer stem cells	feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum tolerated dose and recommended Phase 2 dose.	4/1/14	11/30/20	
Mackall, Stanford lid Cancers DR2A-05309 Ribas, UCLA	Stage Projects Disease Team Therapy Development Duane Roth Disease Team		Advanced tumors (Synovial Sarcoma,	Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor. Small molecule mitotic inhibitor	Malignancy	Genetically Modified Cell	\$19,999,563			cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell sufface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for relaxe. There are few options for patients whose cancers have metastasized due to resistance to current therapies. Engineering of patient's own blood- forming stem cells to produce a continual supply of the immune system cell to attack cancer. Solid tumors are the most prevalent form of cancer, and are a major cause of death worldwide. The small molecule being developed inhibits	feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum tolerated dose and	4/1/14	11/30/20	
Mackall, Stanford lid Cancers DR2A-05309 Ribas, UCLA DR3-07067	Stage Projects Disease Team Therapy Development Duane Roth Disease Team Therapy Development	IND, Ph 1	Advanced tumors (Synovial Sarcoma, Melanoma, Ovarian)	Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor. Small molecule mitotic inhibitor targeting serine/threonine kinase to eliminate both tumor	Malignancy Solid Tumor	Genetically Modified Cell Therapy				cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for relapse. There are few options for patients whose cancers have metastasized due to resistance to current therapies. Engineering of patient's own blood- forming stem cells to produce a continual supply of the immune system cell to attack cancer. Solid turnors are the most prevalent form of cancer, and are a major cause of death worldwide. The small molecule being developed inhibits the activity of a protein required in tumor cell lines and cancer stem cells (CSO). It is hypothesized that inhibiting the CSC can prevent tumor	feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum tolerated dose and recommended Phase 2 dose. Safety. PK. Efficacy in solid			
Mackall, Stanford Ilid Cancers DR2A-05309 Ribas, UCLA DR3-07067	Stage Projects Disease Team Therapy Development Duane Roth Disease Team Therapy		Advanced tumors (Synovial Sarcoma,	Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor. Small molecule mitotic inhibitor targeting serine/threonine	Malignancy	Genetically Modified Cell	\$19,999,563 \$6,924,317			cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for relasse. There are few options for patients whose cancers have metastasized due to resistance to current therapies. Engineering of patient's own blood- forming stem cells to produce a continual supply of the immune system cause of death worldwide. The small molecule being developed inhibits the activity of a protein quired in tumor cell lines and cancer stem cells (CSO, 1 is hypothesized that inhibiting the CSC can prevent tumor regrowth after treatment.	feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum tolerated dose and recommended Phase 2 dose.	4/1/14	11/30/20	
Mackall, Stanford lid Cancers DR2A-05309 Ribas, UCLA DR3-07067	Stage Projects Disease Team Therapy Development Duane Roth Disease Team Therapy Development	IND, Ph 1	Advanced tumors (Synovial Sarcoma, Melanoma, Ovarian)	Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor. Small molecule mitotic inhibitor targeting serine/threonine kinase to eliminate both tumor	Malignancy Solid Tumor	Genetically Modified Cell Therapy				cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for relapse. There are few options for patients whose cancers have metastasized due to resistance to current therapies. Engineering of patient's own blood- forming stem cells to produce a continual supply of the immune system cell to attack cancer. Solid turnors are the most prevalent form of cancer, and are a major cause of death worldwide. The small molecule being developed inhibits the activity of a protein required in tumor cell lines and cancer stem cells (CSC). It is hypothesized that inhibiting the CSC can prevent tumor regrowth after treatment. CDA7 is overexpressed on cancer and cancer stem cells and prevents	feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum tolerated dose and recommended Phase 2 dose. Safety. PK. Efficacy in solid			
Mackall, Stanford lid Cancers DR2A-05309 Ribas, UCLA DR3-07067	Stage Projects Disease Team Therapy Development Duane Roth Disease Team Therapy Development	IND, Ph 1	Advanced tumors (Synovial Sarcoma, Melanoma, Ovarian)	Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor. Small molecule mitotic inhibitor targeting serine/threonine kinase to eliminate both tumor	Malignancy Solid Tumor	Genetically Modified Cell Therapy				cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for relause. There are few options for patients whose cancers have metastasized due to resistance to current therapies. Engineering of patient's own blood- forming stem cells to produce a continual supply of the immune system cell to attack cancer. Solid tumors are the most prevalent form of cancer, and are a major cause of death worldwide. The small molecule being developed inhibits the activity of a protein required in tumor cell lines and cancer stem cells (CSC). It is hypothesized that inhibiting the CSC can prevent tumor regrowth after treatment. CD47 is overexpressed on cancer and cancer stem cells and prevents their elimination by phagocytic macrophages by delivering a potent	feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum tolerated dose and recommended Phase 2 dose. Safety. PK. Efficacy in solid			
Mackall, Stanford Dild Cancers	Stage Projects Disease Team Therapy Development Duane Roth Disease Team Therapy Development	IND, Ph 1	Advanced tumors (Synovial Sarcoma, Melanoma, Ovarian)	Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor. Small molecule mitotic inhibitor targeting serine/threonine kinase to eliminate both tumor	Malignancy Solid Tumor	Genetically Modified Cell Therapy				cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for relapse. There are few options for patients whose cancers have metastasized due to resistance to current therapies. Engineering of patient's own blood- forming stem cells to produce a continual supply of the immune system cell to attack cancer. Solid turnors are the most prevalent form of cancer, and are a major cause of death worldwide. The small molecule being developed inhibits the activity of a protein required in tumor cell lines and cancer stem cells (CSC). It is hypothesized that inhibiting the CSC can prevent tumor regrowth after treatment. CDA7 is overexpressed on cancer and cancer stem cells and prevents	feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum tolerated dose and recommended Phase 2 dose. Safety. PK. Efficacy in solid			
Mackall, Stanford Ilid Cancers DR2A-05309 Ribas, UCLA DR3-07067	Stage Projects Disease Team Therapy Development Duane Roth Disease Team Therapy Development	IND, Ph 1	Advanced tumors (Synovial Sarcoma, Melanoma, Ovarian)	Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor. Small molecule mitotic inhibitor targeting serine/threonine kinase to eliminate both tumor	Malignancy Solid Tumor	Genetically Modified Cell Therapy				cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for relause. There are few options for patients whose cancers have metastasized due to resistance to current therapies. Engineering of patient's own blood- forming stem cells to produce a continual supply of the immune system cell to attack cancer. Solid tumors are the most prevalent form of cancer, and are a major cause of death worldwide. The small molecule being developed inhibits the activity of a protein required in tumor cell lines and cancer stem cells (CSC). It is hypothesized that inhibiting the CSC can prevent tumor regrowth after treatment. CD47 is overexpressed on cancer and cancer stem cells and prevents their elimination by phagocytic macrophages by delivering a potent	feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum tolerated dose and recommended Phase 2 dose. Safety. PK. Efficacy in solid			
Mackall, Stanford Jild Cancers DR2A-05309 Ribas, UCLA DR3-07067	Stage Projects Disease Team Therapy Development Duane Roth Disease Team Therapy Development	IND, Ph 1	Advanced tumors (Synovial Sarcoma, Melanoma, Ovarian)	Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor. Small molecule mitotic inhibitor targeting serine/threonine kinase to eliminate both tumor	Malignancy Solid Tumor	Genetically Modified Cell Therapy				cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for relapse. There are few options for patients whose cancers have metastasized due to resistance to current therapies. Engineering of patient's own blood- forming stem cells to produce a continual supply of the immune system cell to attack cancer. Solid turnors are the most prevalent form of cancer, and are a major cause of death worldwide. The small molecule being developed inhibits the activity of a protein required in tumor cell lines and cancer stem cells (CSC). It is hypothesized that inhibiting the CSC can prevent tumor regrowth after treatment. CD47 is overexpressed on cancer and cancer stem cells and prevents their elimination by phagocytic macrophages by delivering a potent "don't eat me" signal. HuSP9-64 is a humanized monoclonal antibody (mAb) that binds to CD47 and blocks its interaction with its receptor,	feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum tolerated dose and recommended Phase 2 dose. Safety. PK. Efficacy in solid			
Mackall, Stanford Ilid Cancers DR2A-05309 Ribas, UCLA DR3-07067 Iamon, UCLA	Stage Projects Disease Team Therapy Development Duane Roth Disease Team Therapy Development III	IND, Ph 1	Advanced tumors (Synovial Sarcoma, Melanoma, Ovarian)	Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor. Small molecule mitotic inhibitor targeting serine/threonine kinase to eliminate both tumor cells and cancer stem cells	Malignancy Solid Tumor	Genetically Modified Cell Therapy				cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for relapse. There are few options for patients whose cancers have metastasized due to resistance to current therapies. Engineering of patient's own blood- forming stem cells to produce a continual supply of the immune system cause of death worldwide. The small molecule being developed inhibits the activity of a protein required in tumor cell lines and cancer stem cells (CSQ). It is hypothesized that inhibiting the CSC can prevent tumor regrowth after treatment. CD47 is overexpressed on cancer and cancer stem cells and prevents their elimination by phagocytic macrophages by delivering a potent "don't eat me" signal. HuSP9-G4 is a humanized monoclonal antibody (mAb) that binds to CD47 and blocks its interaction with its receptor, thereby enabling phagocytosis of cancer cells. Anti-CD47 is bighly	feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum tolerated dose and recommended Phase 2 dose. Safety. PK. Efficacy in solid cancers.			
Mackall, Stanford Jild Cancers DR2A-05309 Ribas, UCLA DR3-07067 Jamon, UCLA	Stage Projects Disease Team Therapy Development Duane Roth Disease Team Therapy Development III Clinical Trial	IND, Ph 1 Ph 1	Advanced tumors (Synovial Sarcoma, Melanoma, Ovarian) Solid Tumor	Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor. Small molecule mitotic inhibitor targeting serine/threonine kinase to eliminate both tumor cells and cancer stem cells Anti-CD47 monoclonal antibody	Malignancy Solid Tumor Solid Tumor	Genetically Modified Cell Therapy Small Molecule	\$6,924,317	HSC		cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for relapse. There are few options for patients whose cancers have metastasized due to resistance to current therapies. Engineering of patient's own blood- forming stem cells to produce a continual supply of the immune system cell to attack cancer. Solid tumors are the most prevalent form of cancer, and are a major cause of death worldwide. The small molecule being developed inhibits the activity of a protein required in tumor cell lines and cancer stem cells (CSC). It is hypothesized that inhibiting the CSC can prevent tumor regrowth after treatment. Ddv7 is overexpressed on cancer and cancer stem cells and prevents their elimination by phagocytic macrophages by delivering a potent their elimination by phagocytic macrophages by delivering a potent wight that binds to CD47 and blocks its interaction with its receptor, thereby enabling phagocytosis of cancer cells. Anti-CD47 is highly sparegistic in combination with other anti-cancer therapies including	feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum tolerated dose and recommended Phase 2 dose. Safety. PK. Efficacy in solid cancers. Safety. Dosing. Efficacy -	5/1/14	4/30/18	
Mackall, Stanford Iid Cancers DR2A-05309 Ribas, UCLA DR3-07067 Iamon, UCLA	Stage Projects Disease Team Therapy Development Duane Roth Disease Team Therapy Development III	IND, Ph 1	Advanced tumors (Synovial Sarcoma, Melanoma, Ovarian)	Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor. Small molecule mitotic inhibitor targeting serine/threonine kinase to eliminate both tumor cells and cancer stem cells	Malignancy Solid Tumor	Genetically Modified Cell Therapy				cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for relapse. There are few options for patients whose cancers have metastasized due to resistance to current therapies. Engineering of patient's own blood- forming stem cells to produce a continual supply of the immune system cause of death worldwide. The small molecule being developed inhibits the activity of a protein required in tumor cell lines and cancer stem cells (CSQ). It is hypothesized that inhibiting the CSC can prevent tumor regrowth after treatment. CD47 is overexpressed on cancer and cancer stem cells and prevents their elimination by phagocytic macrophages by delivering a potent "don't eat me" signal. HuSP9-G4 is a humanized monoclonal antibody (mAb) that binds to CD47 and blocks its interaction with its receptor, thereby enabling phagocytosis of cancer cells. Anti-CD47 is bighly	feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum tolerated dose and recommended Phase 2 dose. Safety. PK. Efficacy in solid cancers.			
Mackall, Stanford lid Cancers DR2A-05309 Ribas, UCLA DR3-07067 Jamon, UCLA	Stage Projects Disease Team Therapy Development Duane Roth Disease Team Therapy Development III Clinical Trial	IND, Ph 1 Ph 1	Advanced tumors (Synovial Sarcoma, Melanoma, Ovarian) Solid Tumor	Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor. Small molecule mitotic inhibitor targeting serine/threonine kinase to eliminate both tumor cells and cancer stem cells Anti-CD47 monoclonal antibody	Malignancy Solid Tumor Solid Tumor	Genetically Modified Cell Therapy Small Molecule	\$6,924,317	HSC		cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for irelasse. There are few options for patients whose cancers have metastasized due to resistance to current therapies. Engineering of patient's own blood- forming stem cells to produce a continual supply of the immune system cell to attack cancer. Solid tumors are the most prevalent form of cancer, and are a major cause of death worldwide. The small molecule being developed inhibits the activity of a protein required in tumor cell lines and cancer stem cells (CSC). It is hypothesized that inhibiting the CSC can prevent tumor regrowth after treatment. CD47 is overexpressed on cancer and cancer stem cells and prevents their elimination to by bhagocytic macrophages by delivering a potent "don't eat me" signal. HuSPP-G4 is a humanized monoclonal antibody (mbb) that binds to CD47 and blocks its interaction with its receptor, thereby enabling phagocytosis of cancer cells. Anti-CD47 is highly synergistic in combination with other anti-cancer therapies including tumor-targeting mAbs such as cetuximab.	feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum tolerated dose and recommended Phase 2 dose. Safety. PK. Efficacy in solid cancers. Safety. Dosing. Efficacy -	5/1/14	4/30/18	
Mackall, Stanford lid Cancers DR2A-05309 Ribas, UCLA DR3-07067 Jamon, UCLA	Stage Projects Disease Team Therapy Development Duane Roth Disease Team Therapy Development III Clinical Trial	IND, Ph 1 Ph 1	Advanced tumors (Synovial Sarcoma, Melanoma, Ovarian) Solid Tumor	Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor. Small molecule mitotic inhibitor targeting serine/threonine kinase to eliminate both tumor cells and cancer stem cells Anti-CD47 monoclonal antibody	Malignancy Solid Tumor Solid Tumor	Genetically Modified Cell Therapy Small Molecule	\$6,924,317	HSC		cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for relapse. There are few options for patients whose cancers have metastasized due to resistance to current therapies. Engineering of patient's own blood- forming stem cells to produce a continual supply of the immune system cell to attack cancer. Solid tumors are the most prevalent form of cancer, and are a major cause of death worldwide. The small molecule being developed inhibits the activity of a protein required in tumor cell lines and cancer stem cells (CSC). It is hypothesized that inhibiting the CSC can prevent tumor regrowth after treatment. CD47 is overexpressed on cancer and cancer stem cells and prevents their elimination by phagocytic macrophages by delivering a potent "don't cat me" signal. Hu59:P-04 Is a humanized monoclonal antibody (mAb) that binds to CD47 and blocks its interaction with its receptor, thereby enabling phagocytosis cancer cells. Ant:CD47 is highly synergistic in combination with other anti-cancer therapies including tumor-targeting mAbs such as cetuximab.	feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum tolerated dose and recommended Phase 2 dose. Safety. PK. Efficacy in solid cancers. Safety. Dosing. Efficacy -	5/1/14	4/30/18	
Mackall, Stanford Ilid Cancers DR2A-05309 Ribas, UCLA DR3-07067 Iamon, UCLA	Stage Projects Disease Team Therapy Development Duane Roth Disease Team Therapy Development III Clinical Trial	IND, Ph 1 Ph 1	Advanced tumors (Synovial Sarcoma, Melanoma, Ovarian) Solid Tumor	Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor. Small molecule mitotic inhibitor targeting serine/threonine kinase to eliminate both tumor cells and cancer stem cells Anti-CD47 monoclonal antibody	Malignancy Solid Tumor Solid Tumor	Genetically Modified Cell Therapy Small Molecule Biologic	\$6,924,317	HSC		cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for relapse. There are few options for patients whose cancers have metastasized due to resistance to current therapies. Engineering of patient's own blood- forming stem cells to produce a continual supply of the immune system cell to attack cancer. Solid turnors are the most prevalent form of cancer, and are a major cause of death worldwide. The small molecule being developed inhibits the activity of a protein required in tumor cell lines and cancer stem cells (CSC). It is hypothesized that inhibiting the CSC can prevent tumor regrowth after treatment. CDA's overexpressed on cancer and cancer stem cells and prevents their elimination by phagocytic macrophages by delivering a potent "don't cat me" signal. HuSPS elf a humanized monoclonal antibody (mAb) that binds to CD47 and blocks its interaction with its receptor, thereby enabling phagocytosis of cancer cells. Anti-CD47 is highly synergistic in combination with other anti-cancer therapies including tumor-targeting mAbs such as cetturimab. Gliobastoma (GBM) is lethal with 5 years survival rate is only 5.%. CAR-T are "living drug" with potential to actively seek out and destroy	feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum tolerated dose and recommended Phase 2 dose. Safety. PK. Efficacy in solid cancers. Safety. Dosing. Efficacy - objective response rate (ORR)	5/1/14	4/30/18	
Mackall, Stanford Iid Cancers DR2A-05309 Ribas, UCLA DR3-07067 Iamon, UCLA	Stage Projects Disease Team Therapy Development Usease Team Therapy Development III Clinical Trial Stage Projects	IND, Ph 1 Ph 1	Advanced tumors (Synovial Sarcoma, Melanoma, Ovarian) Solid Tumor	Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor. Small molecule mitotic inhibitor targeting serine/threonine kinase to eliminate both tumor cells and cancer stem cells Anti-CD47 monoclonal antibody + cetuximab	Malignancy Solid Tumor Solid Tumor	Genetically Modified Cell Therapy Small Molecule Biologic	\$6,924,317	HSC		cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for relapse. There are few options for patients whose cancers have metastasized due to resistance to current therapies. Engineering of patient's own blood- forming stem cells to produce a continual supply of the immune system cause of death worldwide. The small molecule being developed inhibits the activity of a protein required in tumor cell lines and cancer stem cells (CSQ). It is hypothesized that inhibiting the CSC can prevent tumor regrowth after treatment. CD47 is overexpressed on cancer and cancer stem cells and prevents their elimination by phagocytics disc cancer cellor, "don't eat me" signal. HuSP9-G4 is a humanized monoclonal antibody (mAb) that binds to CD47 and blocks for cancer ester means in line world activity of a protein required in tumor cell sinteraction with its receptor, thereby enabling phagocytosis of cancer cells. Anti-CD47 is highly synergistic in combination with other anti-cancer therapies including tumo-targeting mabs such as cetuximab.	feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum tolerated dose and recommended Phase 2 dose. Safety. P.K. Efficacy in solid cancers. Safety. Dosing. Efficacy - objective response rate (ORR) Safety, Feasibility,	5/1/14	4/30/18	
Mackall, Stanford lid Cancers R2A-05309 Ribas, UCLA DR3-07067 amon, UCLA	Stage Projects Disease Team Therapy Development Duane Roth Disease Team Therapy Development III Clinical Trial	IND, Ph 1 Ph 1	Advanced tumors (Synovial Sarcoma, Melanoma, Ovarian) Solid Tumor	Autologous HSCs and T cells genetically modified to express an anti-tumor T cell receptor. Small molecule mitotic inhibitor targeting serine/threonine kinase to eliminate both tumor cells and cancer stem cells Anti-CD47 monocional antibody + cetuximab T cells engineered to target	Malignancy Solid Tumor Solid Tumor	Genetically Modified Cell Therapy Small Molecule Biologic	\$6,924,317	HSC		cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells are able to remove the target protein to escape detection by the modified T cells, thereby causing the cancer's reoccurrence. Stanford researchers have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of overcoming loss of the target protein and enhancing a patient's response to the therapy and reducing the potential for relapse. There are few options for patients whose cancers have metastasized due to resistance to current therapies. Engineering of patient's own blood- forming stem cells to produce a continual supply of the immune system cell to attack cancer. Solid turnors are the most prevalent form of cancer, and are a major cause of death worldwide. The small molecule being developed inhibits the activity of a protein required in tumor cell lines and cancer stem cells (CSC). It is hypothesized that inhibiting the CSC can prevent tumor regrowth after treatment. CDA's overexpressed on cancer and cancer stem cells and prevents their elimination by phagocytic macrophages by delivering a potent "don't cat me" signal. HuSPS elf a humanized monoclonal antibody (mAb) that binds to CD47 and blocks its interaction with its receptor, thereby enabling phagocytosis of cancer cells. Anti-CD47 is highly synergistic in combination with other anti-cancer therapies including tumor-targeting mAbs such as cetturimab. Gliobastoma (GBM) is lethal with 5 years survival rate is only 5.%. CAR-T are "living drug" with potential to actively seek out and destroy	feasibility. Secondary: Persistence of gene-marked anti-cancer immune cells Determination of maximum tolerated dose and recommended Phase 2 dose. Safety. PK. Efficacy in solid cancers. Safety. Dosing. Efficacy - objective response rate (ORR)	5/1/14	4/30/18	

	Late Stage			1	1			1	1	1	1			
CLIN1-10893	Preclinical		Advanced solid											
Abbot, Fate	Projects	IND	tumors	iPS-derived NK cells	Solid Tumor	Cell Therapy	\$4,000,000	iPS-NK	Allogeneic			04/1/18	6/30/19	
ORGAN SYSTEM	IS THERAPEU	TICS								·				
Bone Disorders														
										Femoral head osteonecrosis (aka avascular necrosis) is a disease caused				
										by loss of blood supply to the bone, leading to bone cell death, end stage				
										hip arthritis and total hip replacement. There is an unmet need for				
				Contracto and a state of the						treatment of this disease, that affects individuals at prime of life (peak	Safety, tolerability.			
	Disease Team			Synthetic molecule, LLP2A-Ale, to enhance homing of						age 35 years). This small molecule therapeutic recruits bone forming cells to site of damage, where they serve the dual function of laying down new				
DR2A-05302	Therapy			endogenous bone marrow MSCs						bone, and stimulating revascularization to prevent further bone cell	biomarkers. Determine			
Lane, UC Davis	Development	Ph 1 a/b	Osteonecrosis	to bone surface	Bone Disorder	Small Molecule	\$19,999,867			death.	immunogenicity.	1/1/13	12/31/17	
Cartilage Disor	ders													
CLIN1-09472														
Wang, Cellular Biomedicine	Late Stage Preclinical			All second second second second										
Group	Projects	IND	Osteoarthritis	Allogeneic adipose-derived MSCs	Cartilage Disorder	Cell Therapy	\$2,291,976	MSC	Allogeneic		Obtain an active IND	3/1/17	3/31/18	
Group	Trojects	IND	Osteoartinitis	141563	carciage bisorder	centherapy	\$2,231,570	Wise	Anogeneic		Obtain an active into	5/1/1/	5/51/10	
				Small molecule injected intra-										
				articularly that promotes										
CLIN1-08309			Osto so sthritis	resident cartilage mesenchymal										
Schultz, Calibr	CLIN1	IND	Osteoarthritis, cartilage injuries	stem cell differentiation into chondrocytes	Cartilage Disorder	Small Molecule	\$1,667,832				File an IND	9/1/15	3/31/17	
condite, condi	001112		certainge injulies		set thage brootder	ean morecule	- 1,007,002					5/ 1/ 25	5,51,17	
				Small molecule injected intra-]			
				articularly that promotes										
CLIN2-10388			Osteoarthritis.	resident cartilage mesenchymal stem cell differentiation into										
Sahelijo, Calibr	CLIN2	Ph 1	cartilage injuries	chondrocytes	Cartilage Disorder	Small Molecule	\$8,447,523					12/01/17	11/30/20	
Cardiovascular				1			<i>+=,,</i>	4	1	+	4	//		-
caratorascala	a rascalar 2	5014615			1		[1		
											Primary: Determine whether			
											treatment is safe and causes			
											reduction in cardiac scar size in patients with heart failure			
			Heart dysfunction								after a heart attack.			
DR2A-05735	Disease Team		after myocardial							Heart failure is a progressive disease with a high risk of mortality.	Secondary: Assess for other			
Smith, Capricor	Therapy		infarction/Chronic	Allogeneic cardiosphere derived						Cardiosphere-derived cells (CDCs) reduce scar size after heart attack in	structural or functional			
Inc.	Development	Ph 2	heart failure	cells	Disease	Cell Therapy	\$19,782,136	CDC	Allogeneic	preclinical animal models and in a prior clinical trial.	cardiac benefits.	1/1/13	12/31/17	
										Pulmonary arterial hypertension (PAH) is a progressive condition with no cure, survival is poor. Cardiosphere-derived cells (CDCs) decrease wall				
CLIN2-09444										thickening of lung small blood vessels in preclinical studies. Improvement	Primary: Safety. Secondary:			
Lewis, Cedars-	Clinical Trial		Pulmonary Arterial	Allogeneic cardiosphere derived						in lung blood vessels is expected to reduce cardiac right ventricular	Exploratory efficacy measures			
Sinai	Stage Projects	Ph1a/b	Hypertension	cells	Vascular Disease	Cell Therapy	\$7,354,772	CDC	Allogeneic	dysfunction.	of right ventricular function.	1/1/17	4/30/21	
										Heart failure is a leading cause of death for Duchenne muscular	Primary: Safety and tolerability in DMD patients.			
CLIN2-08334			Duchenne muscular							dystrophy patients. Cardiosphere-derived cells (CDCs) decrease	Secondary: Structural or			
Ascheim,	Clinical Trial		dystrophy	Allogeneic cardiosphere derived	Skeletal Muscle					myocardial fibrosis, improve cardiac function and induce regeneration of	functional cardiac benefits,			
Capricor, Inc.	Stage Projects	Ph 2	cardiomyopathy	cells	Disorder	Cell Therapy	\$3,376,259	CDC	Allogeneic	heart muscle in preclinical models of DMD.	quality of life improvements.	4/1/16	10/31/18	
0024 05264	Disease Team			Allegensis hEEC derived	Condinunceud					5.7 million Americans suffer from heart failure, and the end stage 2 year	Obtain an active IND for a			
DR2A-05394 Wu, Stanford	Therapy Development	IND	Ischemic heart failure	Allogeneic hESC-derived	Cardiovascular Disease	Cell Therapy	\$19,060,330	CM	Allogeneic	survival rate is 50%. hESC-CM promote new blood vessel formation and improve cardiac function in preclinical models of heart failure.	first-in-human trial in heart failure patients.	4/1/13	3/31/18	
Diabetes & Cor					Discuse	con merapy	+ 13,000,530		· mogeneic	nip ere el el el control ni presintes models el neure fallare.		114/45	5,51,10	
Subcres & COI					1			1		Diabetes mellitus affects 370 million people worldwide.		1	1	
										Disproportionately affects certain minority groups and the elderly.]			
										Current therapy is self-administration of insulin. Diabetes costs in CA are]			
				Allegensis hEEC derived						tens of billions of dollars each year. Directed differentiation of embryonic				
				Allogeneic hESC-derived pancreatic cell progenitors in a				Pancreatic		stem cells to pancreatic precursor cells. Project plan is transplantation of pancreatic precursor cells that generate functional islet tissue in vivo that				
AP1-08039	Accelerated	Comparability		device implanted		Cell Therapy,		endocrine		can respond to insulin levels in a more physiological manner than direct	Primary: Safety. Secondary:			
Foyt, ViaCyte Inc.	Pathway I	Trial	Diabetes: Type 1	subcutaneously	Endocrine Disorder	Combination	\$16,603,160	progenitor	Allogeneic	insulin replacement.	Efficacy.	1/1/15	12/31/17	
										Children with T1D face lifelong struggles with glycemic control and,				
										despite careful management, an increased risk of severe complications. No therapy that maintains or restores pancreatic beta islet cell function				
					1					is currently	1			
CLIN2-09730										approved. Evidence indicates that				
Losordo,	Clinical Trial			Autologous ex vivo expanded						regulatory T-cells (T-regs) maintain immune balance at least in part by	Primary: Safety. Secondary:			
Caladrius	Stage Projects	Ph 2	Diabetes: Type 1	polyclonal regulatory T cells	Endocrine Disorder	Cell Therapy	\$12,211,255	T-reg	Autologous	control of differentiation of multipotent progenitor/stem cells.	Efficacy.	4/1/17	7/31/20	
				http://www.accounting						These are such 100,000 people in the US with track the base				
				hESC-derived pancreatic progenitor cells delivered in a						There are over 100,000 people in the US with type 1 diabetes so severe that they are at constant risk of hospitalization and/or death. Within				
CLIN1-08671,				device that allows direct				Pancreatic		months after administration, this product could provide a source of insulir				
D'Amour,	Clinical Trial			vascularization of the cell		Cell Therapy,		endocrine		producing beta cells to restore those patients' blood sugar to normal	Obtain an active IND and trial			
Viacyte	Stage Projects	IND	Diabetes: Type 1	therapy	Endocrine Disorder	Combination	\$3,984,164	progenitor	Allogeneic	healthy levels and save their lives.	start up	8/1/16	7/31/17	

							1					1	1	
CLIN2-09672, Foyt, Viacyte	Clinical Trial Stage Projects	Ph 1/2	Diabetes: Type 1	hESC-derived pancreatic progenitor cells delivered in a device that allows direct vascularization of the cell therapy	Endocrine Disorder	Cell Therapy, Combination	\$20,000,000	Pancreatic endocrine progenitor	Allogeneic	There are over 100,000 people in the US with type 1 diabetes so severe that they are at constant risk of hospitalization and/or death. Within months after administration, this product could provide a source of insulir producing beta cells to restore those patients' blood sugar to normal healthy levels and save their lives.	n Primary: Safety and Tolerability	10/1/17	12/31/20	
Kidney Disord	ers													
CLIN2-08938, Lawson, Humacyte, Inc.	Clinical Trial Stage Projects	Ph 3	Renal dialysis	A Human Acellular Vessel in Patients Needing Renal Replacement Therapy: A Comparison with ePTFE Grafts as Conduits for Hemodialysis (HUMANITY)	Endocrine Disorder	Device	\$9,999,528		Allogeneic	Synthetic vascular access grafts for hemodialysis in kidney patients are associated with thrombosis, infection and abandonment. Human Acellular Vessel (HAV) is made of extracellular matrix from human smooth muscle cells, similar in composition and structure to naitve tissue.	Primary: Safety and tolerability, rate of patency of the graft and rate of interventions needed to restore patency.	8/1/16	7/31/21	
CLIN2-09688, Lawson, Humacyte, Inc.	Clinical Trial Stage Projects	Ph 3	Renal dialysis	A Human Acellular Vessel in Patients Needing Renal Replacement Therapy.	Endocrine Disorder	Device	\$14,082,865		Allogeneic	Synthetic vascular access grafts for hemodialysis in kidney patients are associated with thrombosis, infection and abandonment. Human Acellular Vessel (HAV) is made of extracellular matrix from human smooth muscle cells, similar in composition and structure to naitve tissue.	A Comparison with AV Fistula	11/01/17	3/31/22	
CLIN2-09439 Strober, Stanford	Clinical Trial Stage Projects	Ph 1		Donor CD34+ and CD3+ T cells for immune tolerance to HLA mismatched kidney donors.	Immune tolerance, transplant	Cell Therapy	\$5,069,674	HSC	Allogeneic	Unmet medical need for allogeneic kidney transplants. Need to eliminate chronic rejection/allograft nephropathy that causes gradual loss of kidney (50% of graft loss by 12-15 years in HLA mismatched recipients). Eliminate the lifelong need for anti-rejection drugs that have numerous cumulative side effects.		2/1/17	1/31/21	
Clin1-09230	Clinical Trial			Ex vivo transduced autologous human CD34+ hematopoietic stem cells for treatment of		Genetically Modified Cell				Cystinosis is caused by a genetic mutation that allows an amino acid, cystine, to build up in and damage the kidneys, eyes, liver, muscles, pancreas and brain of children and adults. Current therapy only delays progression of the disease, has severe side effects and people taking it still require kidney transplants, and develop diabetes, neuromuscular disorders and hypothyroidism. The goal is to take blood stem cells from people with cystinosis, genetically-modify them to remove the mutation, then return them to the patient to create a new, healthy, blood system				
Cherqui, UCSD	Stage Projects	IND	Cystinosis	cystinosis	Cystinosis	Therapy	\$ 5,273,189	HSC	Autologous	free of the disease.	Obtain an active IND	11/1/16	10/31/18	
CLIN2-10411				Donor CD34+ and CD3+ T cells						Unmet medical need for allogeneic kidney transplants in HLA-matched				
Deitcher, Medeor	Clinical Trial Stage Projects	Ph 3		for immune tolerance to HLA mismatched kidney donors.	Immune tolerance, transplant	Coll Thorac	\$18,763, 585	HSC	Allogoncia	patients. Eliminate the lifelong need for anti-rejection drugs that have numerous cumulative side effects.	Efficacy and Safety	3/1/18	12/31/22	
iviedeor	Stage Projects	PH 3	transplant tolerance	mismatcheu kidhey donors.	transplant	Cell Therapy	\$10,703,585	TSC	Allogeneic	numerous cumulative side effects.	Efficacy and safety	3/1/18	12/31/22	