Application#	Avg	Cumulative Percentile	Application Title	Requested Budget, Year 1	Requested Budget, Total
RC1-00111-1	95	1.4%	Epigenetic gene regulation during the differentiation of human embryonic stem cells: Impact on neural repair	\$631,569	\$2,516,613
RC1-00346-1	90	2.9%	Derivation of Inhibitory Nerve Cells from Human Embryonic Stem Cells	\$592,418	\$2,507,223
RC1-00115-1	89	4.3%	Molecular and Cellular Transitions from ES Cells to Mature Functioning Human Neurons	\$702,744	\$2,879,210
RC1-00354-1	89	5.7%	Prospective isolation of hESC-derived hematopoietic and cardiomyocyte stem cells	\$656,901	\$2,636,900
RC1-00113-1	88	7.1%	Constructing a fate map of the human embryo	\$613,181	\$2,532,388
RC1-00359-1	87	8.6%	An in vitro and in vivo comparison among three different human hepatic stem cell populations.	\$626,153	\$2,504,614
RC1-00353-1	87	10.0%	The Dangers of Mitochondrial DNA Heteroplasmy in Stem Cells Created by Therapeutic Cloning	\$632,499	\$2,530,000
RC1-00132-1	85	11.4%	Chemical Genetic Approach to Production of hESC-derived Cardiomyocytes	\$759,000	\$3,036,002
RC1-00116-1	85	12.9%	USING HUMAN EMBRYONIC STEM CELLS TO UNDERSTAND AND TO DEVELOP NEW THERAPIES FOR ALZHEIMER'S DISEASE	\$628,688	\$2,512,664

Application#	Avg	Cumulative Percentile	Application Title	Requested Budget, Year 1	Requested Budget, Total
RC1-00110-1	85	14.3%	Improved hES Cell Growth and Differentiation	\$628,138	\$2,509,438
RC1-00100-1	84	15.7%	Functional Genomic Analysis of Chemically Defined Human Embryonic Stem Cells	\$656,900	\$2,628,635
RC1-00119-1	84	17.1%	Generation of inner ear sensory cells from human ES cells toward a cure for deafness	\$591,812	\$2,469,373
RC1-00131-1	83	18.6%	Spinal ischemic paraplegia: modulation by human embryonic stem cell implant.	\$563,687	\$2,445,716
RC1-00104-1	83	20.0%	Modeling Myocardial Therapy with Human Embryonic Stem Cells	\$531,888	\$2,229,140
RC1-00148-1	81	21.4%	Mechanisms to maintain the self-renewal and genetic stability of human embryonic stem cells	\$642,500	\$2,570,000
RC1-00137-1	79	22.9%	Human oocyte development for genetic, pharmacological and reprogramming applications	\$596,068	\$2,469,104
RC1-00347-1	79	24.3%	Understanding hESC-based Hematopoiesis for Therapeutic Benefit	\$639,601	\$2,566,702
RC1-00124-1	79	25.7%	Embryonic Stem Cell-Derived Therapies Targeting Cardiac Ischemic Disease	\$620,676	\$2,524,617
RC1-00134-1	79	27.1%	Immunology of neural stem cell fate and function	\$612,775	\$2,501,125

Application#	Avg	Cumulative Percentile	Application Title	Requested Budget, Year 1	Requested Budget, Total
RC1-00125-1	78	28.6%	MEF2C-Directed Neurogenesis From Human Embryonic Stem Cells	\$758,999	\$3,035,996
RC1-00123-1	77	30.0%	Establishment Of Stem Cell Lines From Somatic Cell Nuclear Transfer-Embryos in Humans	\$637,534	\$2,556,066
RC1-00133-1	75	31.4%	Guiding the developmental program of human embryonic stem cells by isolated Wnt factors	\$551,371	\$2,354,820
RC1-00135-1	75	32.9%	Human stem cell derived oligodendrocytes for treatment of stroke and MS	\$639,601	\$2,566,701
RC1-00151-1	75	34.3%	Engineering a Cardiovascular Tissue Graft from Human Embryonic Stem Cells	\$641,472	\$2,618,704
RC1-00149-1	73	35.7%	Human Embryonic Stem Cell Therapeutic Strategies to Target HIV Disease	\$629,208	\$2,516,831
RC1-00142-1	72	37.1%	microRNA Regulation of Cardiomyocyte Differentiation from Human Embryonic Stem Cells	\$791,000	\$3,164,000
RC1-00108-1	69	38.6%	Regulated Expansion of Lympho-hematopoietic Stem and Progenitor Cells from Human Embryonic Stem Cells (hESC)	\$614,094	\$2,551,088
RC1-00345-1	66	40.0%	hESC-Derived Motor Neurons For the Treatment of Cervical Spinal Cord Injury	\$578,418	\$2,396,932

Application#	Avg	Cumulative Percentile	Application Title	Requested Budget, Year 1	Requested Budget, Total
RC1-00144-1	66	41.4%	Preclinical Model for Labeling, Transplant, and In Vivo Imaging of Differentiated Human Embryonic Stem Cells	\$539,500	\$2,257,040
RC1-00107-1	69	42.9%	Controlling Stem Cell Differentiation with GPCR Signals	\$782,729	\$3,130,921
RC1-00356-1	68	44.3%	ABILITY OF HUMAN ES CELL-DERIVED NEURAL PRECURSORS TO CONTRIBUTE TO AND REPAIR DAMAGED NEURAL CIRCUITS	\$640,685	\$2,562,741
RC1-00145-1	65	45.7%	Control Mechanisms Governing Human ESC Self Renewal and Differentiation	\$630,001	\$2,507,692
RC1-00114-1	64	47.1%	hES Differentiation in Lesch Nyhan Disease	\$494,490	\$1,987,915
RC1-00102-1	64	48.6%	Generation and functional genomic characterization of human embryonic stem cell-derived progenitor cells.	\$524,630	\$2,094,929
RC1-00152-1	64	50.0%	Dopaminergic Differentiation of Human Embryonic Stem Cells	\$690,472	\$2,937,237
RC1-00101-1		51.4%	IN VIVO REGENERATIVE POTENTIAL OF hESC- DERIVED SKELETAL MYOBLASTS		
RC1-00103-1		52.9%	Factors Regulating Stemness in Human Embryonic Stem Cells		

Application#	Avg	Cumulative Percentile	Application Title	Requested Budget, Year 1	Requested Budget, Total
RC1-00105-1		54.3%	Creating a Human Tumor Micro-environment with Embryonic Stem Cells		
RC1-00106-1	-	55.7%	Generating Reprogrammed Pluripotent Human Cell Lines Using a Histone Modification Barcode		
RC1-00109-1	-	57.1%	Chemical and Functional Genomic Approaches toward Understanding hESCs		
RC1-00112-1		58.6%	Intracellular signaling mechanism for control of hESC pluripotency		
RC1-00117-1		60.0%	Interaction between transplanted human embryonic stem cell-derived neuronal precursors and endogenous neurogenesis in ischemic brain		
RC1-00120-1		61.4%	Genome-wide analysis of hormonal systems important for human embryonic stem cell derivation		
RC1-00121-1		62.9%	Human Embryonic Stem Cell Therapy for Myocardial Infarction		
RC1-00122-1		64.3%	Genetic Modification of Human Embryonic Stem Cells		
RC1-00126-1		65.7%	Constructing a library of custom-tailored human embryonic stem cell-derived cardiomyocytes for specific heart therapies		

Application#	Avg	Cumulative Percentile	Application Title	Requested Budget, Year 1	Requested Budget, Total
			Effect of growth factors on hES cell derivation,		
RC1-00127-1		67.1%	growth, and genomic stability		
RC1-00128-1		68.6%	Control of human Embryonic Stem Cell Pluripotence and Fate Choice		
RC1-00129-1		70.0%	Mechanisms of Human Embryonic Stem Cell Self-Renewal		
RC1-00130-1		71.4%	Monitored Systemic Delivery Of HESC to Pathological Organs		
RC1-00136-1		72.9%	Human Embryonic Stem Cell Survival and Transformation		
RC1-00138-1		74.3%	Studying Chromosomal Aneuploidy During Human Embryogenesis Using Human Embryonic Stem Cells Derived From Embryos Characterized by Preimplantation Genetic Diagnosis		
RC1-00139-1		75.7%	Investigation of the mechanism that initiates the molecular heterogeneity in human embryonic stem cells		
RC1-00140-1		77.1%	Derivation and Characterization of hESCs Derived from Single Cleavage-Stage Blastomeres		
RC1-00141-1		78.6%	Functional characterization of the pivotal role of a novel zinc finger protein ZNF206 in regulating early lineage allocation & commitment		

Application#	Avg	Cumulative Percentile	Application Title	Requested Budget, Year 1	Requested Budget, Total
			Endoderm-specific integration for human embryonic		
RC1-00146-1		80.0%	stem cells: towards tissue regenerative solutions for lung and pancreas		
DC4 00447.4		04.40/	DESIGN AND ENGINEERING OF NEURAL STEM CELLS DERIVED FROM HUMAN EMBRYONIC STEM CELLS FOR REGENERATION AND REPAIR		
RC1-00147-1		81.4%	OF MULTIPLE SCLEROSIS Generation of hNSC lines from hESC: Effect of		
RC1-00337-1		82.9%	selective derivation and transplantation niche on cell fate decisions and recovery after SCI		
RC1-00338-1		84.3%	Converting Human Embryonic Stem Cells to Dopamine Neurons for Parkinson's Disease		
RC1-00339-1		85.7%	Human Embryonic Stem Cells for Incurable Skin Diseases and Chronic Wounds		
RC1-00340-1		87.1%	Engineering human embryonic stem cells into ectodermal organs		
RC1-00341-1		88.6%	Building an HIV Resistant Immune System Using Pluripotent Stem Cells		
RC1-00343-1		90.0%	Quantitative time-lapse analysis of pluripotency and trophectoderm differentiation at the single-cell level		
RC1-00344-1		91.4%	Matrix-Assisted hESC Transplantation for Myocardium Stabilization		

Application#	Avg	Cumulative Percentile	Application Title	Requested Budget, Year 1	Requested Budget, Total
RC1-00349-1		92.9%	Embryonic Stem Cell-Derived Hemangioblasts for Hematopoietic Stem Cell Reconstitution		
RC1-00350-1		94.3%	Human Embryonic Stem Cell for Myocardial Restoration		
RC1-00351-1		95.7%	Cryopreservation of Embryonic Progenitors Derived from Human Embryonic Stem Cells		
RC1-00358-1		97.1%	Embryonic stem cell-derived neural stem cells for brain tumor and ALS therapy.		
RC1-00459-1		98.6%	Imaging Human ES-Derived Cells: Defining Parameters for Safety in Regenerative Medicine.		
RC1-00478-1		100.0%	Regulation of Self Renewal and Lineage Commitment in Human Embryonic Stem Cells		