Neurological Disorders

Coding Dimension ID: 
303
Coding Dimension path name: 
Neurological Disorders
Grant Type: 
Tools and Technologies III
Grant Number: 
RT3-07893
Investigator: 
Institution: 
Type: 
Partner-PI
ICOC Funds Committed: 
$1 147 596
Disease Focus: 
Alzheimer's Disease
Neurological Disorders
Collaborative Funder: 
Australia
Human Stem Cell Use: 
Embryonic Stem Cell
Public Abstract: 

Microglia are a type of immune cell within the brain that profoundly influence the development and progression of many neurological disorders. Microglia also inherently migrate toward areas of brain injury, making them excellent candidates for use in cell transplantation therapies. Despite the widely accepted importance of microglia in neurological disease, methods to produce microglia from stem cells have yet to be reported. Our team has recently developed one of the first protocols to generate microglia from human pluripotent stem cells. We have used several approaches to confirm that the resulting cells are microglia including examination of gene expression and testing of key microglial functions. However, our current protocol uses cell culture supplements that preclude the use of these cells for any future clinical applications in people. The major goal of this proposal is to resolve this problem. We will generate pluripotent human stem cells that have special "reporter" genes that make the cells glow as they become microglia, allowing us to readily monitor and quantify the generation of these important cells. Using these reporter lines we can then streamline the differentiation process and develop improved protocols that could be translated toward eventual clinical use. As a proof-of-principle experiment we will then use the resulting human microglia to study some important questions about the genetic causes and potential treatment of Alzheimer’s disease.

Statement of Benefit to California: 

Recent estimates suggest that nearly 2 million Californian adults are currently living with a neurological disorder. While the causes of neurological disease vary widely from Alzheimer’s disease to Stroke to Traumatic Brain Injury, a type of brain cell called microglia has been strongly implicated in all of these disorders. Microglia are often considered the immune cell of the brain, but they play many additional roles in the development and function of the nervous system. In neurological disease, Microglia appear to be involved in a response to injury but they can also secrete factors that exacerbate neurological impairment. Unfortunately, it has been difficult to study human microglia and their role in these diseases because of challenges in producing these cells. Our group recently developed an approach to ‘differentiate’ microglia from human pluripotent stem cells. This enables researchers to now study the role of different genes in human microglial function and disease. Yet our current approach dose not allow these cells to be used for potential clinical testing in patients. Our proposal therefore aims to develop new tools and technology that will allow us to produce clinically-relevant human microglia. These cells will then be used to study the role of a specific microglial gene in Alzheimer’s disease, and may ultimately be useful for developing treatments for the many Californians suffering from neurological disease.

Grant Type: 
Tools and Technologies III
Grant Number: 
RT3-07800
Investigator: 
Type: 
PI
Type: 
Co-PI
ICOC Funds Committed: 
$1 380 557
Disease Focus: 
Neurological Disorders
Parkinson's Disease
Vision Loss
Human Stem Cell Use: 
Embryonic Stem Cell
iPS Cell
Public Abstract: 

Cell replacement therapies (CRTs) have considerable promise for addressing unmet medical needs, including incurable neurodegerative diseases. However, several bottlenecks hinder CRTs, especially the needs for improved cell manufacturing processes and enhanced cell survival and integration after implantation. Engineering synthetic biomaterials that present biological signals to support cell expansion, differentiation, survival, and/or integration may help overcome these bottlenecks. Our prior work has successfully generated synthetic biomaterial platforms for the long-term expansion of human pluripotent stem cells (hPSCs) at large scale, efficient differentiation of hPSCs into dopaminergic progenitors and neurons for treating Parkinson’s Disease, and modulation of stem cell function to promote neuronal differentiation within the brain. We now propose to advance this work and engineer two synthetic biomaterial platforms to treat neurodegenerative disease, in particular Parkinson’s Disease and Retinitis Pigmentosa. Specifically, our central goals are to further engineer biomaterial systems for scalable hPSC differentiation into dopaminergic and photoreceptor neurons, and to engineer a second biomaterial system as a biocompatible delivery vehicle to enhance the survival and engraftment of dopaminergic and photoreceptor neurons in disease models. The resulting modular, tunable platforms will have broad implications for other cell replacement therapies to treat human disease.

Statement of Benefit to California: 

This proposal addresses critical translational bottlenecks to stem cell therapies that are identified in the RFA, including the development of fully defined, xenobiotic free cell manufacturing systems and the development of clinically relevant technologies to enhance the survival and integration of human stem cell therapies. The proposed platform technologies for expanding and differentiating pluripotent stem cells in a scaleable, reproducible, safe, and economical manner will initially be developed for treating two major neurodegenerative disorders - Parkinson’s Disease and Retinitis Pigmentosa - that affect the well-being of hundreds of thousands of Californians and Americans. In addition, the biomaterial platforms are designed to be modular, such that they can be re-tuned towards other target cells to even more broadly enable cell replacement therapies and enhance our healthcare. This work will thus strongly enhance the scientific, technological, and economic development of stem cell therapeutics in California.

Furthermore, the principal investigator has a strong record of translating basic science and engineering towards clinical development within industry, particularly within California. Finally, this collaborative project will focus research groups with many students on an important interdisciplinary project at the interface of science and engineering, thereby training future employees and contributing to the technological and economic development of California.

Grant Type: 
Tools and Technologies III
Grant Number: 
RT3-07655
Investigator: 
Type: 
PI
Type: 
Partner-PI
ICOC Funds Committed: 
$1 784 052
Disease Focus: 
Neurological Disorders
Collaborative Funder: 
Germany
Human Stem Cell Use: 
Embryonic Stem Cell
iPS Cell
Public Abstract: 

Three years ago, with help from CIRM funding, we developed an assay. This is a genomics-base diagnostic assay, similar to those now used for diagnosing cancers; but in our case, it is designed to analyze human ES and iPS cells. The assay is very simple to use; researchers use microarrays to profile the genes that are active in their cells. They upload the microarray data to the website, and in a few minutes they find out whether or not their cells are pluripotent. Our assay is replacing the old method for proving pluripotency, which involves producing tumors in animals. Our assay has been extremely popular, with 9,386 samples analyzed by 581 research groups in 29 countries so far. In this proposal, we plan to take the same concept and apply it to translational stem cell applications. Our new assay will allow researchers to easily detect DNA damage in their stem cells, and will enable the detection of undifferentiated or other abnormal cells (which potentially could form a tumor) in populations used for cell replacement therapy. We are also designing specific assays for quality control of neuronal cells to be transplanted to Parkinson's disease patients and for other neurological therapies. Finally, with our European partners, we will develop an assay for ensuring reliability of drug screening assays using stem cells. Our tools will greatly simplify translation of hESCs and iPSCs to the clinic.

Statement of Benefit to California: 

California is at the leading edge of development of stem cell therapies to treat previously untreatable diseases. It is critical at this important stage, when treatments are being transferred from the lab to the clinic, that the cells used for therapy are carefully produced and qualified. Our project combines two of California's best scientific assets: genomics and stem cells. Our quality control assays for stem cell production are based on our long experience in genomic analysis of stem cells and development of genomics-based diagnostic tests. The assays will ensure that stem cells used for therapy are consistently of high quality. This will speed the development of stem cell therapies for Californians.

Grant Type: 
Tools and Technologies III
Grant Number: 
RT3-07616
Investigator: 
Type: 
PI
ICOC Funds Committed: 
$1 308 711
Disease Focus: 
Amyotrophic Lateral Sclerosis
Neurological Disorders
Spinal Cord Injury
Spinal Muscular Atrophy
Human Stem Cell Use: 
Embryonic Stem Cell
Cell Line Generation: 
Embryonic Stem Cell
Public Abstract: 

Motor neurons degenerate and die as a consequence of many conditions, including trauma to the spinal cord and its nerve roots and degenerative diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy. Paralysis and in many cases death may result from a loss of motor neurons. No effective treatments are available for these patients. Most cellular therapy studies for motor neuron disorders are done in rodents. However, because of the dramatic differences between the rodent and human spinal cord, translation of these studies to humans is difficult. In particular, the development of new stem cell based treatments is limited by the lack of large animal models to test promising candidate therapies.
This bottleneck will be addressed by developing a new research tool in which human embryonic stem cell-derived motor neurons are transplanted into the spinal cord of rhesus macaques after injury and surgical repair of motor nerve roots. This injury and repair model mimic many features of motor neuron degeneration in humans. Microscopic studies will determine survival and tissue integration of transplanted human cells in the primate spinal cord tissues. Evaluations of walking, muscle and bladder function, sensation and magnetic resonance imaging (MRI) will test for possible benefits and potential adverse effects. This new research tool will be available for future pre-clinical testing of additional stem cell-based therapies that target motor neuron loss.

Statement of Benefit to California: 

Paralysis resulting from motor neuron loss after cauda equina and conus medullaris forms of spinal cord injury and from neurodegenerative conditions, such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), are devastating and affects thousands of patients and their families in California (CA). These conditions also create a significant financial burden on the state of CA. No effective treatments are available for these underserved patients. Development of a clinically relevant research tool is proposed to evaluate emerging stem cell-based motor neuron replacement therapies in translational studies. No such models are presently available to the global research community. As a result, the proposed research tool, which will remain based in CA, may attract interest across the United States and abroad, potentially being able to tap into a global translational research market of stem cell-based therapies and contribute to a positive revenue flow to CA.
Future benefits to people in CA include: 1) Development and translation of a new CA-based research tool to facilitate and expedite clinical realization of emerging stem cell-based therapies for devastating neurological conditions affecting motor neurons; 2) Reduction of health care costs and care giver costs for chronic motor neuron conditions with paralysis; 3) Potential for revenue from intellectual properties related to new cellular treatments entering clinical trials and human use.

Grant Type: 
Conference
Grant Number: 
CG1-99052
Investigator: 
Type: 
PI
ICOC Funds Committed: 
$11 430
Disease Focus: 
Amyotrophic Lateral Sclerosis
Neurological Disorders
Public Abstract: 
Statement of Benefit to California: 
Grant Type: 
Conference
Grant Number: 
CG1-99026
Investigator: 
Type: 
PI
ICOC Funds Committed: 
$17 200
Disease Focus: 
Neurological Disorders
Public Abstract: 
Statement of Benefit to California: 

Pages