Neurological Disorders

Coding Dimension ID: 
303
Coding Dimension path name: 
Neurological Disorders
Funding Type: 
Early Translational IV
Grant Number: 
TR4-06747
Investigator: 
Type: 
Partner-PI
ICOC Funds Committed: 
$1 824 719
Disease Focus: 
Autism
Neurological Disorders
Rett's Syndrome
Pediatrics
Collaborative Funder: 
NIH
Stem Cell Use: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
Autism spectrum disorders (ASD) are complex neurodevelopmental diseases that affect about 1% of children in the United States. Such diseases are mainly characterized by deficits in verbal communication, impaired social interaction, and limited and repetitive interests and behavior. The causes and best treatments remain uncertain. One of the major impediments to ASD research is the lack of relevant human disease models. Reprogramming of somatic cells to a pluripotent state (induced pluripotent stem cells, iPSCs) has been accomplished using human cells. Isogenic pluripotent cells are attractive from the prospective to understanding complex diseases, such as ASD. The main goal of this project is to accelerate drug discovery to treat ASD using astrocytes generated from human iPSC. The model recapitulates early stages of ASD and represents a promising cellular tool for drug screening, diagnosis and personalized treatment. By testing whether drugs have differential effects in iPSC-derived astrocytes, we can begin to unravel how genetic variation in ASD dictates responses to different drugs. Insights that emerge from our studies may drive the development of new therapeutic interventions for ASD. They may also illuminate possible differences in drug responsiveness in different patients and potentially define a molecular signature resulting from ASD variants, which could predict the onset of disease before symptoms are seen.
Statement of Benefit to California: 
Autism spectrum disorders, including Rett syndrome, Angelman syndrome, Timothy syndrome, Fragile X syndrome, Tuberous sclerosis, Asperger syndrome or childhood disintegrative disorder, affect many Californian children. In the absence of a functionally effective cure or early diagnostic tool, the cost of caring for patients with such pediatric diseases is high, in addition to a major personal and family impact since childhood. The strikingly high prevalence of ASD, dramatically increasing over the past years, has led to the emotional view that ASD can be traced to a single source, such as vaccine, preservatives or other environmental factors. Such perspective has a negative impact on science and society in general. Our major goal is to develop a drug-screening platform to rescue deficiencies showed from brain cells derived from induced pluripotent stem cells generated from patients with ASD. If successful, our model will bring novel insights on the dentification of potential diagnostics for early detection of ASD risk, or ability to predict severity of particular symptoms. In addition, the development of this type of pharmacological therapeutic approach in California will serve as an important proof of principle and stimulate the formation of businesses that seek to develop these types of therapies (providing banks of inducible pluripotent stem cells) in California with consequent economic benefit.
Progress Report: 
  • The progress in our research regarding the role of human astrocytes in Rett syndrome (RTT) showed us that RTT-derived astrocyte display several phenotypes that illustrate its differences compared to healthy control astrocytes (WT). RTT astrocytes are unable to propagate calcium wave when mechanically stimulated . In addition to that, when placed in medium that contains glutamate, the natural uptake and buffering of this compound is impaired in RTT-derived astrocytes. Furthermore, when WT neurons are placed on top of RTT astrocytes, there is a clear the negative effect of these cells in neuronal homeostasis. Remarkably, WT astrocytes are able to rescue RTT neuronal phenotypes when in direct contact, illustrating the important role that astrocytes have in maintaining neuronal viability and maturation. Several mis-regulation in gene expression pathways indicated those phenotypes, both in calcium and glutamate dependent genes. Strikingly, further genetic analysis led us to identify several mis-regulations in pro-inflammatory cytokines. Multiplex ELISA platforms also pointed towards a difference in cytokine secretion between WT and RTT syndrome astrocytes, being the RTT cells illustrative of a pro-inflammatory scenario. We have define one of these secreted cytokines as our primary read out for the HT-screening. We are now facing a transportation issue with very sensitive cells, but have an innovative plan to make it to work and also get some quick results that may have clinical relevance.
Funding Type: 
Early Translational IV
Grant Number: 
TR4-06847
Investigator: 
Institution: 
Type: 
PI
ICOC Funds Committed: 
$1 333 795
Disease Focus: 
Huntington's Disease
Neurological Disorders
Stem Cell Use: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
The long-term objective of this project is to develop a drug to treat Huntington’s disease (HD), the most common inherited neurodegenerative disorder. Characterized by involuntary movements, personality changes and dementia, HD is a devastatingly progressive disease that results in death 10–20 years after disease onset and diagnosis. No therapy presently exists for HD; therefore, this project is highly innovative and ultimately aims to deliver something transformative for the HD patient population. The specific goal of the proposed research will be to achieve preclinical proof-of-concept with a novel small molecule that binds to and ameliorates the neurotoxicity of the mutant huntingtin (mHtt) protein that causes HD. Rationale for development of such compounds comes from previous research that found that mHtt assumes a shape that is selectively toxic to neurons, and that small molecules that disrupt this shape can reduce mHtt’s toxicity in primary neurons. Critical to the proposed studies will be assays that employ human striatal neurons derived from adult and juvenile HD patients and generated with induced pluripotent stem cell (iPSC) technology. These HD i-neurons display many characteristics that are also observed in striatal neurons of HD patients, including reduced survival times. They provide the most genetically precise preclinical system available to test for both drug efficacy and safety.
Statement of Benefit to California: 
The long-term objective of this project is to develop a first-in-class, disease-modifying drug to treat Huntington’s disease (HD), a devastatingly progressive genetic disorder that results in death 10–20 years after disease onset and diagnosis. No therapy presently exists for HD; therefore, this highly innovative project aims to deliver a medical breakthrough that will provide significant benefit for California’s estimated > 2000 HD patients and the family members, friends and medical system that care for them. The proposed research will be performed at a biotechnology startup, a leading academic research center and two contract research organizations, all of which are California-based. The work will over time involve more than 10 California scientists, thereby helping to employ tax-paying citizens and maintain the State’s advanced technical base. Finally, an effective, proprietary drug for the treatment of HD is expected to be highly valuable and to attract favorable financial terms upon out-licensing for development and commercialization. These revenues would flow to the California companies and institutions (including CIRM) that would have a stake in the proceeds.
Progress Report: 
  • The long-term objective for this project was to develop a first-in-class, disease-modifying drug to treat Huntington's disease (HD). This drug would comprise a small molecule that binds to and ameliorates the neurotoxicity of the mutant huntingtin protein (mHtt) that causes HD.
  • The goal of the research conducted under the CIRM Award was to demonstrate development candidate feasibility in vitro with a novel small molecule mHtt detoxifier early lead compound that is potent and efficacious in neurons from HD patients generated using stem cell technology (HD i-neurons) as well as suitable for use in mice as experimental models for HD.
  • The original project strategy was to 1) acquire or synthesize new samples of compounds identified as potential mHtt detoxifiers in the screening campaign conducted 7 years ago; 2) establish or re-establish the cell-free and cultured neuron biological assays needed to characterize potential small molecule mHtt detoxifiers (this work was carried out in the laboratory of our collaborator, Dr. Steven Finkbeiner of the J. David Gladstone Institutes); 3) acquire or synthesize new/novel analogs of the initial hits; 4) test new/novel compounds for activity in a cell-free assay for potential mHtt detoxifier activity; 5) test hits for efficacy in HD and non-HD i-neurons; and 6) profile the in vitro and in vivo pharmacokinetics and absorption, distribution, metabolism and elimination (PK/ADME) profiles of compounds that displayed selective neuroprotection toward HD i-neurons.
  • Specific achievements of the first year of the Project include:
  • • Acquiring 205 previously identified hits or analogs thereof from commercial sources;
  • • Synthesizing an additional 84 novel, designed analogs;
  • • Generating the reagents, re-establishing and implementing the screening assay;
  • • Testing all compounds acquired or synthesized in the screening assay;
  • • Establishing a counterscreen for false positives in the screening assay;
  • • Preliminary screening 48 previously reported hits in the counterscreen;
  • • Testing 14 previously or newly identified hits side-by-side in full concentration-response assays in both the screening and counterscreening assays;
  • • Profiling 11 diverse hits in in vitro PK/ADME assays;
  • • Testing 17 compounds for their ability to ameliorate neurotoxicity in a rodent primary neuron model; and
  • • Preliminary testing 2 previously identified hits in human HD i-neurons.
  • Unfortunately and surprisingly, we observed that all compounds displayed essentially identical profiles in full concentration-response studies in both the screening and counterscreening assays. We interpret this result to indicate that these compounds and structurally related compounds that we considered to be most promising and tested do not in fact bind to mHtt, i.e., they are all false positives. Since no valid starting points exist for continued work, the Project will be terminated after the first award period.
Funding Type: 
Research Leadership 10
Grant Number: 
LA1_C10-06535
Investigator: 
Type: 
PI
ICOC Funds Committed: 
$6 718 471
Disease Focus: 
Parkinson's Disease
Neurological Disorders
oldStatus: 
Closed
Public Abstract: 
Protection and cell repair strategies for neurodegenerative diseases such as Parkinson’s Disease (“PD”) depend on well-characterized candidate human stem cells that are robust and show promise for generating the neurons of interest following stimulation of inherent brain stem cells or after cell transplantation. These stem cells must also be expandable in the culture dish without unwanted growth and differentiation into cancer cells, they must survive the transplantation process or, if endogenous brain stem cells are stimulated, they should insinuate themselves in established brain networks and hopefully ameliorate the disease course. The studies proposed for the CIRM Research Leadership Award have three major components that will help better understand the importance and uses of stem cells for the treatment of PD, and at the same time get a better insight into their role in disease repair and causation. First, we will characterize adult human neural stem cells from control and PD brain specimens to distinguish their genetic signatures and physiological properties of these cells. This will allow us to determine if there are stem cells that are pathological and fail in their supportive role in repairing the nervous system. Next, we will investigate a completely novel disease initiation and propagation mechanism, based on the concept that secreted vesicles from cells (also known as “exosomes”) containing a PD-associated protein, alpha-synuclein, propagate from cell-to cell. Our hypothesis is that these exosomes carry toxic forms of alpha-synuclein from cell to cell in the brain, thereby accounting disease spread. They may do the same with cells transplanted in patients with PD, thereby causing these newly transplanted cells designed to cure the disease, to be affected by the same process that causes the disease itself. This is a bottleneck that needs to be overcome for neurotransplantation to take its place as a standard treatment for PD. Our studies will address disease-associated toxicity of exosomal transmission of aggregated proteins in human neural precursor stem cells. Importantly, exosomes in spinal fluid or other peripheral tissues such as blood might represent a potentially early and reliable disease biomarker as well as a new target for molecular therapies aimed at blocking transcellular transmission of PD-associated molecules. Finally, we have chosen pre-clinical models with α-synucleinopathies to test human neural precursor stem cells as cell replacement donors for PD as well as interrogate, for the first time, their potential susceptibility to PD and contribution to disease transmission. These studies will provide a new standard of analysis of human neural precursor cells at risk for and contributing to pathology (so-called “stem cell pathologies”) in PD and other neurodegenerative diseases via transmission of altered or toxic proteins from one cell to another.
Statement of Benefit to California: 
According to the National Institute of Health, Parkinson’s disease (PD) is the second most common neurodegenerative disease in California and the United States (one in 100 people over 60 is affected) second only to Alzheimer’s Disease. Millions of Americans are challenged by PD, and according to the Parkinson’s Action Network, every 9 minutes a new case of PD is diagnosed. The cause of the majority of idiopathic PD is unknown. Identified genetic factors are responsible for less than 5% of cases and environmental factors such as pesticides and industrial toxins have been repeatedly linked to the disease. However, the vast majority of PD is thought to be etiologically multi-factorial, resulting from both genetic and environmental risk factors. Important events leading to PD probably occur in early or mid adult life. According to the Michael J. Fox Foundation, “…there is no objective test, or reliable biomarker for PD, so rate of misdiagnosis is high, and there is a seriously pressing need to develop better early detection approaches to be able to attempt disease-halting protocols at a non-symptomatic, so-called prodromal stage.” The proposed innovative and transformative research program will have a major direct impact for patients who live in California and suffer from PD and other related neurodegenerative diseases. If these high-risk high-pay-off studies are deemed successful, this new program will have tackled major culprits in the PD field. They could lead to a better understanding of the role of stem cells in health and disease. Furthermore they could greatly advance our knowledge of how the disease spreads throughout the brain which in turn could lead to entire new strategies to halt disease progression. In a similar manner these studies could lead to ways to prevent the disease from spreading to cells that have been transplanted to the brain of Parkinson’s patients in an attempt to cure their disease. This is critical for neurotransplantation to thrive as a therapeutic approach to treating PD. In addition, if we extend the cell-to-cell transmissible disease hypothesis to other neurodegenerative diseases, and cancer, the studies proposed here represent a new diagnostic approach and therapeutic targets for many diseases affecting Californians and humankind in general. This CIRM Research Leadership Award will not only have an enormous impact on understanding the cause of PD and developing new therapeutic strategies using stem cells and its technologies, this award will also be the foundation of creating a new Center for Translational Stem Cell Research within California. This could lead to further growth at the academic level and for the biotechnology industry, particularly in the area regenerative medicine.
Funding Type: 
Tissue Collection for Disease Modeling
Grant Number: 
IT1-06611
Investigator: 
ICOC Funds Committed: 
$874 135
Disease Focus: 
Neurological Disorders
Pediatrics
Cell Line Generation: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
Most children who go to the clinic with brain disorders have symptoms combining autism, cerebral palsy and epilepsy, suggesting underlying and shared mechanisms of brain dysfunction in these conditions. Such disorders affect 4-6% of the population with life-long disease, and account for about 10% of health care expenditures in the US. Genetic studies have pointed to frequent low-penetrant or low-frequency genetic alterations, but there is no clear way to use this information to make gene-specific diagnosis, to predict short- or long-term prognosis or to develop disease-specific therapy. We propose to recruit about 500 patients with these disorders mostly from our Children’s Hospital, through a dedicated on-site collaborative approach. Extracting from existing medical records, taking advantage of years of experience in recruitment and stem cell generation, and already existing or planned whole exome or genome sequencing on most patients, we propose a safe, anonymous database linked to meaningful biological, medical, radiographic and genetic data. Because team members will be at the hospital, we can adjust future disease-specific recruitment goals depending upon scientific priorities, and re-contact patients if necessary. The clinical data, coupled with the proposed hiPSC lines, represents a platform for cell-based disease investigation and therapeutic discovery, with benefits to the children of California.
Statement of Benefit to California: 
This project can benefit Californians both in financial and non-financial terms. NeuroDevelopmental Disabilities (NDDs) affect 4-6% of Californians, create a huge disease burden estimated to account for 10% of California health care costs, and have no definitive treatments. Because we cannot study brain tissue directly, it is extraordinarily difficult to arrive at a specific diagnosis for affected children, so doctors are left ordering costly and low-yield tests, which limit prognostic information, counseling, prevention strategies, quality of life, and impede initiation of potentially beneficial therapies. Easily obtainable skin cells from Californians will be the basis of this project, so the study results will have maximal relevance to our own population. By combining “disease in a dish” platforms with cutting edge genomics, we can improve diagnosis and treatments for Californians and their families suffering from neurodevelopmental disorders. Additionally, this project, more than others, will help Californians financially because: 1] The ongoing evaluations of this group of patients utilizes medical diagnostics and genetic sequencing tools developed and manufactured in California, increasing our state revenues. 2] The strategy to develop “disease in a dish” projects centered on Neurodevelopmental Disabilities supports opportunities for ongoing efforts of California-based pharmaceutical and life sciences companies to leverage these discoveries for future therapies.
Progress Report: 
  • Childhood Neurodevelopmental Disabilities (NDDs) affect approximately 12% of children in the US, and account for >5% of total healthcare costs. The ability to use induced pluripotent stem cells (iPSCs) to incorporate characteristics of patient cells into models that predict patient disease characteristics and clinical outcomes can have a major impact on care for the children with these conditions. We have proposed to ascertain pediatric patient samples which represent a range of NDDs including Autism Spectrum Disorders (ASD), Intellectual Disability (ID), Cerebral Palsy (CP) and Epilepsy for iPSC banking. These disorders were chosen because they have high heritability rates but remain genetically complex, and therefore, will greatly benefit from further in-depth study using iPSCs
  • To date we have enrolled 128 patients (72 affected patients, 56 healthy control patients) representing a range of racial and ethnic backgrounds (39% White, 2% Black, 2% Asian, 57% Arabic/Middle Eastern) and both genders (52% Male, 48% Female). The patients in the affected patient group carry a primary diagnosis of one of the NDD disease categories (19% Autism Spectrum Disorder, 44% Epilepsy, 28% Intellectual Disability, 9% Cerebral Palsy). Approximately half of the patients are comorbid for one or more of the other disorders. The control patients consist of healthy family members of the affected patient group. Since family members share many common DNA features this will help us better identify and hone in on disease causing variants more effectively.
  • iPSC lines have not yet been returned from these patients so there are no research results to report at this time. We are continuing with our recruitment efforts to reach our goal of 450 affected patients and 100 healthy controls.
Funding Type: 
Basic Biology IV
Grant Number: 
RB4-06093
Investigator: 
Institution: 
Type: 
PI
ICOC Funds Committed: 
$1 264 248
Disease Focus: 
Neurological Disorders
Pediatrics
Stem Cell Use: 
Adult Stem Cell
Embryonic Stem Cell
oldStatus: 
Active
Public Abstract: 
White matter is the infrastructure of the brain, providing conduits for communication between neural regions. White matter continues to mature from birth until early adulthood, particularly in regions of brain critical for higher cognitive functions. However, the precise timing of white matter maturation in the various neural circuits is not well described, and the mechanisms controlling white matter developmental/maturation are poorly understood. White matter is conceptually like wires and their insulating sheath is a substance called myelin. It is clear that neural stem and precursor cells contribute significantly to white matter maturation by forming the cells that generate myelin. In the proposed experiments, we will map the precise timing of myelination in the human brain and changes in the populations of neural precursor cells that generate myelin from birth to adulthood and define mechanisms that govern the process of white matter maturation. The resulting findings about how white matter develops may provide insights for white matter regeneration to aid in therapy for diseases such as cerebral palsy, multiple sclerosis and chemotherapy-induced cognitive dysfunction.
Statement of Benefit to California: 
Diseases of white matter account for significant neurological morbidity in both children and adults in California. Understanding the cellular and molecular mechanisms that govern white matter development the may unlock clues to the regenerative potential of endogeneous stem and precursor cells in the childhood and adult brain. Although the brain continues robust white matter development throughout childhood, adolescence and young adulthood, relatively little is known about the mechanisms that orchestrate proliferation, differentiation and functional maturation of neural stem and precursor cells to generate myelin-forming oligodendrocytes during postnatal brain development. In the present proposal, we will define how white matter precursor cell populations vary with age throughout the brain and determine if and how neuronal activity instructs neural stem and precursor cell contributions to human white matter myelin maturation. Disruption of white matter myelination is implicated in a range of neurological diseases, including cerebral palsy, multiple sclerosis, cognitive dysfunction from chemotherapy exposure, attention deficit and hyperactivity disorder (ADHD) and even psychiatric diseases such as schizophrenia. The results of these studies have the potential to elucidate clues to white matter regeneration that may benefit hundreds of thousands of Californians.
Progress Report: 
  • Formation of the insulated fiber infrastructure of the human brain (called "myelin") depends upon the function of a precursor cell type called "oligodendrocyte precursor cells (OPC)". The first Aim of this study seeks to determine how OPCs differ from each other in different regions of the brain, and over different ages. Understanding this heterogeneity is important as we explore the regenerative capacity of this class of precursor cells. We have, in the past year, isolated OPCs from various regions of the human brain from individuals at various ages and are studying the molecular characteristics of these precursor cells at the single cell level in order to define distinct OPC subpopulations. We have also begun to study the functional capabilities of OPCs isolated from different brain regions. The second Aim of this study seeks to understand how interactions between electrically active neurons and OPCs affect OPC function and myelin formation. We have found that when mouse motor cortex neurons "fire" signals in such a way as to elicit a complex motor behavior, much as would happen when one practices a motor task, OPCs within that circuit respond and myelination increases. This affects the function of that circuit in a lasting way. These results indicate that neurons and OPCs interact in important ways to modulate myelination and supports the hypothesis that OPC function may play a role in learning.
  • Sending neural impulses quickly down a long nerve fiber requires a specialized type of insulation called myelin, made by a cell called an oligodendrocyte that wraps itself around neuronal projections. Myelin-insulated nerve fibers make up the “white matter” of the brain, the vast tracts that connect one information-processing area of the brain to another. We have now shown that neuronal activity prompts oligodendrocyte precursor cell (OPC) proliferation and differentiation into myelin-forming oligodendrocytes. Neuronal activity also causes an increase in the thickness of the myelin sheaths within the active neural circuit, making signal transmission along the neural fiber more efficient. This was found to be true in both juvenile and in adult brains Metaphorically, it’s much like a system for improving traffic flow along roadways that are heavily used. And as with a transportation system, improving the routes that are most productive makes the whole system more efficient.
  • Interestingly, some parts of the neural circuit studied showed evidence of myelin-forming precursor cell response to neuronal activity, while other parts of the active circuit did not. In related work, we are making progress towards understanding how OPCs differ in various regions of the brain, examining the molecular heterogeneity of human OPCs at a single cell level.
Funding Type: 
Basic Biology IV
Grant Number: 
RB4-06045
Investigator: 
Name: 
Type: 
PI
ICOC Funds Committed: 
$1 393 200
Disease Focus: 
Amyotrophic Lateral Sclerosis
Neurological Disorders
Dementia
Neurological Disorders
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
Amyotrophic lateral sclerosis (ALS) is an idiopathic adult-onset degenerative disease characterized by progressive weakness from loss of upper and lower motor neurons. Onset is insidious, progression is essentially linear, and death occurs within 3-5 years in 90% of patients. In the US, 5,000 deaths occur per year and in the world, 100,000. In October, 2011, the causative gene defect in a long sought after locus on chromosome 9 for ALS, frontotemporal dementia (FTD) and overlap ALS-FTD was identified to be a expansion of a hexanucleotide repeat in the uncharacterized C9ORF72 gene. The goal of the proposed research is to generate human stem cell models from cells derived from ALS patients with the C9ORF72 expanded repeats and relevant control cells using genome-editing technology. We will also generate a stem cell model expressing the repeat independent of the C9ORF72 gene to study if the repeat alone is causing neural defects. Using advanced genome technologies, biochemical and cellular approaches, we will study the molecular pathways affected in motor neurons derived from these stem cell models. Finally, we will use innovative technologies to rescue the abnormal phenotypes that arise from the expanded repeat in human motor neurons. Completion of the proposed research is expected to transform our understanding of the regulatory and pathogenetic mechanisms underlying ALS and FTD, and establish therapeutic options for these debilitating diseases.
Statement of Benefit to California: 
Our research provides the foundation for decoding the mechanisms that underlie the single most frequent genetic mutation found to contribute to both ALS and FTD, debilitating neurological diseases that impact many Californians. In California, the expected prevalence of ALS (the number of total existing cases) is 2,200 to 3,000 cases at any one time, and the incidence is 750-1,100 new cases each year. The number of FTD cases is five times as many. Our research has and will continue to serve as a basis for understanding deviations from normal and disease patient neuronal cells, enabling us to make inroards to understanding neurological disease modeling using neurons differentiated from reprogammed patient-specific lines. Such disease modeling will have great potential for California health care patients, pharmaceutical and biotechnology industries in terms of improved human models for drug discovery and toxicology testing. Our improved knowledge base will support our efforts as well as other Californian researchers to study stem cell models of neurological disease and design new diagnostics and treatments, thereby maintaining California's position as a leader in clinical research.
Progress Report: 
  • Expanded hexanucleotide repeats in the C9ORF72 gene were identified in Oct 2011 as a cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), thus identifying the single most frequent genetic cause of each and connecting them to repeat expansion disease. We are developing stem cell disease models to enable key hypotheses of pathogenesis and new interventions to be tested. We have successfully engineered stem cell models to analyze the effects of C9ORF72 mutations, and have differentiated these stem cell models into motor neurons which enabled us to conduct transcriptomic and biochemical studies. In addition, we have utilized antisense-oligonucleotides (ASOs) from ISIS Pharmaceuticals to deplete mutant C9ORF72 in motor neurons. We expect our efforts to provide mechanistic insights and a potential therapy in human cells.
  • In this period, we have generated C9ORF72 induced pluripotent stem cells and differentiated them into mature motor neurons. We have found that expression profiles from previous reports are largely irreproducible, suggesting there is substantial heterogeneity in the cells from patients. To address the issue of cell-type specificity, we have developed cell-type specific reporters in these lines and have generated astrocytes and motor neurons.
Funding Type: 
Basic Biology IV
Grant Number: 
RB4-05886
Investigator: 
Institution: 
Type: 
PI
ICOC Funds Committed: 
$1 392 426
Disease Focus: 
Neurological Disorders
Stem Cell Use: 
Directly Reprogrammed Cell
oldStatus: 
Active
Public Abstract: 
Many human diseases and injuries that affect the brain and nervous system could potentially be treated by either introducing healthy neurons or persuading the cells that normally provide supporting functions to become functioning neurons. A number of barriers must be traversed to bring these goals to practical therapies. Recently our laboratory and others have found ways of converting different human cell types to functioning neurons. Surprisingly, two routes for the production of neurons have been discovered. Our preliminary evidence indicates that these two routes are likely to work together and therefore more effective ways of producing neurons can likely be provided by understanding these two routes, which is one aim of this application. Another barrier to effective treatment of human neurologic diseases has been the inability to develop good models of human neurologic disease due to inability to sample tissues from patients with these diseases. Hence we will understand ways of making neurons from blood cells and other cells, which can be easily obtained from patients with little or no risk. Our third goal will be to understand how different types of neurons can be produced from patient cells. We would also like to understand the barriers and check points that keep one type of cell from becoming another another type of cell. Understanding these mysterious processes could help provide new sources of human cells for replacement therapies and disease models.
Statement of Benefit to California: 
The state of California and its citizens are likely to benefit from the work described in this proposal by the development of more accurate models for the testing of drugs and new means of treatment of human neurologic diseases. Presently these diseases are among the most common afflicting Californians, as well as others and will become more common in an aging population. Common and devastating diseases such as Alzheimer’s, Schizophrenia, Parkinson's Disease, and others lack facile cell culture models that allow one to probe the basis of the disease and to test therapies safely and without risk to the patient. Our work is already providing these models, but we hope to make even better ones by understanding the fundamental processes that allow one cell type (such as a skin cell or blood cell) to be converted to human neurons, where the disease process can be investigated. In the past the inability to make neurons from patients with specific diseases has been a major roadblock to treatment. In the future the studies described here might be able to provide healthy neurons to replace ones loss through disease or injury.
Progress Report: 
  • During the past year, our laboratory has investigated the way that human skin cells can be changed to neurons. To do this, we have used a natural switch that occurs as embryonic cells decide to become neurons. We have found that this process proceeds in a highly ordered series of stages that involve first a resetting of fundamental cell biologic processes characteristic of neurons. This is followed by activation of genes encoding proteins that allow different types of neurons to interact and develop communication between one another. This finding surprised us since we expected to find changes in transcription factors, which instruct the formation of neurons. Instead, we find that the natural switching mechanism in neurons first regulates cell-to-cell communication.
  • We are exploring the way that normal human skin and other types of cells can be converted to neurons. We have found that there are at least two fundamental genetic pathways of doing this that are influenced by different genes and may therefore represent a fertile ground for developing new methods for converting cells of different types to neurons. This could perhaps be useful for replacing neurons from other cell types in states where neurons are damaged or lost such as a variety of neurodegenerative diseases.
Funding Type: 
Basic Biology IV
Grant Number: 
RB4-06345
Investigator: 
ICOC Funds Committed: 
$1 360 450
Disease Focus: 
Neurological Disorders
Stem Cell Use: 
Embryonic Stem Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
A subset of intellectual disability cases in humans are caused by mutations in an X-linked gene essential for a quality control mechanism called nonsense-mediated RNA decay (NMD). Patients with mutations in this gene—UPF3B—commonly have not only ID, but also schizophrenia, autism, and attention-deficit/hyperactivity disorder. Thus, the study of UPF3B and NMD may provide insight into a wide spectrum of cognitive and psychological disorders. To examine how mutations in UPF3B can cause mental defects, we will generate and characterize induced-pluripotent stem cells from intellectual disability patients with mutations in the UPF3B gene. In addition to having a role in neural development, our recent evidence suggests that NMD is important for maintaining the identity of ES cells and progenitor cells. How does NMD do this? While NMD is a quality control mechanism, it is also a well characterized biochemical pathway that serves to rapidly degrade specific subsets of normal messenger ribonucleic acids (mRNAs), the transiently produced copies of our genetic material: deoxyribonucleic acid (DNA). We have obtained evidence that NMD preferentially degrades mRNAs that interfere with the stem cell program (i.e., NMD promotes the decay mRNAs encoding proteins that promote differentiation and inhibit cell proliferation). In this proposal, we will identify the target mRNAs of NMD in stem and progenitor cells and directly address the role of NMD in maintaining the stem-like state.
Statement of Benefit to California: 
iPS cells provide a means to elucidate the mechanisms underlying diseases that afflict a growing number of Californians. Our proposed project concerns making and testing iPS cells from patients with mutations in the UPF3B gene, all of whom have intellectual disabilities. In addition, many of these patients have autism, attention-deficit disorders, and schizophrenia. By using iPS cells to identify the cellular and molecular defects in these patients, we have the potential to ultimately ameliorate the symptoms of many of these patients. This is important, as over 1.6 million people in California have serious mental illness. Moreover, a large proportion of patients with UPF3B mutations have autism, a disorder that has undergone an alarming 12-fold increase in California between 1987 and 2007. The public mental health facilities in California are inadequate to meet the needs of people with mental health disorders. Furthermore, what is provided is expensive: $4.4 billion was spent on public mental health agency services in California in 2006. Mental health problems also exert a heavy burden on California’s criminal justice system. In 2006, over 11,000 children and 40,000 adults with mental health disorders were incarcerated in California’s juvenile justice system. Our research is also directed towards understanding fundamental mechanisms by which all stem cells are maintained, which has the potential to also impact non-psychiatric disorders suffered by Californians.
Progress Report: 
  • A key quality of stem cells is their ability to switch from a proliferative cell state in which they reproduce themselves to a differentiated cell state that ultimately allows them to carry out the functions of a fully mature cell. Most research on the nature of this switch has focused on the role of proteins that determine whether the genetic material—DNA—generates a copy of it itself in the form of messenger RNA, a process called transcription. In stem cells, such proteins—which are called transcription factors—activate the production of messenger RNAs encoding proteins that promote the proliferative and undifferentiated cell state. They also increase the production of messenger mRNAs that encode inhibitors of differentiation and cell proliferation. The level and profile of such transcription factors are altered in response to signals that trigger stem cells to differentiate. For example, transcription factors that promote the undifferentiated cell state are decreased in level and transcription factors that drive differentiation down a particular lineage are increased in level. While this transcription factor-centric view of stem cells explains some aspects of stem cell biology, it is, in of itself, insufficient to explain many of their behaviors, including both their ability to maintain the stem-like state and to differentiate. We hypothesize that a molecular pathway that complements transcription-base mechanisms in controlling stem cell maintenance vs. differentiation decisions is an RNA decay pathway called nonsense-mediated RNA decay (NMD). Messenger RNA decay is as important as transcription in determining the level of messenger RNA. Signals that trigger increased decay of a given messenger RNA leads to decreased levels of its encoded protein, while signals that trigger the opposite response increase the level of the encoded protein. Our project revolves around two main ideas. First, that NMD promotes the stem-like state by preferentially degrading messenger RNAs that encode differentiation-promoting proteins and proliferation inhibitor proteins. Second, that NMD must be downregulated in magnitude to allow stem cells to differentiate. During the progress period, we obtained substantial evidence for both of these hypotheses. With regard to the first hypothesis, we have used genome-wide approaches to identify hundreds of messenger RNAs that are regulated by NMD in both in vivo (in mice) and in vitro (in cell lines). To determine which of these messenger mRNAs are directly degraded by NMD, we have used a variety of approaches. This work has revealed that NMD preferentially degrades messenger RNAs encoding neural differentiation inhibitors and proliferation inhibitors in neural stem cells. In contrast, very few messenger RNAs encoding pro-stem cell proteins or pro-proliferation proteins are degraded by NMD. Together this provides support for our hypothesis that NMD promotes the stem-like state by shifting the proportion of messenger RNAs in a cell towards promoting an undifferentiated, proliferative cell state. With regard to the second hypothesis, we have found that many proteins that are directly involved in the NMD pathway are downregulated upon differentiation of stem and progenitor cells. Not only are NMD proteins reduced in level, but we find that the magnitude of NMD itself is reduced. We have used a variety of molecular techniques to determine whether this NMD downregulatory response has a role in neural differentiation and found that NMD downreglation is both necessary and sufficient for this event. Such experiments have also revealed particular messenger mRNAs degraded by NMD that are crucial for the NMD downregulatory response to promote neural differentiation. Our research has implications for intellectual disability cases in humans caused by mutations in an X-linked gene essential for NMD. Patients with mutations in this gene—UPF3B—not only have intellectual disability, but also schizophrenia, autism, and attention-deficit/hyperactivity disorder. Thus, the study of NMD may provide insight into a wide spectrum of cognitive and psychological disorders. We are currently in the process of generating induced-pluripotent stem (iPS) cells from intellectual disability patients with mutations in the UPF3B gene towards this goal.
  • A key quality of stem cells is their ability to switch from a proliferative cell state in which they reproduce themselves to a differentiated cell state that ultimately allows them to carry out the functions of a fully mature cell. Most research on the nature of this switch has focused on the role of proteins that determine whether the genetic material—DNA—generates a copy of it itself in the form of messenger RNA, a process called transcription. In stem cells, such proteins—which are called transcription factors—activate the production of messenger RNAs encoding proteins that promote the proliferative and undifferentiated cell state. They also increase the production of messenger mRNAs that encode inhibitors of differentiation and cell proliferation. The level and profile of such transcription factors are altered in response to signals that trigger stem cells to differentiate. For example, transcription factors that promote the undifferentiated cell state are decreased in level and transcription factors that drive differentiation down a particular lineage are increased in level. While this transcription factor-centric view of stem cells explains some aspects of stem cell biology, it is, in of itself, insufficient to explain many of their behaviors, including both their ability to maintain the stem-like state and to differentiate. We hypothesize that a molecular pathway that complements transcription-base mechanisms in controlling stem cell maintenance vs. differentiation decisions is an RNA decay pathway called nonsense-mediated RNA decay (NMD). Messenger RNA decay is as important as transcription in determining the level of messenger RNA. Signals that trigger increased decay of a given messenger RNA leads to decreased levels of its encoded protein, while signals that trigger the opposite response increase the level of the encoded protein. Our project revolves around two main ideas. First, that NMD promotes the stem-like state by preferentially degrading messenger RNAs that encode differentiation-promoting proteins and proliferation inhibitor proteins. Second, that NMD must be downregulated in magnitude to allow stem cells to differentiate. During the progress period, we obtained substantial evidence for both of these hypotheses. With regard to the first hypothesis, we have used genome-wide approaches to identify hundreds of messenger RNAs that are regulated by NMD in both in vivo (in mice) and in vitro (in cell lines). To determine which of these messenger mRNAs are directly degraded by NMD, we have used a variety of approaches. This work has revealed that NMD preferentially degrades messenger RNAs encoding neural differentiation inhibitors and proliferation inhibitors in neural stem cells. In contrast, very few messenger RNAs encoding pro-stem cell proteins or pro-proliferation proteins are degraded by NMD. Together this provides support for our hypothesis that NMD promotes the stem-like state by shifting the proportion of messenger RNAs in a cell towards promoting an undifferentiated, proliferative cell state. During the progress period, we have obtained considerable evidence that this hypothesis not only applies to mouse stem cells but also human embryonic stem cells. With regard to the second hypothesis, we have found that many proteins that are directly involved in the NMD pathway are downregulated upon differentiation of stem and progenitor cells. Not only are NMD proteins reduced in level, but we find that the magnitude of NMD itself is reduced. We have used a variety of molecular techniques to determine whether this NMD downregulatory response has a role in neural differentiation and found that NMD downreglation is both necessary and sufficient for this event. Such experiments have also revealed particular messenger mRNAs degraded by NMD that are crucial for the NMD downregulatory response to promote neural differentiation. During the progress period, we obtained both experimental and genome-wide data that this applies to human embryonic stem cells. Our research has implications for intellectual disability cases in humans caused by mutations in an X-linked gene essential for NMD. Patients with mutations in this gene—UPF3B—not only have intellectual disability, but also schizophrenia, autism, and attention-deficit/hyperactivity disorder. Thus, the study of NMD may provide insight into a wide spectrum of cognitive and psychological disorders. We are currently in the process of generating and characterizing induced-pluripotent stem (iPS) cells from intellectual disability patients with mutations in the UPF3B gene towards this goal.
Funding Type: 
Basic Biology IV
Grant Number: 
RB4-06079
Investigator: 
ICOC Funds Committed: 
$1 506 420
Disease Focus: 
Huntington's Disease
Neurological Disorders
Parkinson's Disease
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
A major medical problem in CA is the growing population of individuals with neurodegenerative diseases, including Parkinson’s (PD) and Huntington’s (HD) disease. These diseases affect millions of people, sometimes during the prime of their lives, and lead to total incapacitation and ultimately death. No treatment blocks the progression of neurodegeneration. We propose to conduct fundamental studies to understand the basic common disease mechanisms of neurodegenerative disorders to begin to develop effective treatments for these diseases. Our work will target human stem cells made from cells from patients with HD and PD that are developed into the very cells that degenerate in these diseases, striatal neurons and dopamine neurons, respectively. We will use a highly integrated approach with innovative molecular analysis of gene networks that change the states of proteins in these diseases and state-of-the-art imaging technology to visualize living neurons in a culture dish to assess cause and effect relationships between biochemical changes in the cells and their gradual death. Importantly, we will test whether drugs effective in animal model systems are also effective in blocking the disease mechanisms in the human HD and PD neurons. These human preclinical studies could rapidly lead to clinical testing, since some of the drugs have already been examined extensively in humans in the past for treating other disorders and are safe.
Statement of Benefit to California: 
Neurodegenerative diseases, such as Parkinson’s (PD) and Huntington’s disease (HD), are devastating to patients and families and place a major financial burden on California. No treatments effectively block progression of any neurodegenerative disease. A forward-thinking team effort will allow highly experienced investigators in neurodegenerative disease and stem cell research to investigate common basic mechanisms that cause these diseases. Most important is the translational impact of our studies. We will use neurons and astrocytes derived from patient induced pluripotent stem cells to identify novel targets and discover disease-modifying drugs to block the degenerative process. These can be quickly transitioned to testing in preclinical and clinical trials to treat HD and other neurodegenerative diseases. We are building on an existing strong team of California-based investigators to complete the studies. Future benefits to California citizens include: 1) discovery and development of new HD treatments with application to other diseases, such as PD, that affect thousands of Californians, 2) transfer of new technologies and intellectual property to the public realm with resulting IP revenues to the state with possible creation of new biotechnology spin-off companies, and 3) reductions in extensive care-giving and medical costs. We anticipate the return to the State in terms of revenue, health benefits for its Citizens and job creation will be significant.
Progress Report: 
  • The goal of our study is to identify common mechanisms that cause the degeneration of neurons and lead to most neurodegenerative disorders. Our work focuses on the protein homeostasis pathways that are disrupted in many forms of neurodegeneration, including Huntington’s disease (HD) and Parkinson’s disease (PD). In this first reporting period we have made great progress in developing novel methods to probe the autophagy pathway in single cells. This pathway is involved in the turnover of misfolded proteins and dysfunction organelles. Using our novel autophagy assays, we have preliminary data that indicate that the autophagy pathway in neurons from HD patients is modulated compared to healthy controls. We have also begun validating small molecules that activate the autophagy pathway and we are now moving these inducers into human neurons from HD patients to see if they reduce toxicity or other disease related phenotypes. Using pathway analysis we have also identified specific genes within the proteostasis network that are modulated in HD. We are now testing whether modulating these genes in human neurons from HD patients can lead to a reduction in neurodegeneration. In the final part of this study we are investigating whether neurodegenerative diseases, such as HD and PD, share changes in similar genes or pathways, specifically those involved in protein homeostasis. We have now established a human neuron model for PD and have used it to identify potential targets that modulate the disease phenotype via changes in proteostasis. Using the assays, autophagy drugs and pathway analysis described above, we hope to identify overlapping targets that could potentially rescue disease associated phenotypes in both HD and PD.
  • The goal of our study is to identify common mechanisms that cause the degeneration of neurons and lead to most neurodegenerative disorders. Our work focuses on the protein homeostasis pathways that are disrupted in many forms of neurodegeneration, including Huntington’s disease (HD) and Parkinson’s disease (PD). In this reporting period we have made good progress in both developing new assays and novel autophagy compounds and identifying potential genetic targets that could lead to novel therapeutic strategies for patients with HD and PD. We have developed methods to measure the degradation rates of proteins involved in causing neurodegeneration and the decay rates of mitochondria that are disrupted during the progression of these diseases. We are now investigating if and how these degradation rates differ in cells from patients with HD. We have developed novel compounds that can activate the autophagy pathway which is critical for degrading the toxic proteins that cause neurodegeneration. We are now testing if these compounds can increase the survival of neurons derived from iPSCs from patients with HD. Using pathway analysis we have also identified specific genes within the proteostasis network that are modulated in HD. Specifically we have identified deubiquitinating enzymes as modulators of HD induced toxicity and autophagy modulation, potentially indicating that importance of the autophagy pathway in the disease progression. We are also using RNAseq analysis to investigate if neurons derived from iPSCs from PD patients exhibit differences in the genes expressed in the proteostasis network. If we identify key genes we will use our established human neuron model for PD to validate whether these genes modulate the disease phenotype via changes in proteostasis. Ultimately we hope to identify overlapping targets that could potentially rescue disease associated phenotypes in both HD and PD.
Funding Type: 
iPSC Consortia Award
Grant Number: 
RP1-05741
Investigator: 
Type: 
PI
Type: 
Partner-PI
ICOC Funds Committed: 
$300 000
Disease Focus: 
Huntington's Disease
Neurological Disorders
Collaborative Funder: 
NIH
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
Statement of Benefit to California: 
Progress Report: 
  • Huntington’s disease (HD) is a significant neurodegenerative disease with unique genetic features. A CAG expansion in Huntington gene is correlated with severity and onset of sub-clinical and overt clinical symptoms, make it particularly suited to therapeutic development . The single genetic cause offers the opportunity to understand the pathological process triggered in all individuals with a CAG expansion, as emerging evidence suggests effects of the mutation in all cell types, though striatal neurons are most vulnerable to degeneration. Moreover, by virtue of a molecular test for the mutation, a unique opportunity exists to intervene/treat before the onset of overt clinical symptoms utilizing sub-clinical phenotypes emerging in pre-manifest individuals. Since human induced pluripotent stem cells (iPSCs) have the power to make any cell type in the human body, we are utilizing the technology to make patients iPSCs and study the effects of different number of CAG repeats on the neurons we generate from the patient iPS cells. Preliminary studies indicate that CAG length–dependent phenotypes occur at all stages of differentiation, from iPSC through to mature neurons and are likely to occur in non-neuronal cells as well, which can also be investigated using the iPSC that we are creating. The non-integrating technology (avoids integration of potentially deleterious reprogramming factors in the cell DNA) for producing iPSC lines is crucial to obtaining reproducible disease traits from patient cells.
  • The Cedars-Sinai RMI iPSC Core is part of the Huntington’s Disease (HD) consortium. In the past year the iPSC Core has made many new non-integrating induced pluripotent stem (iPSC) cell lines from HD patients with different numbers of CAG repeat expansions. The grant application proposed generation of 18 HD and Control iPSC lines. Instead we are generating 20 iPSC lines. So far we have already generated 17 iPSC lines from individuals with Huntington’s disease and controls (10 HD patients and 7 controls). In order to have the disease trait reproducible across multiple groups, three clonal iPSC lines were generated from each subject. Some of these lines have (or are in process) of expansion for distribution to consortium members. We are now in the process of making the last 3 lines as part of this grant application to generate a HD iPSC repository with total of 20 patient/control lines from subjects with multitude of CAG repeat numbers. Most of these lines have undergone rigorous battery of characterization for pluripotency determination, while some other lines are currently being validated through more characterization tests. Neural stem cell aggregates (EZ spheres) have been generated from few of the patient lines in the Svendsen lab (not supported by this grant). We have also submitted 6 patient iPSC lines to Coriell Cell Repository for larger banking and distribution of these important and resourceful lines to other academic investigators and industry. We strongly believe that this iPSC repository will enormously speed up the process of understanding the disease causing mechanisms in HD patient brain cells as well as discovering novel therapeutics or drugs that may one day be able to treat HD patients.
  • Huntington’s disease (HD) is a fatal neurodegenerative condition with no current treatment. This significant neurodegenerative disease, whose relatively simple and unique known genetic cause, a CAG expansion in the HD gene correlated with severity and onset of clinical symptoms, makes it particularly suited to therapeutic development. The Huntington’s disease (HD) iPS cell consortium, funded with NIH and CIRM support, brings together leading groups in stem cell and HD research to establish whether newly created iPS cell lines show HD related (i.e., CAG length-dependent) phenotypes. Human iPSC technology can be used to generate specific neuronal and glial cell types, permitting investigation of the effects of the genetic lesion in the susceptible human cell types in the context of HD. The monogenic nature of HD and the existence of allelic series of iPSCs with a range of CAG repeat lengths confer tremendous power to model HD. Through CIRM support this consortium has capitalized on new technologies to use non-integrating approaches for reprogramming and promising phenotypes in current HD iPS lines to develop robust and validated assays for drug development for HD.
  • Significant progress has been made through CIRM-funded support of this proposal. Notably, the Cedars-Sinai Medical Center’s Board of iPSC core housed in the Board of Governors Regenerative Medicine Institute has taken skin cells from HD patients with a wide range of CAG repeats (43 to 180), and unaffected healthy controls (21 to 33) and reprogrammed then to pluripotency using the latest non-integrating iPS cell technology. So far 18 well-characterized patient-specific iPSC lines have been generated. These new iPSC lines have been rigorously characterized by our iPSC core and available to HD research community throughout California and the world. The Svendsen lab and the other HD iPSC Consortium laboratories have already used these lines and differentiated into relevant neuronal cell types to study the disease mechanisms as well develop new treatment.
  • These cell lines will be an essential resource for academic groups and pharmaceutical companies for studying pathogenesis and for testing experimental therapeutics for HD. The ultimate goal is to develop and validate methods and assays using >96 well format for CAG repeat length-dependent phenotypes that are amenable to high content/throughput screening methods. Assays developed using these patient-specific iPSC lines and their neuronal derivatives will allow academic groups and pharmaceutical companies to study pathogenesis and test experimental therapeutics for HD, which will significantly advance both our understanding of HD and potential treatments for this devastating and currently untreatable disease.

Pages