Neurological Disorders

Coding Dimension ID: 
303
Coding Dimension path name: 
Neurological Disorders
Funding Type: 
Early Translational IV
Grant Number: 
TR4-06747
Investigator: 
Type: 
Partner-PI
ICOC Funds Committed: 
$1 824 719
Disease Focus: 
Autism
Neurological Disorders
Rett's Syndrome
Pediatrics
Collaborative Funder: 
NIH
Stem Cell Use: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
Autism spectrum disorders (ASD) are complex neurodevelopmental diseases that affect about 1% of children in the United States. Such diseases are mainly characterized by deficits in verbal communication, impaired social interaction, and limited and repetitive interests and behavior. The causes and best treatments remain uncertain. One of the major impediments to ASD research is the lack of relevant human disease models. Reprogramming of somatic cells to a pluripotent state (induced pluripotent stem cells, iPSCs) has been accomplished using human cells. Isogenic pluripotent cells are attractive from the prospective to understanding complex diseases, such as ASD. The main goal of this project is to accelerate drug discovery to treat ASD using astrocytes generated from human iPSC. The model recapitulates early stages of ASD and represents a promising cellular tool for drug screening, diagnosis and personalized treatment. By testing whether drugs have differential effects in iPSC-derived astrocytes, we can begin to unravel how genetic variation in ASD dictates responses to different drugs. Insights that emerge from our studies may drive the development of new therapeutic interventions for ASD. They may also illuminate possible differences in drug responsiveness in different patients and potentially define a molecular signature resulting from ASD variants, which could predict the onset of disease before symptoms are seen.
Statement of Benefit to California: 
Autism spectrum disorders, including Rett syndrome, Angelman syndrome, Timothy syndrome, Fragile X syndrome, Tuberous sclerosis, Asperger syndrome or childhood disintegrative disorder, affect many Californian children. In the absence of a functionally effective cure or early diagnostic tool, the cost of caring for patients with such pediatric diseases is high, in addition to a major personal and family impact since childhood. The strikingly high prevalence of ASD, dramatically increasing over the past years, has led to the emotional view that ASD can be traced to a single source, such as vaccine, preservatives or other environmental factors. Such perspective has a negative impact on science and society in general. Our major goal is to develop a drug-screening platform to rescue deficiencies showed from brain cells derived from induced pluripotent stem cells generated from patients with ASD. If successful, our model will bring novel insights on the dentification of potential diagnostics for early detection of ASD risk, or ability to predict severity of particular symptoms. In addition, the development of this type of pharmacological therapeutic approach in California will serve as an important proof of principle and stimulate the formation of businesses that seek to develop these types of therapies (providing banks of inducible pluripotent stem cells) in California with consequent economic benefit.
Progress Report: 
  • The progress in our research regarding the role of human astrocytes in Rett syndrome (RTT) showed us that RTT-derived astrocyte display several phenotypes that illustrate its differences compared to healthy control astrocytes (WT). RTT astrocytes are unable to propagate calcium wave when mechanically stimulated . In addition to that, when placed in medium that contains glutamate, the natural uptake and buffering of this compound is impaired in RTT-derived astrocytes. Furthermore, when WT neurons are placed on top of RTT astrocytes, there is a clear the negative effect of these cells in neuronal homeostasis. Remarkably, WT astrocytes are able to rescue RTT neuronal phenotypes when in direct contact, illustrating the important role that astrocytes have in maintaining neuronal viability and maturation. Several mis-regulation in gene expression pathways indicated those phenotypes, both in calcium and glutamate dependent genes. Strikingly, further genetic analysis led us to identify several mis-regulations in pro-inflammatory cytokines. Multiplex ELISA platforms also pointed towards a difference in cytokine secretion between WT and RTT syndrome astrocytes, being the RTT cells illustrative of a pro-inflammatory scenario. We have define one of these secreted cytokines as our primary read out for the HT-screening. We are now facing a transportation issue with very sensitive cells, but have an innovative plan to make it to work and also get some quick results that may have clinical relevance.
Funding Type: 
Early Translational IV
Grant Number: 
TR4-06847
Investigator: 
Institution: 
Type: 
PI
ICOC Funds Committed: 
$1 333 795
Disease Focus: 
Huntington's Disease
Neurological Disorders
Stem Cell Use: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
The long-term objective of this project is to develop a drug to treat Huntington’s disease (HD), the most common inherited neurodegenerative disorder. Characterized by involuntary movements, personality changes and dementia, HD is a devastatingly progressive disease that results in death 10–20 years after disease onset and diagnosis. No therapy presently exists for HD; therefore, this project is highly innovative and ultimately aims to deliver something transformative for the HD patient population. The specific goal of the proposed research will be to achieve preclinical proof-of-concept with a novel small molecule that binds to and ameliorates the neurotoxicity of the mutant huntingtin (mHtt) protein that causes HD. Rationale for development of such compounds comes from previous research that found that mHtt assumes a shape that is selectively toxic to neurons, and that small molecules that disrupt this shape can reduce mHtt’s toxicity in primary neurons. Critical to the proposed studies will be assays that employ human striatal neurons derived from adult and juvenile HD patients and generated with induced pluripotent stem cell (iPSC) technology. These HD i-neurons display many characteristics that are also observed in striatal neurons of HD patients, including reduced survival times. They provide the most genetically precise preclinical system available to test for both drug efficacy and safety.
Statement of Benefit to California: 
The long-term objective of this project is to develop a first-in-class, disease-modifying drug to treat Huntington’s disease (HD), a devastatingly progressive genetic disorder that results in death 10–20 years after disease onset and diagnosis. No therapy presently exists for HD; therefore, this highly innovative project aims to deliver a medical breakthrough that will provide significant benefit for California’s estimated > 2000 HD patients and the family members, friends and medical system that care for them. The proposed research will be performed at a biotechnology startup, a leading academic research center and two contract research organizations, all of which are California-based. The work will over time involve more than 10 California scientists, thereby helping to employ tax-paying citizens and maintain the State’s advanced technical base. Finally, an effective, proprietary drug for the treatment of HD is expected to be highly valuable and to attract favorable financial terms upon out-licensing for development and commercialization. These revenues would flow to the California companies and institutions (including CIRM) that would have a stake in the proceeds.
Progress Report: 
  • The long-term objective for this project was to develop a first-in-class, disease-modifying drug to treat Huntington's disease (HD). This drug would comprise a small molecule that binds to and ameliorates the neurotoxicity of the mutant huntingtin protein (mHtt) that causes HD.
  • The goal of the research conducted under the CIRM Award was to demonstrate development candidate feasibility in vitro with a novel small molecule mHtt detoxifier early lead compound that is potent and efficacious in neurons from HD patients generated using stem cell technology (HD i-neurons) as well as suitable for use in mice as experimental models for HD.
  • The original project strategy was to 1) acquire or synthesize new samples of compounds identified as potential mHtt detoxifiers in the screening campaign conducted 7 years ago; 2) establish or re-establish the cell-free and cultured neuron biological assays needed to characterize potential small molecule mHtt detoxifiers (this work was carried out in the laboratory of our collaborator, Dr. Steven Finkbeiner of the J. David Gladstone Institutes); 3) acquire or synthesize new/novel analogs of the initial hits; 4) test new/novel compounds for activity in a cell-free assay for potential mHtt detoxifier activity; 5) test hits for efficacy in HD and non-HD i-neurons; and 6) profile the in vitro and in vivo pharmacokinetics and absorption, distribution, metabolism and elimination (PK/ADME) profiles of compounds that displayed selective neuroprotection toward HD i-neurons.
  • Specific achievements of the first year of the Project include:
  • • Acquiring 205 previously identified hits or analogs thereof from commercial sources;
  • • Synthesizing an additional 84 novel, designed analogs;
  • • Generating the reagents, re-establishing and implementing the screening assay;
  • • Testing all compounds acquired or synthesized in the screening assay;
  • • Establishing a counterscreen for false positives in the screening assay;
  • • Preliminary screening 48 previously reported hits in the counterscreen;
  • • Testing 14 previously or newly identified hits side-by-side in full concentration-response assays in both the screening and counterscreening assays;
  • • Profiling 11 diverse hits in in vitro PK/ADME assays;
  • • Testing 17 compounds for their ability to ameliorate neurotoxicity in a rodent primary neuron model; and
  • • Preliminary testing 2 previously identified hits in human HD i-neurons.
  • Unfortunately and surprisingly, we observed that all compounds displayed essentially identical profiles in full concentration-response studies in both the screening and counterscreening assays. We interpret this result to indicate that these compounds and structurally related compounds that we considered to be most promising and tested do not in fact bind to mHtt, i.e., they are all false positives. Since no valid starting points exist for continued work, the Project will be terminated after the first award period.
Funding Type: 
Research Leadership 10
Grant Number: 
LA1_C10-06535
Investigator: 
Type: 
PI
ICOC Funds Committed: 
$6 718 471
Disease Focus: 
Parkinson's Disease
Neurological Disorders
oldStatus: 
Closed
Public Abstract: 
Protection and cell repair strategies for neurodegenerative diseases such as Parkinson’s Disease (“PD”) depend on well-characterized candidate human stem cells that are robust and show promise for generating the neurons of interest following stimulation of inherent brain stem cells or after cell transplantation. These stem cells must also be expandable in the culture dish without unwanted growth and differentiation into cancer cells, they must survive the transplantation process or, if endogenous brain stem cells are stimulated, they should insinuate themselves in established brain networks and hopefully ameliorate the disease course. The studies proposed for the CIRM Research Leadership Award have three major components that will help better understand the importance and uses of stem cells for the treatment of PD, and at the same time get a better insight into their role in disease repair and causation. First, we will characterize adult human neural stem cells from control and PD brain specimens to distinguish their genetic signatures and physiological properties of these cells. This will allow us to determine if there are stem cells that are pathological and fail in their supportive role in repairing the nervous system. Next, we will investigate a completely novel disease initiation and propagation mechanism, based on the concept that secreted vesicles from cells (also known as “exosomes”) containing a PD-associated protein, alpha-synuclein, propagate from cell-to cell. Our hypothesis is that these exosomes carry toxic forms of alpha-synuclein from cell to cell in the brain, thereby accounting disease spread. They may do the same with cells transplanted in patients with PD, thereby causing these newly transplanted cells designed to cure the disease, to be affected by the same process that causes the disease itself. This is a bottleneck that needs to be overcome for neurotransplantation to take its place as a standard treatment for PD. Our studies will address disease-associated toxicity of exosomal transmission of aggregated proteins in human neural precursor stem cells. Importantly, exosomes in spinal fluid or other peripheral tissues such as blood might represent a potentially early and reliable disease biomarker as well as a new target for molecular therapies aimed at blocking transcellular transmission of PD-associated molecules. Finally, we have chosen pre-clinical models with α-synucleinopathies to test human neural precursor stem cells as cell replacement donors for PD as well as interrogate, for the first time, their potential susceptibility to PD and contribution to disease transmission. These studies will provide a new standard of analysis of human neural precursor cells at risk for and contributing to pathology (so-called “stem cell pathologies”) in PD and other neurodegenerative diseases via transmission of altered or toxic proteins from one cell to another.
Statement of Benefit to California: 
According to the National Institute of Health, Parkinson’s disease (PD) is the second most common neurodegenerative disease in California and the United States (one in 100 people over 60 is affected) second only to Alzheimer’s Disease. Millions of Americans are challenged by PD, and according to the Parkinson’s Action Network, every 9 minutes a new case of PD is diagnosed. The cause of the majority of idiopathic PD is unknown. Identified genetic factors are responsible for less than 5% of cases and environmental factors such as pesticides and industrial toxins have been repeatedly linked to the disease. However, the vast majority of PD is thought to be etiologically multi-factorial, resulting from both genetic and environmental risk factors. Important events leading to PD probably occur in early or mid adult life. According to the Michael J. Fox Foundation, “…there is no objective test, or reliable biomarker for PD, so rate of misdiagnosis is high, and there is a seriously pressing need to develop better early detection approaches to be able to attempt disease-halting protocols at a non-symptomatic, so-called prodromal stage.” The proposed innovative and transformative research program will have a major direct impact for patients who live in California and suffer from PD and other related neurodegenerative diseases. If these high-risk high-pay-off studies are deemed successful, this new program will have tackled major culprits in the PD field. They could lead to a better understanding of the role of stem cells in health and disease. Furthermore they could greatly advance our knowledge of how the disease spreads throughout the brain which in turn could lead to entire new strategies to halt disease progression. In a similar manner these studies could lead to ways to prevent the disease from spreading to cells that have been transplanted to the brain of Parkinson’s patients in an attempt to cure their disease. This is critical for neurotransplantation to thrive as a therapeutic approach to treating PD. In addition, if we extend the cell-to-cell transmissible disease hypothesis to other neurodegenerative diseases, and cancer, the studies proposed here represent a new diagnostic approach and therapeutic targets for many diseases affecting Californians and humankind in general. This CIRM Research Leadership Award will not only have an enormous impact on understanding the cause of PD and developing new therapeutic strategies using stem cells and its technologies, this award will also be the foundation of creating a new Center for Translational Stem Cell Research within California. This could lead to further growth at the academic level and for the biotechnology industry, particularly in the area regenerative medicine.
Funding Type: 
Tissue Collection for Disease Modeling
Grant Number: 
IT1-06589
Investigator: 
ICOC Funds Committed: 
$643 693
Disease Focus: 
Alzheimer's Disease
Neurological Disorders
oldStatus: 
Active
Public Abstract: 
Alzheimer's Disease (AD), the most common form of dementia in the elderly, affects over 5 million Americans. There are no treatments to slow progression or prevent AD. This reflects limitations in knowledge of mechanisms underlying AD, and in tools and models for early development and testing of treatment. Genetic breakthroughs related to early onset AD led to initial treatment targets related to a protein called amyloid, but clinical trials have been negative. Extensive research links genetic risk to AD, even when the age at onset is after the age of 65. AD affects the brain alone, therefore studying authentic nerve cells in the laboratory should provide the clearest insights into mechanisms and targets for treatment. This has recently become feasible due to advances in programming skin cells into stem cells and then growing (differentiating) them into nerve cells. In this project we will obtain skin biopsies from a total of 220 people with AD and 120 controls, who are extensively studied at the [REDACTED] AD Research Center. These studies include detailed genetic (DNA) analysis, which will allow genetic risks to be mapped onto reprogrammed cells. These derived cells that preserve the genetic background of the person who donated the skin biopsy will be made available to the research community, and have the promise to accelerate studies of mechanisms of disease, understanding genetic risk, new treatment targets, and screening of new treatments for this devastating brain disorder.
Statement of Benefit to California: 
The proposed project will provide a unique and valuable research resource, which will be stored and managed in California. This resource will consist of skin cells or similar biological samples, suitable for reprogramming, obtained from well-characterized patients with Alzheimer's Disease and cognitively healthy elderly controls. Its immediate impact will be to benefit CIRM-funded researchers as well as the greater research community, by providing them access to critical tools to study, namely nerve cells that can be grown in a dish (cultured) that retain the genetic background of the skin cell donors. This technology to develop and reprogram cells into nerve cells or other cell types results from breakthroughs in stem cell research, many of which were developed using CIRM funding. Alzheimer's Disease affects over 600,000 Californians, and lacks effective treatment. Research into mechanisms of disease, identifying treatment targets, and screening novel drugs will be greatly improved and accelerated through the availability of the resources developed by this project, which could have a major impact on the heath of Californians. California is home to world class academic and private research institutes, Biotechnology and Pharmaceutical Companies, many of whom are already engaged in AD research. This project could provide them with tools to make research breakthroughs and pioneer the development of novel treatments for AD.
Funding Type: 
Tissue Collection for Disease Modeling
Grant Number: 
IT1-06611
Investigator: 
ICOC Funds Committed: 
$874 135
Disease Focus: 
Neurological Disorders
Pediatrics
Cell Line Generation: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
Most children who go to the clinic with brain disorders have symptoms combining autism, cerebral palsy and epilepsy, suggesting underlying and shared mechanisms of brain dysfunction in these conditions. Such disorders affect 4-6% of the population with life-long disease, and account for about 10% of health care expenditures in the US. Genetic studies have pointed to frequent low-penetrant or low-frequency genetic alterations, but there is no clear way to use this information to make gene-specific diagnosis, to predict short- or long-term prognosis or to develop disease-specific therapy. We propose to recruit about 500 patients with these disorders mostly from our Children’s Hospital, through a dedicated on-site collaborative approach. Extracting from existing medical records, taking advantage of years of experience in recruitment and stem cell generation, and already existing or planned whole exome or genome sequencing on most patients, we propose a safe, anonymous database linked to meaningful biological, medical, radiographic and genetic data. Because team members will be at the hospital, we can adjust future disease-specific recruitment goals depending upon scientific priorities, and re-contact patients if necessary. The clinical data, coupled with the proposed hiPSC lines, represents a platform for cell-based disease investigation and therapeutic discovery, with benefits to the children of California.
Statement of Benefit to California: 
This project can benefit Californians both in financial and non-financial terms. NeuroDevelopmental Disabilities (NDDs) affect 4-6% of Californians, create a huge disease burden estimated to account for 10% of California health care costs, and have no definitive treatments. Because we cannot study brain tissue directly, it is extraordinarily difficult to arrive at a specific diagnosis for affected children, so doctors are left ordering costly and low-yield tests, which limit prognostic information, counseling, prevention strategies, quality of life, and impede initiation of potentially beneficial therapies. Easily obtainable skin cells from Californians will be the basis of this project, so the study results will have maximal relevance to our own population. By combining “disease in a dish” platforms with cutting edge genomics, we can improve diagnosis and treatments for Californians and their families suffering from neurodevelopmental disorders. Additionally, this project, more than others, will help Californians financially because: 1] The ongoing evaluations of this group of patients utilizes medical diagnostics and genetic sequencing tools developed and manufactured in California, increasing our state revenues. 2] The strategy to develop “disease in a dish” projects centered on Neurodevelopmental Disabilities supports opportunities for ongoing efforts of California-based pharmaceutical and life sciences companies to leverage these discoveries for future therapies.
Progress Report: 
  • Childhood Neurodevelopmental Disabilities (NDDs) affect approximately 12% of children in the US, and account for >5% of total healthcare costs. The ability to use induced pluripotent stem cells (iPSCs) to incorporate characteristics of patient cells into models that predict patient disease characteristics and clinical outcomes can have a major impact on care for the children with these conditions. We have proposed to ascertain pediatric patient samples which represent a range of NDDs including Autism Spectrum Disorders (ASD), Intellectual Disability (ID), Cerebral Palsy (CP) and Epilepsy for iPSC banking. These disorders were chosen because they have high heritability rates but remain genetically complex, and therefore, will greatly benefit from further in-depth study using iPSCs
  • To date we have enrolled 128 patients (72 affected patients, 56 healthy control patients) representing a range of racial and ethnic backgrounds (39% White, 2% Black, 2% Asian, 57% Arabic/Middle Eastern) and both genders (52% Male, 48% Female). The patients in the affected patient group carry a primary diagnosis of one of the NDD disease categories (19% Autism Spectrum Disorder, 44% Epilepsy, 28% Intellectual Disability, 9% Cerebral Palsy). Approximately half of the patients are comorbid for one or more of the other disorders. The control patients consist of healthy family members of the affected patient group. Since family members share many common DNA features this will help us better identify and hone in on disease causing variants more effectively.
  • iPSC lines have not yet been returned from these patients so there are no research results to report at this time. We are continuing with our recruitment efforts to reach our goal of 450 affected patients and 100 healthy controls.
Funding Type: 
Tissue Collection for Disease Modeling
Grant Number: 
IT1-06571
Investigator: 
Institution: 
Type: 
PI
ICOC Funds Committed: 
$530 265
Disease Focus: 
Autism
Neurological Disorders
Pediatrics
oldStatus: 
Active
Public Abstract: 
Autism spectrum disorders (ASD) are a family of disabling disorders of the developing brain that affect about 1% of the population. Studying the biology of these conditions has been difficult as they have been challenging to represent in animal models. The core symptoms of ASD, including deficits in social communication, imagination and curiosity are intrinsically human and difficult to model in organisms commonly studied in the laboratory. Ideally, the mechanisms underlying ASDs need to be studied in human patients and in their cells. Since they maintain the genetic profile of an individual, studying neurons derived from human induced pluripotent stem cells (hiPSC) is attractive as a method for studying neurons from ASD patients. hiPSC based studies of ASDs hold promise to uncover deficits in cellular development and function, to evaluate susceptibility to environmental insults, and for screening of novel therapeutics. In this project our goal is to contribute blood and skin samples for hiPSC research from 200 children with an ASD and 100 control subjects to the CIRM repository. To maximize the value of the collected tissue, all subjects will have undergone comprehensive clinical evaluation of their ASD. The cells collected through this project will be made available to the wider research community and should result in a resource that will enable research on hiPSC-derived neurons on a scale and depth that is unmatched anywhere else in the world.
Statement of Benefit to California: 
The prevalence and impact of Autism Spectrum Disorders (ASD) in California is staggering. California has experienced 13% new ASD cases each year since 2002. ASD are a highly heritable family of complex neurodevelopmental conditions affecting the brain, with core symptoms of impaired social skills, language, behavior and intellectual abilities. The majority with an ASD experience lifelong disability that requires intensive parental, school, and social support. The result has been a 12-fold increase in the number of people receiving ASD services in California since 1987, with over 50,000 people with ASDs served by developmental and regional centers. Within the school system, the number of special education students with ASD in California has more than tripled between 2002 and 2010. The economic, social and psychological toll is enormous. It is critical to both prevent and develop effective treatments for ASD. While rare genetic mutations account for a minority of cases, our understanding of idiopathic ASD (>85% of cases) is extremely limited. Mechanisms underlying ASDs need to be studied in human patients and in cells that share the genetic background of these patients. Since they maintain the complete genetic background of an individual, hiPSCs represent a very practical and direct method for investigating neurons from ASD patients to uncover cellular deficits in their development and function, and for screening of novel therapeutics.
Progress Report: 
  • Autism Spectrum Disorders (ASD) have a worldwide prevalence of 1% (>1.5 million in the US) and a lifetime cost per affected individual of $3.2M. ASDs are amongst the most heritable of psychiatric disorders. Genome Wide Association studies utilizing samples in the thousands provide only weak evidence for common allele risk effects; positive findings rarely replicate, and genetic effects sizes are small (odds ratios of ~1.1). In contrast, evidence to date for risk or causation conferred by rare variation, particularly rare copy number variants, is very strong. Pathway analyses of the rare mutations implicated and genome-wide transcriptome analysis of brain and blood tissue provide converging evidence that neural-related pathways are central to the development of autism. Core impairments of ASDs, such as imagination and curiosity about the environment, cannot be modeled well in other organisms. The mechanisms underlying ASDs need to be studied in humans and cells that share the genetic background of the patients, such as neurons from patients derived from induced pluripotent cell lines (iPSC).
  • Our goal was to provide the CIRM repository with samples from 200 well characterized individuals with an ASD and 100 demographically matched controls. To date we have enrolled 63 participants.
Funding Type: 
New Faculty Physician Scientist
Grant Number: 
RN3-06510
Investigator: 
Institution: 
Type: 
PI
ICOC Funds Committed: 
$2 800 536
Disease Focus: 
Neurological Disorders
Brain Cancer
Cancer
Stem Cell Use: 
Adult Stem Cell
Embryonic Stem Cell
oldStatus: 
Active
Public Abstract: 
Chemotherapy for cancer is often life saving, but it also causes a debilitating syndrome of impaired cognition characterized by deficits in attention, concentration, information processing speed, multitasking and memory. As a result, many cancer survivors find themselves unable to return to work or function in their lives as they had before their cancer therapy. These cognitive deficits, colloquially known as "chemobrain" or "chemofog," are long-lasting and sometimes irreversible. For example, breast cancer survivors treated with chemotherapy suffer from cognitive disability even 20 years later. These cognitive problems occur because chemotherapy damages the neural stem and precursor cells necessary for the health of the brain's infrastructure, called white matter. We have discovered a powerful way to recruit the stem/precursor cells required for white matter repair that depends on an interaction between the electrical cells of the brain, neurons, and these white matter stem/precursor cells. In this project, we will determine the key molecules responsible for the regenerative influence of neurons on these white matter stem cells and will develop that molecule (or molecules) into a drug to treat chemotherapy-induced cognitive dysfunction. If successful, this will result in the first effective treatment for a disease that affects at least a million cancer survivors in California.
Statement of Benefit to California: 
Approximately 100,000 Californians are diagnosed with cancer each year, and the majority of these people require chemotherapy. While cancer chemotherapy is often life saving, it also causes a debilitating neurocognitive syndrome characterized by impaired attention, concentration, information processing speed, multitasking and memory. As a result, many cancer survivors find themselves unable to return to work or function in their lives as they had before their cancer therapy. These cognitive deficits, colloquially known as "chemobrain" or "chemofog" are long-lasting; for example, cognitive deficits have been demonstrated in breast cancer survivors treated with chemotherapy even 20 years later. With increasing cancer survival rates, the number of people living with cognitive disability from chemotherapy is growing and includes well over a million Californians. Presently, there is no known therapy for chemotherapy-induced cognitive decline, and physicians can only offer symptomatic treatment with medications such as psychostimulants. The underlying cause of "chemobrain" is damage to neural stem and precursor cell populations. The proposed project may result in an effective regenerative strategy to restore damaged neural precursor cell populations and ameliorate or cure the cognitive syndrome caused by chemotherapy. The benefit to California in terms of improved quality of life for cancer survivors and restored occupational productivity would be immeasurable.
Progress Report: 
  • Cancer chemotherapy can be lifesaving but frequently results in long-term cognitive deficits. This project seeks to establish a regenerative strategy for chemotherapy-induced cognitive dysfunction by harnessing the potential of the interactions between active neurons and glial precursor cells that promote myelin plasticity in the healthy brain. In the first year of this award, we have made on-track progress towards establishing a working experimental model system of chemotherapy-induced neurotoxicity that faithfully models the human disease both in terms of the cellular damage as well as functional deficits in cognition. We have also been able to identify several therapeutic candidate molecules that we will be studying in the coming years of the project to ascertain which of these candidates are sufficient to promote OPC population repletion and neuro-regeneration after chemotherapy exposure.
Funding Type: 
Basic Biology IV
Grant Number: 
RB4-06093
Investigator: 
Institution: 
Type: 
PI
ICOC Funds Committed: 
$1 264 248
Disease Focus: 
Neurological Disorders
Pediatrics
Stem Cell Use: 
Adult Stem Cell
Embryonic Stem Cell
oldStatus: 
Active
Public Abstract: 
White matter is the infrastructure of the brain, providing conduits for communication between neural regions. White matter continues to mature from birth until early adulthood, particularly in regions of brain critical for higher cognitive functions. However, the precise timing of white matter maturation in the various neural circuits is not well described, and the mechanisms controlling white matter developmental/maturation are poorly understood. White matter is conceptually like wires and their insulating sheath is a substance called myelin. It is clear that neural stem and precursor cells contribute significantly to white matter maturation by forming the cells that generate myelin. In the proposed experiments, we will map the precise timing of myelination in the human brain and changes in the populations of neural precursor cells that generate myelin from birth to adulthood and define mechanisms that govern the process of white matter maturation. The resulting findings about how white matter develops may provide insights for white matter regeneration to aid in therapy for diseases such as cerebral palsy, multiple sclerosis and chemotherapy-induced cognitive dysfunction.
Statement of Benefit to California: 
Diseases of white matter account for significant neurological morbidity in both children and adults in California. Understanding the cellular and molecular mechanisms that govern white matter development the may unlock clues to the regenerative potential of endogeneous stem and precursor cells in the childhood and adult brain. Although the brain continues robust white matter development throughout childhood, adolescence and young adulthood, relatively little is known about the mechanisms that orchestrate proliferation, differentiation and functional maturation of neural stem and precursor cells to generate myelin-forming oligodendrocytes during postnatal brain development. In the present proposal, we will define how white matter precursor cell populations vary with age throughout the brain and determine if and how neuronal activity instructs neural stem and precursor cell contributions to human white matter myelin maturation. Disruption of white matter myelination is implicated in a range of neurological diseases, including cerebral palsy, multiple sclerosis, cognitive dysfunction from chemotherapy exposure, attention deficit and hyperactivity disorder (ADHD) and even psychiatric diseases such as schizophrenia. The results of these studies have the potential to elucidate clues to white matter regeneration that may benefit hundreds of thousands of Californians.
Progress Report: 
  • Formation of the insulated fiber infrastructure of the human brain (called "myelin") depends upon the function of a precursor cell type called "oligodendrocyte precursor cells (OPC)". The first Aim of this study seeks to determine how OPCs differ from each other in different regions of the brain, and over different ages. Understanding this heterogeneity is important as we explore the regenerative capacity of this class of precursor cells. We have, in the past year, isolated OPCs from various regions of the human brain from individuals at various ages and are studying the molecular characteristics of these precursor cells at the single cell level in order to define distinct OPC subpopulations. We have also begun to study the functional capabilities of OPCs isolated from different brain regions. The second Aim of this study seeks to understand how interactions between electrically active neurons and OPCs affect OPC function and myelin formation. We have found that when mouse motor cortex neurons "fire" signals in such a way as to elicit a complex motor behavior, much as would happen when one practices a motor task, OPCs within that circuit respond and myelination increases. This affects the function of that circuit in a lasting way. These results indicate that neurons and OPCs interact in important ways to modulate myelination and supports the hypothesis that OPC function may play a role in learning.
  • Sending neural impulses quickly down a long nerve fiber requires a specialized type of insulation called myelin, made by a cell called an oligodendrocyte that wraps itself around neuronal projections. Myelin-insulated nerve fibers make up the “white matter” of the brain, the vast tracts that connect one information-processing area of the brain to another. We have now shown that neuronal activity prompts oligodendrocyte precursor cell (OPC) proliferation and differentiation into myelin-forming oligodendrocytes. Neuronal activity also causes an increase in the thickness of the myelin sheaths within the active neural circuit, making signal transmission along the neural fiber more efficient. This was found to be true in both juvenile and in adult brains Metaphorically, it’s much like a system for improving traffic flow along roadways that are heavily used. And as with a transportation system, improving the routes that are most productive makes the whole system more efficient.
  • Interestingly, some parts of the neural circuit studied showed evidence of myelin-forming precursor cell response to neuronal activity, while other parts of the active circuit did not. In related work, we are making progress towards understanding how OPCs differ in various regions of the brain, examining the molecular heterogeneity of human OPCs at a single cell level.
Funding Type: 
Basic Biology IV
Grant Number: 
RB4-06045
Investigator: 
Name: 
Type: 
PI
ICOC Funds Committed: 
$1 393 200
Disease Focus: 
Amyotrophic Lateral Sclerosis
Neurological Disorders
Dementia
Neurological Disorders
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
Amyotrophic lateral sclerosis (ALS) is an idiopathic adult-onset degenerative disease characterized by progressive weakness from loss of upper and lower motor neurons. Onset is insidious, progression is essentially linear, and death occurs within 3-5 years in 90% of patients. In the US, 5,000 deaths occur per year and in the world, 100,000. In October, 2011, the causative gene defect in a long sought after locus on chromosome 9 for ALS, frontotemporal dementia (FTD) and overlap ALS-FTD was identified to be a expansion of a hexanucleotide repeat in the uncharacterized C9ORF72 gene. The goal of the proposed research is to generate human stem cell models from cells derived from ALS patients with the C9ORF72 expanded repeats and relevant control cells using genome-editing technology. We will also generate a stem cell model expressing the repeat independent of the C9ORF72 gene to study if the repeat alone is causing neural defects. Using advanced genome technologies, biochemical and cellular approaches, we will study the molecular pathways affected in motor neurons derived from these stem cell models. Finally, we will use innovative technologies to rescue the abnormal phenotypes that arise from the expanded repeat in human motor neurons. Completion of the proposed research is expected to transform our understanding of the regulatory and pathogenetic mechanisms underlying ALS and FTD, and establish therapeutic options for these debilitating diseases.
Statement of Benefit to California: 
Our research provides the foundation for decoding the mechanisms that underlie the single most frequent genetic mutation found to contribute to both ALS and FTD, debilitating neurological diseases that impact many Californians. In California, the expected prevalence of ALS (the number of total existing cases) is 2,200 to 3,000 cases at any one time, and the incidence is 750-1,100 new cases each year. The number of FTD cases is five times as many. Our research has and will continue to serve as a basis for understanding deviations from normal and disease patient neuronal cells, enabling us to make inroards to understanding neurological disease modeling using neurons differentiated from reprogammed patient-specific lines. Such disease modeling will have great potential for California health care patients, pharmaceutical and biotechnology industries in terms of improved human models for drug discovery and toxicology testing. Our improved knowledge base will support our efforts as well as other Californian researchers to study stem cell models of neurological disease and design new diagnostics and treatments, thereby maintaining California's position as a leader in clinical research.
Progress Report: 
  • Expanded hexanucleotide repeats in the C9ORF72 gene were identified in Oct 2011 as a cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), thus identifying the single most frequent genetic cause of each and connecting them to repeat expansion disease. We are developing stem cell disease models to enable key hypotheses of pathogenesis and new interventions to be tested. We have successfully engineered stem cell models to analyze the effects of C9ORF72 mutations, and have differentiated these stem cell models into motor neurons which enabled us to conduct transcriptomic and biochemical studies. In addition, we have utilized antisense-oligonucleotides (ASOs) from ISIS Pharmaceuticals to deplete mutant C9ORF72 in motor neurons. We expect our efforts to provide mechanistic insights and a potential therapy in human cells.
  • In this period, we have generated C9ORF72 induced pluripotent stem cells and differentiated them into mature motor neurons. We have found that expression profiles from previous reports are largely irreproducible, suggesting there is substantial heterogeneity in the cells from patients. To address the issue of cell-type specificity, we have developed cell-type specific reporters in these lines and have generated astrocytes and motor neurons.
Funding Type: 
Basic Biology IV
Grant Number: 
RB4-05886
Investigator: 
Institution: 
Type: 
PI
ICOC Funds Committed: 
$1 392 426
Disease Focus: 
Neurological Disorders
Stem Cell Use: 
Directly Reprogrammed Cell
oldStatus: 
Active
Public Abstract: 
Many human diseases and injuries that affect the brain and nervous system could potentially be treated by either introducing healthy neurons or persuading the cells that normally provide supporting functions to become functioning neurons. A number of barriers must be traversed to bring these goals to practical therapies. Recently our laboratory and others have found ways of converting different human cell types to functioning neurons. Surprisingly, two routes for the production of neurons have been discovered. Our preliminary evidence indicates that these two routes are likely to work together and therefore more effective ways of producing neurons can likely be provided by understanding these two routes, which is one aim of this application. Another barrier to effective treatment of human neurologic diseases has been the inability to develop good models of human neurologic disease due to inability to sample tissues from patients with these diseases. Hence we will understand ways of making neurons from blood cells and other cells, which can be easily obtained from patients with little or no risk. Our third goal will be to understand how different types of neurons can be produced from patient cells. We would also like to understand the barriers and check points that keep one type of cell from becoming another another type of cell. Understanding these mysterious processes could help provide new sources of human cells for replacement therapies and disease models.
Statement of Benefit to California: 
The state of California and its citizens are likely to benefit from the work described in this proposal by the development of more accurate models for the testing of drugs and new means of treatment of human neurologic diseases. Presently these diseases are among the most common afflicting Californians, as well as others and will become more common in an aging population. Common and devastating diseases such as Alzheimer’s, Schizophrenia, Parkinson's Disease, and others lack facile cell culture models that allow one to probe the basis of the disease and to test therapies safely and without risk to the patient. Our work is already providing these models, but we hope to make even better ones by understanding the fundamental processes that allow one cell type (such as a skin cell or blood cell) to be converted to human neurons, where the disease process can be investigated. In the past the inability to make neurons from patients with specific diseases has been a major roadblock to treatment. In the future the studies described here might be able to provide healthy neurons to replace ones loss through disease or injury.
Progress Report: 
  • During the past year, our laboratory has investigated the way that human skin cells can be changed to neurons. To do this, we have used a natural switch that occurs as embryonic cells decide to become neurons. We have found that this process proceeds in a highly ordered series of stages that involve first a resetting of fundamental cell biologic processes characteristic of neurons. This is followed by activation of genes encoding proteins that allow different types of neurons to interact and develop communication between one another. This finding surprised us since we expected to find changes in transcription factors, which instruct the formation of neurons. Instead, we find that the natural switching mechanism in neurons first regulates cell-to-cell communication.
  • We are exploring the way that normal human skin and other types of cells can be converted to neurons. We have found that there are at least two fundamental genetic pathways of doing this that are influenced by different genes and may therefore represent a fertile ground for developing new methods for converting cells of different types to neurons. This could perhaps be useful for replacing neurons from other cell types in states where neurons are damaged or lost such as a variety of neurodegenerative diseases.

Pages