Neurological Disorders

Coding Dimension ID: 
303
Coding Dimension path name: 
Neurological Disorders
Grant Type: 
Disease Team Therapy Planning I
Grant Number: 
DR2-05415
Investigator: 
Type: 
PI
ICOC Funds Committed: 
$99 248
Disease Focus: 
Huntington's Disease
Neurological Disorders
oldStatus: 
Closed
Public Abstract: 

One in every ten thousand people in the USA has Huntington's disease, and it impacts many more. Multiple generations within a family can inherit the disease, resulting in escalating health care costs and draining family resources. This highly devastating and fatal disease touches all races and socioeconomic levels, and there are currently no cures. Screening for the mutant HD gene is available, but the at-risk children of an affected parent often do not wish to be tested since there are currently no early prevention strategies or effective treatments.

We propose a novel therapy to treat HD; implantation of cells engineered to secrete Brain-Derived Neurotrophic factor (BDNF), a factor needed by neurons to remain alive and healthy, but which plummets to very low levels in HD patients due to interference by the mutant Huntingtin (htt) protein that is the hallmark of the disease. Intrastriatal implantation of mesenchymal stem cells (MSC) has significant neurorestorative effects and is safe in animal models. We have discovered that MSC are remarkably effective delivery vehicles, moving robustly through the tissue and infusing therapeutic molecules into each damaged cell that they contact. Thus we are utilizing nature's own paramedic system, but we are arming them with enhanced neurotrophic factor secretion to enhance the health of at-risk neurons. Our novel animal models will allow the therapy to be carefully tested in preparation for a phase 1 clinical trial of MSC/BDNF infusion into the brain tissue of HD patients, with the goal of restoring the health of neurons that have been damaged by the mutant htt protein.

Delivery of BDNF by MSC into the brains of HD mice is safe and has resulted in a significant reduction in their behavioral deficits, nearly back to normal levels. We are doing further work to ensure that the proposed therapy will be safe and effective, in preparation for the phase 1 clinical trial.

The significance of our studies is very high because there are currently no treatments to diminish the unrelenting decline in the numbers of medium spiny neurons in the striata of patients affected by HD. However this biological delivery system for BDNF could also be modified for other neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS), spinocerebellar ataxia (SCA1), Alzheimer's Disease, and some forms of Parkinson's Disease, where neuroregeneration is needed. Development of novel stem cell therapies is extremely important for the community of HD and neurodegenerative disease researchers, patients, and families. Since HD patients unfortunately have few other options, the benefit to risk ratio for the planned trial is very high.

Statement of Benefit to California: 

It is estimated that one in 10,000 CA residents have Huntington’s disease (HD). While the financial burden of HD is estimated to be in the billions, the emotional cost to friends, families, and those with or at risk for HD is immeasurable. Health care costs are extremely high for HD patients due to the long progression of the disease, often for two decades. The lost ability of HD patients to remain in the CA workforce, to support their families, and to pay taxes causes additional financial strain on the state’s economy. HD is inherited as an autosomal dominant trait, which means that 50% of the children of an HD patient will inherit the disease and will in turn pass it on to 50% of their children. Individuals diagnosed through genetic testing are at risk of losing insurance coverage in spite of reforms, and can be discriminated against for jobs, school, loans, or other applications. Since there are currently no cures or successful clinical trials to treat HD, many who are at risk are very reluctant to be tested. We are designing trials to treat HD through rescuing neurons in the earlier phases of the disease, before lives are devastated.

Mesenchymal stem cells (MSC) have been shown to have significant effects on restoring synaptic connections between damaged neurons, promoting neurite outgrowth, secreting anti-apoptotic factors in the brain, and regulating inflammation. In addition to many trials that have assessed the safety and efficacy of human MSC delivery to tissues via systemic IV infusion, MSC are also under consideration for treatment of disorders in the CNS, although few MSC clinical trials have started so far with direct delivery to brain or spinal cord tissue. Therefore we are conducting detailed studies in support of clinical trials that will feature MSC implantation into the brain, to deliver the neurotrophic factor BDNF that is lacking in HD. MSC can be transferred from one donor to the next without tissue matching because they shelter themselves from the immune system. We have demonstrated the safe and effective production of engineered molecules from human MSC for at least 18 months, in pre-clinical animal studies, and have shown with our collaborators that delivery of BDNF can have significant effects on reducing disease progression in HD rodent models.

We are developing a therapeutic strategy to treat HD, since the need is so acute. HD patient advocates are admirably among the most vocal in California about their desire for CIRM-funded cures, attending almost every public meeting of the governing board of the California Institute for Regenerative Medicine (CIRM). We are working carefully and intensely toward the first FDA-approved approved cellular therapy for HD patients which could have a major impact on those affected in California. In addition, the methods, preclinical testing models, and clincial trial design that we are developing could have far-reaching impact on the treatment of other neurodegenerative disorders.

Grant Type: 
Disease Team Therapy Planning I
Grant Number: 
DR2-05320
Investigator: 
Type: 
PI
ICOC Funds Committed: 
$89 834
Disease Focus: 
Amyotrophic Lateral Sclerosis
Neurological Disorders
oldStatus: 
Closed
Public Abstract: 

This project aims to use a powerful combined stem cell and gene therapy approach to treat patients with amyotrophic lateral sclerosis (ALS or Lou Gehrig’s Disease). ALS is a devastating disease for which there is no treatment or cure. Progression from early muscle twitches to complete paralysis and death usually happens within 4 years. Every 90 minutes someone is diagnosed with ALS in the USA, and every 90 minutes someone dies from ALS. In California the death rate is one person every one and a half days.

Stem cells have been shown to produce support cells for dying motor neurons called astrocytes which may slow down disease progression. Furthermore, many studies have shown that growth factors such as glial cell line-derived growth factor (or GDNF) can protect motor neurons from damage in a number of different animal models including those for ALS. However, delivering GDNF to the spinal cord has been almost impossible as it does not cross from the blood to the brain tissue. The idea behind the current proposal is to modify stem cells to produce GDNF and then transplant these cells into patients. A number of advances in human stem cell biology along with new surgical approaches has allowed us to put together this disease team approach – a first in man study to deliver cells modified to release a powerful growth factor that are expected to slow down the death of motor neurons and paralysis in patients.

The focus of the proposal will be to perform essential preclinical studies in both small and large animals that will establish optimal doses and safe procedures for translating this stem cell and gene therapy into human patients. The Phase 1 clinical study will include 30 ALS patients from the state of California. This will be the first time this type of stem cell and gene therapy has been available to any ALS patients in the world.

Statement of Benefit to California: 

ALS is a devastating disease, and also puts a large burden on state resources through the need of full time care givers and hospital equipment. It is estimated that the cost of caring for an ALS patient in the late stage of disease while on a respiration is $200,00-300,000 per year. While primarily a humanitarian effort to avoid suffering, this project will also ease the cost of caring for ALS patients in California if ultimately successful. As the first trial in the world to combine stem cell and gene therapy it will make California a center of excellence for these types of studies. This in turn will attract scientists, clinicians, and companies interested in this area of medicine to the state of California thus increasing state revenue and state prestige in the rapidly growing field of Regenerative Medicine.

Grant Type: 
Disease Team Therapy Planning I
Grant Number: 
DR2-05416
Investigator: 
Institution: 
Type: 
PI
ICOC Funds Committed: 
$98 050
Disease Focus: 
Alzheimer's Disease
Neurological Disorders
oldStatus: 
Closed
Public Abstract: 

Alzheimer’s disease (AD) is an incurable disorder that affects memory, social interaction and the ability to perform everyday activities. In the USA alone, the number of AD patients aged 65 and older has surpassed 5 million and that number may triple by 2050. Annual health care costs have been estimated to exceed 172 billion dollars, but do not reflect loss of income and stress caused to caregivers. Therefore, there is great hope for new therapies that will both improve symptoms and alleviate suffering.
There are few FDA-approved medications to treat AD and none is capable of preventing, delaying onset or curing AD. Current medications mostly tend to temporarily slow the worsening of AD-associated symptoms such as sleep disturbances, depression and memory loss/disorientation. Pharmaceutical companies continue to develop new types of drugs or combination therapies that can better treat the symptoms or improve the quality of life of AD patients. There is also an ongoing effort to discover novel drugs that may prevent, reverse, or even cure AD. Unfortunately, the number of clinical studies addressing the possible benefit of such drugs is low, and agents that have shown initial promise have failed at later stage clinical testing, despite convincing preclinical data. There are ongoing studies in AD patients using vaccines and other biological compounds but it is unclear when data from these new trials will be available and more importantly, whether they will be successful. The need for divergent and innovative approaches to AD is clearly suggested by the failure of experimental drugs.
Our proposal is to use brain stem cells to treat AD. This is a completely different approach to the more standard therapies described above such as drugs, vaccines, etc., and one that we hope will be beneficial for AD patients as a one-time intervention. AD is characterized by a dysfunction and eventual loss of neurons, the specialized cells that convey information in the brain. Death or dysfunction of neurons results in the characteristic memory loss, confusion and inability to solve new problems that AD patients experience. It is our hope that stem cells transplanted into the patient’s brain may provide factors that will protect neurons and preserve their function. Even a small improvement in memory and cognitive function could significantly alter quality of life in a patient with AD.

Statement of Benefit to California: 

Of the 5.4 million Americans affected with AD, 440,000 are California residents and, according to the Alzheimer’s Association, this number is projected to increase between 49.1 - 81.0% (second highest only to Northwestern states) between 2000 and 2025. Given that California is the most populous state, AD’s impact on state finances is proportionally high and will only increase as the population ages and AD incidence increases. The dementia resulting from this devastating disease disconnects patients from their community and loved ones by eroding memory and cognitive function. Patients gradually lose their ability to drive, work, cook and even carry out simple everyday tasks, and become totally dependent on others. The quality of life of AD patients is hugely affected and the burden on their families and caregivers is very costly to the state of California.
There is no cure for AD and no way to prevent it. Most approved therapies only address symptomatic aspects of AD and disease modifying drugs are currently not available. By enacting Proposition 71, California voters acknowledged and supported the need to investigate the use of novel stem cell based therapies to treat currently incurable diseases such as AD. Our goal is to leverage our proven expertise in developing neural stem cell based therapies for human neurodegenerative disorders and apply it to AD. We propose that neural stem cell transplantation into select regions of the brain will have a beneficial impact on the patient. If successful, a single intervention may be sufficient to delay or stop progression of neuronal degeneration and preserve functional levels of cognition and memory. In a disease such as AD, any therapy that can exert even a modest impact on the patient’s ability to carry out some daily activities will have an exponential positive effect not only on patients but also on families, caregivers and the health care system.
The potential economic impact of such type of therapeutic intervention for California could be tremendous, not only by reducing the high costs of care but also by becoming a vital world center for stem cell interventions in AD.

Grant Type: 
Disease Team Therapy Planning I
Grant Number: 
DR2-05431
Investigator: 
ICOC Funds Committed: 
$99 976
Disease Focus: 
Neurological Disorders
Parkinson's Disease
oldStatus: 
Closed
Public Abstract: 

Ongoing degeneration of dopaminergic (DA) neurons in the midbrain is the hallmark of Parkinson’s disease (PD), a movement disorder that manifests with tremor, bradykinesia and rigidity. One million Americans live with PD and 60,000 are diagnosed with this disease each year. Although the cost is $25 billion per year in the United States alone, existing therapies for PD are only palliative and treat the symptoms but do not address the underlying cause. Levodopa, the gold standard pharmacological treatment to restore dopamine, is compromised over time by decreased efficacy and particularly increased side effects over time. Neural transplantation is a promising strategy for improving dopaminergic dysfunction in PD. The rationale behind neural transplantation is that grafting cells that produce DA into the denervated striatum will reestablish regulated neurotransmission and restore function. Indeed, over 20 years of research using fetal mesencephalic tissue as a source of DA neurons has demonstrated the therapeutic potential of cell transplantation therapy in animal model of PD and in human patients. However, there are limitations associated with primary human fetal tissue transplantation, including high tissue variability, lack of scalability, ethical concerns and inability to obtain an epidemiologically meaningful quantity of tissue. Thus, the control of the identity, purity and potency of these cells becomes exceedingly difficult and jeopardizes both the safety of the patient and the efficacy of the therapy. Thus the search of self-renewable sources of cells is a very worthwhile goal with societal importance and commercial application.
Human neural stem cells are currently the only potential reliable and continuous source of homogenous and qualified populations of DA neurons for cell therapy for PD. Such cell source is ideal for developing a consistently safe and efficacious cellular product for treating large number of PD patients in California and throughout the world
We have developed a human neural stem cell line with midbrain dopaminergic properties and the technology to make 75% of the neuronal population express dopamine. We have also shown that these cells are efficacious in the most authentic animal model of PD. We now propose to conduct the manufacturing of these cells in conjunction with the safety and efficacy testing to bring this much needed cellular product to PD patients and treat this devastating disease.

Statement of Benefit to California: 

In this grant application we propose to develop a unique technology to manufacture neurons that will be used to treat patients suffering from Parkinson’s disease. One million Americans live with PD and 60,000 are diagnosed with this disease each year. Although the cost is $25 billion per year in the United States alone, existing therapies for PD are only palliative and treat the symptoms but do not address the underlying cause. Levodopa, the gold standard pharmacological treatment to restore dopamine, is compromised over time by decreased efficacy and increased side effects.
Human stem cells are currently the only potential reliable and continuous source of homogenous and qualified populations of DA neurons for cell therapy for PD. Such cell source is ideal for developing a consistently safe and efficacious cellular product for treating large number of PD patients in California and throughout the world
We have developed a human neural stem cell line with midbrain dopaminergic properties and the technology to make 75% of the neuronal population express dopamine. We have also shown that these cells are efficacious in the most authentic animal model of PD. We now propose to conduct the manufacturing of these cells and safety and efficacy testing to bring this cell product to PD patients and treat this devastating disease.
The CIRM grant will help us create further intellectual property pertaining to the optimization of the process of manufacturing of the cellular product we developed to treat PD. The grant will also create jobs at Californian institutions and contract companies we will work with to develop this product. Importantly, the intellectual property will be made available for licensing to biotechnology companies here in California to develop this product to treat the over 10 million people afflicted with PD world wide. Revenues from such a product will be beneficial to the California economy.

Grant Type: 
Disease Team Therapy Planning I
Grant Number: 
DR2-05272
Investigator: 
ICOC Funds Committed: 
$96 448
Disease Focus: 
Neurological Disorders
Parkinson's Disease
oldStatus: 
Closed
Public Abstract: 

We proposes to use human embryonic stem cells (hESCs) differentiated into neural progenitor/stem cells (NPCs), but modified by transiently programming the cells with the transcription factor MEF2C to drive them more specifically towards dopaminergic (DA) neurons, representing the cells lost in Parkinson’s disease. We will select Parkinson’s patients that no longer respond to L-DOPA and related therapy for our study, because no alternative treatment is currently available. The transplantation of cells that become DA neurons in the brain will create a population of cells that secrete dopamine, which may stop or slow the progression of the disease. In this way, moderate to severely affected Parkinson’s patients will benefit.

The impact of development of a successful cell-based therapy for late-stage Parkinson’s patients would be very significant. There are approximately one million people in the United States with Parkinson’s disease (PD) and about ten million worldwide. Though L-DOPA therapy controls symptoms in many patients for a period of time, most reach a point where they fail to respond to this treatment. This is a very devastating time for sufferers and their families as the symptoms then become much worse. A cell-based therapy that restores production of dopamine and/or the ability to effectively use L-DOPA would greatly improve the lives of these patients. Because of our extensive preclinical experience and the clinical acumen of our Disease Team, we will be able to quickly adapt our procedures to human patients and be able to seek an IND from the FDA within four years.

Statement of Benefit to California: 

It is estimated that the cost per year for a Parkinson’s patient averages over $10,000 in direct costs and over $21,000 in total cost to society (in 2007 dollars). With nearly 40 million people in California and with one in 500 estimated to have Parkinson’s (1.5-2% of the population over 60 years of age), there are approximately 80,000 people in California with Parkinson’s disease. Thus, Parkinson’s disease is a significant burden to California, not to mention the devastating effect on those who have the disease and their families. A therapy that could halt the progression or reverse Parkinson’s disease would be of great benefit to the state and its residents. It would be particularly advantageous if the disease could be halted or reversed to an early stage, since the most severe symptoms and highest costs of care are associated with the late stages of the disease. Cell-based therapies offer the hope of achieving this goal.

Grant Type: 
Disease Team Therapy Planning I
Grant Number: 
DR2-05410
Investigator: 
Type: 
PI
ICOC Funds Committed: 
$107 989
Disease Focus: 
Alzheimer's Disease
Neurological Disorders
oldStatus: 
Closed
Public Abstract: 

Alzheimer’s disease (AD) is now a nation-wide epidemic and California is at the epicenter of the epidemic. One-tenth of all people in the United States diagnosed with AD live in California. In the US, 5.4 million people have AD and another American develops AD every 69 seconds. No therapeutic strategies exist to prevent or treat AD. And the situation is worse than expected. Results of a recent two year clinical study show that the currently available medications for managing AD symptoms are ineffective in patients with mild cognitive impairment or mild AD.

We seek to develop a small molecule therapeutic, allopregnanolone (APα) to prevent and treat AD. APα promotes the ability of brain to regenerate itself by increasing the number and survival of newly generated neurons. The APα-induced increase in newly generated neurons was associated with a reversal of cognitive deficits and restored learning and memory function to normal in a preclinical mouse model of AD. Further, APα reduced the amount of AD pathology in the brain. Importantly, when given peripherally either by injection under the skin or applied topically to the skin, APα was able to enter the brain to increase the generation of new neurons. The unique mechanism of APα action reduces the risk that APα would cause proliferation of other cells in the body. Because APα was efficacious in both pre-pathology and post-pathology stages of AD progression, APα has the potential to be effective for both the prevention of and early stage treatment of Alzheimer’s disease. Further, APα induced neurogenesis and restoration of cognitive function in normal aged mice suggesting that APα could be efficacious to sustain cognitive function and prevent development of AD in a normal aged population. In other clinical studies, APα has been proven safe in animals and humans and in both men and women. Together, these findings provide a strong foundation on which to plan a clinical trial of APα in persons with prodromal and diagnosed Alzheimer’s disease.

To plan for a Phase I-IIa clinical trial to determine safety, dosing and clinical efficacy, we have assembled an interdisciplinary team of clinicians, scientists, therapeutic development, regulatory, data management and statistical analysis experts. The objectives of this proposal are to: a) develop allopregnanolone as a therapeutic for Alzheimer’s disease; to plan an early clinical development program for its use as a neurogenesis agent; b) file a complete and well-supported IND with the Food and Drug Administration (FDA); c) complete phase I/IIa clinical studies to evaluate safety, biological activity, and early efficacy in humans; and (d) complete a phase II clinical trial that will evaluate efficacy and lead to larger multisite clinical studies of efficacy.

Statement of Benefit to California: 

California is at the epicenter of the epidemic of Alzheimer’s disease (AD). Nationwide there are 5.4 million persons living with AD. Ten percent or over half a million Californians have AD. Among California’s baby boomers aged 55 and over, one in eight will develop AD. It is estimated that one in six Californians will develop a form of dementia. By 2030 the number of Californians living with AD will double to over 1.1 million. While all races and ethnic groups and regions of the state will be affected, not all regions within California will be equally affected. Los Angeles County has the greatest population in the state and thus will be the true epicenter of the Alzheimer’s epidemic in California.

Alzheimer’s is a disease that affects an entire family, community and health care system. Nation-wide there are nearly 15 million Alzheimer and dementia care givers providing 17 billion hours of unpaid care per year. Total costs for caring for people with AD, totals $183 billion per year. California shouldered $18.3 billion of those costs and most of those costs were born by persons and health care services in Los Angeles County. Because of the psychological and physical toll of caring for people with Alzheimer’s, caregivers had $7.9 billion in additional health care costs. Proportionally that translates into $790 million of health care costs for Californians. In total, California spent over $19 billion per year for costs associated with Alzheimer’s disease. Multiple analyses indicate that a delay of just 5 years can reduce the number of persons diagnosed with Alzheimer’s by 50% and dramatically reduce the associated costs.

We seek to develop a small molecule therapeutic, allopregnanolone (APα) to prevent and treat AD. APα promotes the innate regenerative capacity of the brain to increase the pool of neural progenitor cells. The APα-induced increase in neurogenesis was associated with a reversal of cognitive deficits and restored learning and memory function to normal in a preclinical mouse model of AD. Further, APα reduced the development of AD pathology. APα crosses the blood brain barrier and acts through a mechanism unique to neural progenitor cells and thus is unlikely to exert proliferative effects in other organs. Because APα was efficacious in both pre-pathology and post-pathology stages of AD progression, APα has the potential to be effective for both the prevention of and early stage treatment .

Grant Type: 
Basic Biology III
Grant Number: 
RB3-02161
Investigator: 
ICOC Funds Committed: 
$1 268 868
Disease Focus: 
Neurological Disorders
Pediatrics
Spinal Muscular Atrophy
Human Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Active
Public Abstract: 

Spinal muscular atrophy (SMA) is one of the most common autosomal recessive disorders that cause infant mortality. SMA is caused by loss of the Survival of Motor Neuron (SMN) protein, resulting in motor neuron (MN) degeneration in the spinal cord. Although SMN protein plays diverse roles in RNA metabolism and is expressed in all cells, it is unclear why a deficiency in SMN only causes MN degeneration. Since patient samples are rarely available, most knowledge in SMA is gained from animal model studies. While these studies have provided important information concerning the cause and mechanism of SMA, they are limited by complicated genetic manipulation. Results from different models are also not always consistent. These problems can be resolved if SMA patient’s MNs become readily available. Recent progress in the generation of induced pluripotent stem (iPS) cells from differentiated adult cells provides an opportunity to establish human cell-based models for neurodegenerative diseases. These cells, due to their self-renewal property, can provide an unlimited supply of the affected cell type for disease study in vitro. In this regard, SMA iPS cells may represent an ideal candidate for disease modeling as SMA is an early onset monogenic disease: the likelihood to generate disease-specific phenotypes is therefore higher than iPS cells derived from a late onset disease. In addition, the affected cell type, namely MNs, can readily be generated from iPS cells for the study. For these reasons, we established several SMA iPS cell lines from a type 1 patient and showed specific deficits in MNs derived from these iPS cells. Whether MNs derived from these iPS cell lines can recapitulate a whole spectrum of SMA pathology in animals and patients remains unclear. An answer to this question can ensure the suitability of using the iPS cell approach to study SMA pathogenesis in cell culture. We propose to examine cellular and functional deficits in MNs derived from these SMA iPS cells in Aim 1. The availability of these iPS cells also provides an opportunity to explore the mechanisms of selective MN degeneration in SMA. Dysregulation of some cellular genes has been implicated in SMA pathogenesis. We propose to use these iPS cell lines to address how one such gene is affected by SMN deficiency (Aim 2) and how a deficit in these genes leads to selective MN degeneration (Aim 3). Our study should provide valuable insights in the understanding of SMA pathogenesis and aid in exploring new molecular targets for drug intervention.

Statement of Benefit to California: 

Spinal muscular atrophy (SMA) is one of the most common autosomal recessive disorders in humans and the most common genetic cause of infant mortality. SMA is caused by loss of the Survival of Motor Neuron (SMN) protein, resulting in motor neuron (MN) degeneration in the spinal cord. SMA has a carrier frequency of approximately 1 in 35 and an incidence of 1 in 6000 in human population. In severe SMA cases, the disease onset initiates before 6 months of age and death within the first 2 years of life. Currently, there is no cure for SMA. Since MN samples from patients are rarely available, most knowledge in SMA is gained from animal model studies. While these studies have provided important information concerning the cause and mechanism of SMA, they are limited by complicated genetic manipulation. Results from different models are not always consistent either. Large-scale drug screening to treat SMA is also hampered by the lack of suitable cell lines for the study. These problems can potentially be resolved if SMA patient’s MNs become readily available. Our effort to derive induced pluripotent stem (iPS) cells from a SMA patient provides an unlimited supply of SMA cells to carry out studies to explore the disease mechanism in vitro. A better understanding in the disease mechanisms would benefit California by the identification of potential cellular targets for drug treatment. The knowledge gained from our study can also facilitate the use of these iPS cells as a platform for large-scale drug screening and validation. Our study should provide valuable insights in the understanding of SMA pathogenesis and aid in exploring new molecular targets for drug intervention.

Grant Type: 
Basic Biology III
Grant Number: 
RB3-02129
Investigator: 
Name: 
Type: 
PI
ICOC Funds Committed: 
$1 382 400
Disease Focus: 
Autism
Neurological Disorders
Pediatrics
Rett's Syndrome
Human Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Active
Public Abstract: 

Stem cells, including human embryonic stem cells, provide extraordinary new opportunities to model human diseases and may serve as platforms for drug screening and validation. Especially with the ever-improving effective and safe methodologies to produce genetically identical human induced pluripotent stem cells (iPSCs), increasing number of patient-specific iPSCs will be generated, which will enormously facilitate the disease modeling process. Also given the advancement in human genetics in defining human genetic mutations for various disorders, it is becoming possible that one can quickly start with discovery of disease-related genetic mutations to produce patient-specific iPSCs, which can then be differentiated into the right cell type to model for the disease in vitro, followed by setting up the drug screening paradigms using such disease highly relevant cells. In the context of neurological disorders, both synaptic transmission and gene expression can be combined for phenotyping and phenotypic reversal screening and in vitro functional (synaptic transmission) reversal validation. The missing gap for starting with the genetic mutation to pave the way to drug discovery and development is in vivo validation-related preclinical studies. In order to fill this gap, in this application we are proposing to use Rett syndrome as a proof of principle, to establish human cell xenografting paradigm and perform optogenetics and in vivo recording or functional MRI (fMRI), to study the neurotransmission/connectivity characteristics of normal and diseased human neurons. Our approach will be applicable to many other human neurological disease models and will allow for a combination of pharmacokinetic, and in vivo toxicology work together with the in vivo disease phenotypic reversal studies, bridging the gap between cell culture based disease modeling and drug screening to in vivo validation of drug candidates to complete the cycle of preclinical studies, paving the way to clinical trials. A success of this proposed study will have enormous implications to complete the path of using human pluripotent stem cells to build novel paradigms for a complete drug development process.

Statement of Benefit to California: 

Rett Syndrome (RTT) is a progressive neurodevelopmental disorder caused by primarily loss-of-function mutations in the X-linked MeCP2 gene. It mainly affects females with an incidence of about 1 in 10,000 births. After up to 18 months of apparently normal development, children with RTT develop severe neurological symptoms including motor defects, mental retardation, autistic traits, seizures and anxiety. RTT is one of the Autism Spectrum Disorders (ASDs) that affects many children in California. In this application, we propose to use our hESC-based Rett syndrome (RTT) model as a proof-of-principle case to define a set of core transcriptome that can be used for drug screenings. Human embryonic stem cells (hESCs) hold great potential for cell replacement therapy where cells are lost due to disease or injury. For the diseases of the central nervous system, hESC-derived neurons could be used for repair. This approach requires careful characterization of hESCs prior to utilizing their therapeutic potentials. Unfortunately, most of the characterization of hESCs are performed in vitro when disease models are generated using hESC-derived neurons. In this application, using RTT as a proof of principle study, we will bridge the gap and perform in vivo characterization of transplanted normal and RTT human neurons. Our findings will not only benefit RTT and other ASD patients, but also subsequently enable broad applications of this approach in drug discovery using human pluripotent stem cell-based disease models to benefit the citizens of California in a broader spectrum.

Grant Type: 
Basic Biology III
Grant Number: 
RB3-05219
Investigator: 
ICOC Funds Committed: 
$1 372 660
Disease Focus: 
Infectious Disease
Neurological Disorders
Pediatrics
Human Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Active
Public Abstract: 

Human cytomegalovirus (HCMV) is the major cause of birth defects, almost all of which are neuronal in origin. Approximately 1% of newborns are infected, and of the 13% that are symptomatic at birth, 50% will have severe permanent hearing deficits, vision loss, motor impairment, and mental retardation. At least 14% of asymptomatic infants also will later show disabilities. Much of this effect is likely caused by HCMV affecting neural development in the fetus.

Embryonic stem cells are an excellent source of human progenitors, which are cells that can turn into mature neurons i.e. neural differentiation. We know from published cell culture studies that HCMV affects neural progenitor cells during neural differentiation, but it is unclear as to what are the underlying molecular mechanisms for its effect. A major goal of our research is to understand at a high-resolution how HCMV controls the way neural progenitors become proper neurons. Elucidation of the genes that are affected will serve as a basis for therapeutic strategies to ameliorate the effects of HCMV infection in newborns.

The significance of our studies also extends to the serious problem of HCMV infection in immunocompromised individuals, with recipients of allogeneic transplants having a high risk of severe disease and allograft rejection. This potential problem in stem cell therapy has received little attention thus far. The proposed use of stem cell transplantation in treating neuronal injury and neurodegenerative diseases, as well as transplantation of other organ-specific precursors, makes it imperative to understand how disseminated HCMV infection in immunosuppressed recipients will affect the function and differentiation of the cells.

Statement of Benefit to California: 

Human cytomegalovirus (HCMV) is the major viral cause of birth defects. In 2009, there were 526,774 births in California, resulting in congenital HCMV infection in approximately 5,200 newborns, with at least 800 infants expected to have long-lasting disabilities. Congenital cytomegalovirus infection is the most common nongenetic congenital cause of deafness. In contrast, before the development of the rubella vaccine, less than 70 infants per year in the entire US were reported to have congenital rubella syndrome, also associated with deafness. The burden to families and the economic costs to society of congenital cytomegalovirus infection are immense, and there is no vaccine available. Our proposed research serves to form the basis of future therapies to ameliorate, or even reduce this medical burden.

The significance of our studies also extends to the serious problem of HCMV infection in immunocompromised individuals who receive transplants of organs and stem cells from other individuals. Infection in these transplant recipients often results in severe disease and rejection of the transplant. The California Institute for Regenerative Medicine has made a major commitment to provide funding to move stem cell-based therapies to clinical trials. The goal of using stem cell transplantation to treat neuronal injury and neurodegenerative diseases, as well as transplantation of other organ-specific precursors, makes it imperative to understand how disseminated HCMV infection in immunosuppressed recipients will affect the function and differentiation of the cells.

Our research will provide the knowledge base to understand the genes that are changed during HCMV infection of human neural progenitors and neurons. It will also provide a foundation for studies of how other viruses will affect human neurons, and likely, other cell-types. Intellectual property from this work will feed into opportunities for antiviral strategies and increased jobs in biotech for Californians.

Grant Type: 
Basic Biology III
Grant Number: 
RB3-05229
Investigator: 
Type: 
PI
ICOC Funds Committed: 
$1 391 400
Disease Focus: 
Autism
Neurological Disorders
Pediatrics
Human Stem Cell Use: 
iPS Cell
oldStatus: 
Closed
Public Abstract: 

Autism spectrum disorders (ASD) are a group of neurodevelopmental diseases that occur in as many as 1 in 150 children in the United States. Three hallmarks of autism are dysfunctional communication, impaired social interaction, and restricted and repetitive interests and activities. Even though no single genetic defect has been ascribed to having a causative role in the majority of ASD cases, twin concordance studies and rare familial forms of the disease strongly support a genetic malfunction and a combinatorial effect of genetic risk factors may contribute to the variability in the symptoms. One major obstacle to ASD research is the difficulty in obtaining human neural tissue to model the disease in vitro. Mouse models of ASD are limited since only rare genetic mutations have been identified so far, and single mutations in those genes cannot fully reproduce the range of critical behaviors characteristic of ASD. Direct reprogramming of patient tissues to induced pluripotent stem (iPS) cells and derivation of forebrain neurons from them will provide much needed insight into the molecular mechanism of neuronal dysfunction in diverse individuals on the autism spectrum. The use of patient-derived stem cells to characterize cellular defects brings together two investigative approaches. One is the identification of common cellular and molecular mechanisms that are central to deficiencies across diverse populations of patients. The other is quantitative comparison of pathological features that address differences amongst diverse patients. Our major goal is to characterize the synaptic dysfunction using concrete, quantifiable parameters in human neurons that have specific mutations in key synaptic proteins. This approach will give us a handle into the molecular synaptic complexes that may also be altered in sporadic ASD cases and could help us develop drug strategies that can normalize synaptic function. Although several groups are interested in generating iPS cells from autistic patients, these efforts generally do not have genomic information on the patients, and the large diversity of mutations associated with autism could lead to large variation in synaptic phenotypes. By focusing on generating iPS cells from patients carrying mutations in a small number of critical synaptic proteins and characterizing the molecular components of this complex, we are likely to be in a strong position to identify novel molecular defects associated with autistic synapses. Relative biochemical comparisons of wildtype and mutant protein complexes could help us find ways to restore synaptic function in ASD.

Statement of Benefit to California: 

Many children in California are affected by autism spectrum disorders, which include monogenic syndromes such as Fragile X syndrome and Rett syndrome. However, the majority of cases are idiopathic and an interplay of multiple genetic risk factors is suspected. Since no current drug therapies exist for autism and an accurate diagnosis can only be made in early childhood by largely behavioral criteria, the cost of care and social burden for such a disorder is high, not to mention the devastation to the quality of life for the families of affected children. We would like to identify a core set of proteins found in synapses that are disrupted or dysregulated in autism by a biochemical approach. If we succeed in this effort, we may be able to identify novel biomarkers and molecular targets for specific patient profiles, and by cross-correlating the genetic background to specific behavioral traits in specific individuals, we may come up with molecular targets that are able to address particular symptoms, which should greatly aid in therapeutic regimens that complement existing behavioral therapies. Generating iPS neurons with known copy number variations associated with autism would be a major resource for other laboratories in California and in the field in general. The economic benefit to California is manifold, as many pharmaceutical and biotech companies in California will want to exploit these novel cell lines and the therapeutic targets identified through them in order to design better drugs for autism.

Pages