Neurological Disorders

Coding Dimension ID: 
303
Coding Dimension path name: 
Neurological Disorders
Funding Type: 
New Faculty II
Grant Number: 
RN2-00919
Investigator: 
ICOC Funds Committed: 
$2 259 092
Disease Focus: 
Amyotrophic Lateral Sclerosis
Neurological Disorders
Neuropathy
Neurological Disorders
Stem Cell Use: 
Embryonic Stem Cell
Cell Line Generation: 
Embryonic Stem Cell
oldStatus: 
Active
Public Abstract: 
An important class of neurological diseases predominantly affects spinal motor neurons, the neurons that control muscle movement. The most well known of these motor neuronopathies is Amyotrophic Lateral Sclerosis (ALS), commonly referred to as Lou Gehrig’s disease for the famous Yankee first baseman who died of the disease. The first symptoms of ALS are usually increasing difficulty walking or speaking clearly. People with ALS progressively lose their ability to initate and control movements, and may become totally paralyzed during the late stages of the disease. There are no cures or effective treatments for these diseases. Riluzole (Rilutek), the only FDA approved medication for ALS, only modestly slows disease progression. Consequently, ALS is usually fatal within one to five years from onset, with half dying within eighteen months. Although genetic studies have identified many mutations that cause these diseases, it is not understood why these mutations kill motor neurons. This lack of understanding about the root causes of motor neuron diseases currently hinders the development of effective treatments. We seek to study motor neurons carrying these mutations in cell culture dishes to understand how these diseases sicken and kill these cells. To generate these motor neurons, we will use embryonic stem cells. Embryonic stem cells can become any cell in our body, including motor neurons. We have developed a new technology that allows us to quickly replace healthy genes with mutant genes in mouse embryonic stem cells. We will use this technology to insert both normal and disease-associated versions of genes into embryonic stem cells. Study of the healthy and mutant mutant motor neurons derived from these embryonic stem cells will shed light on the ways in which the mutations cause harm. The development of cell based models of human diseases is likely to have additional benefits as well. For example, diseased motor neurons grown in cell culture dishes can be quickly and efficiently screened with potential drugs to discover agents that slow, halt or reverse the cellular damage. It is our hope that these experiments will both deepen our understanding of important neurodegenerative disorders, and lead to new directions for the development of effective therapies.
Statement of Benefit to California: 
Over 6,000 Americans are diagnosed each year with motor neuronopathies, about the same as are diagnosed with multiple sclerosis. One form of this illness, ALS, is responsible for about one in every 800 deaths, and cause many lengthy and costly hospital admissions. We propose using stem cells to model these diseases so that we can gain a deeper understanding of their root causes. It is our expectation that this deeper understanding will lead to new and better approaches to the treatment of these disorders. In addition, our technology for developing embryonic stem cell-based models of human diseases is likely to have applications in the biotechnology sector. Although our technology is most applicable for modeling simple dominant genetic diseases, it can be adapted to model recessive and complex disorders. Beyond increasing our understanding of human diseases, these cellular models represent useful screening tools for testing novel pharmacological treatments. Identification and development of these new therapies may support new companies or new products for existing companies. We hope that using stem cells to model neurodegenerative disorders will lead to progress in the fight against these diseases, as well as provide the tools and examples for those in academia and industry who hope to create stem cell models of other clinically important disorders.
Progress Report: 
  • We have been developing new tools for the genetic modification of embryonic stem cells (ESCs). Part of the potential for use of ESCs in treatments or as models of disease depends on the ability to change genes within ESCs. We have developed a novel system, which we call the Floxin system, that allows for the more efficient modification of genes within mouse ESCs than has been historically feasible. We have used this system to insert mutations that cause human diseases into mouse ESCs. Introducing human mutations into ESCs has allowed us to study the function of these mutations in the context of stem cell function and gain insight into how these mutations cause human disease.
  • We are interested in extending our findings by modeling an important class of neurological diseases that predominantly affect spinal motor neurons, the neurons that control muscle movement. The most well known of these motor neuronopathies is Amyotrophic Lateral Sclerosis (ALS), commonly referred to as Lou Gehrig’s disease, but there are a number of other motor neuronopathies including Hereditary Motor Neuronopathy and Spinal Muscular Atrophy.
  • Human genetic studies have identified many mutations that cause these diseases, but it is not understood why these mutations kill motor neurons. This lack of understanding about the root causes of motor neuron diseases currently hinders the development of effective treatments. We are currently using the Floxin system to introduce human motor neuronopathy-associated mutations into mouse ESCs. We have introduced mutations into two disease-associated genes, and are deriving motor neurons from these modified ESCs to study how the mutations kill these cells.
  • The development of cell-based models of human diseases is likely to have additional benefits as well. For example, diseased motor neurons grown in cell culture dishes can be quickly and efficiently screened with potential drugs to discover agents that slow, halt or reverse the cellular damage. It is our hope that these experiments will both deepen our understanding of important neurodegenerative disorders, and lead to new directions for the development of effective therapies.
  • We have made the resource of Floxin vectors and the greater than 24,000 characterized Floxin compatible ESC lines available to the research community. Application of the Floxin technology to this resource will allow genetic modification of more than 4,500 genes in ESCs. Furthermore, we are adapting the Floxin technology for use in human ESCs which may allow for tractable genetic engineering in these cells. We anticipate that this technology will allow many researchers to create cellular models of human disease and other genetic modifications that will facilitate the use of stem cells in fighting diverse diseases.
  • We have developed new tools for the genetic modification of embryonic stem cells (ESCs) and are using these tools to model human diseases. Part of the potential for use of ESCs in treatments or as models of disease depends on the ability to change genes within ESCs. We have developed a novel system, which we call the Floxin system, that allows for the more efficient modification of genes within mouse ESCs than has been historically feasible. We use this system to insert mutations that cause human diseases into mouse ESCs. Introducing human mutations into ESCs has allowed us to study the function of these mutations in the context of stem cell function and gain insight into how these mutations cause human disease. To date, we have investigated an inherited congenital malformation syndrome called Orofaciodigital syndrome and elucidated that the underlying birth defects are caused by misregulation of cilia and centrioles, structures within all cells. We have also used our system to investigate how genes are regulated by Polycomb-like proteins and to reveal how cilia control ESC differentiation into motor neurons, findings that shed light on the control of motor neuron production from ESCs.
  • We are extending our findings by modeling an important class of neurological diseases that predominantly affect spinal motor neurons, the neurons that control muscle movement. The most well known of these motor neuronopathies is Amyotrophic Lateral Sclerosis (ALS), commonly referred to as Lou Gehrig’s disease, but there are a number of other motor neuronopathies including Hereditary Motor Neuronopathy and Spinal Muscular Atrophy. Human genetic studies have identified many mutations that cause these diseases, but it is not understood why these mutations kill motor neurons. This lack of understanding about the root causes of motor neuron diseases currently hinders the development of effective treatments.
  • We have used the Floxin system to introduce human motor neuronopathy-associated mutations into mouse ESCs. We have introduced mutations into two disease-associated genes, and have derived motor neurons from these modified ESCs to study how the mutations kill these cells. The development of cell-based models of human diseases is likely to have additional benefits as well. For example, diseased motor neurons grown in cell culture dishes can be quickly and efficiently screened with potential drugs to discover agents that slow, halt or reverse the cellular damage. It is our hope that these experiments will both deepen our understanding of important neurodegenerative disorders, and lead to new directions for the development of effective therapies.
  • We have made the resource of Floxin vectors and the greater than 24,000 characterized Floxin compatible ESC lines available to the research community. Application of the Floxin technology to this resource will allow genetic modification of more than 4,500 genes in ESCs. Furthermore, we are hoping to adapt the Floxin technology for use in human ESCs which may allow for tractable genetic engineering in these cells. We anticipate that this technology will allow many researchers to create cellular models of human disease and other genetic modifications that will facilitate the use of stem cells in fighting diverse diseases.
  • An important class of neurological diseases predominantly affects spinal motor neurons, the neurons that control muscle movement. The most well known of these motor neuronopathies is Amyotrophic Lateral Sclerosis (ALS), commonly referred to as Lou Gehrig’s disease for the famous Yankee first baseman who died of the disease. The first symptoms of ALS are usually increasing difficulty walking or speaking clearly. People with ALS progressively lose their ability to initate and control movements, and may become totally paralyzed during the late stages of the disease. There are no cures or effective treatments for these diseases. Riluzole (Rilutek), the only FDA approved medication for ALS, only modestly slows disease progression. Consequently, ALS is usually fatal within one to five years from onset, with half dying within eighteen months.
  • Although genetic studies have identified many mutations that cause these diseases, it is not understood why these mutations kill motor neurons. This lack of understanding about the root causes of motor neuron diseases currently hinders the development of effective treatments. We seek to study motor neurons carrying these mutations in cell culture dishes to understand how these diseases sicken and kill these cells.
  • To generate these motor neurons, we are using embryonic stem cells. Embryonic stem cells can become any cell in our body, including motor neurons. We have developed a new technology that allows us to quickly replace healthy genes with mutant genes in mouse embryonic stem cells. We are using this technology to insert both normal and disease-associated versions of genes into embryonic stem cells. Study of the healthy and mutant mutant motor neurons derived from these embryonic stem cells will shed light on the ways in which the mutations cause harm.
  • We have been using the mutant embryonic stem cells to assay leading hypotheses about how diseases like ALS begin. In addition, we are using the embryonic stem cells to create new animal models of ALS. Finally, we are adapting our technology to be able to create more faithful models of disease using embryonic stem cells in order to expedite understanding into the origins of these diseases.
  • Neurodegenerative diseases, including Alzheimer disease, Parkinson disease, and Amyotrophic Lateral Sclerosis (ALS, also known as Lou Gehrig’s disease), affect an increasing proportion of our population as the median age increases. There are no cures for any of these disorders. One reason for the absence of cures has been the absence of good models to understand how neurodegeneration happens.
  • Genetic studies have identified many of the genes involved in neurodegeneration. To understand how these mutations lead to motor neuron degeneration in ALS, we have creased embryonic stem cells (ESCs) that contain the human ALS-associated mutations. We have also created mice that express these human ALS-associated mutations. We are studying motor neurons derived from the ESCs and the mutant mice to understand how motor neurons die in ALS. We are defining the proteins and RNAs that interact with normal and disease-associated proteins, and following the mutant neurons over time to examine how they die. Currently, we are testing the hypothesis that disease mutations alter the gene product’s normal interactions, leading to a tonic increase in cell death rate. After several decades of life, the loss of neurons surpasses compensatory mechanisms, leading to the emergence of symptoms.
  • Neurodegenerative diseases, including Alzheimer disease, Parkinson disease, and Amyotrophic Lateral Sclerosis (ALS, also known as Lou Gehrig’s disease), affect an increasing proportion of our population as the median age increases. There are no cures for any of these disorders. One reason for the absence of cures has been the absence of good models to understand how neurodegeneration happens.
  • Genetic studies have identified many of the genes involved in neurodegeneration. To understand how these mutations lead to motor neuron degeneration in ALS, we have creased embryonic stem cells (ESCs) that contain the human ALS-associated mutations. We have also created mice that express these human ALS-associated mutations. We studied motor neurons derived from the ESCs and the mutant mice and found that motor neurons with ALS-associated mutations die at increased rates. We identified proteins that interact with normal and disease-associated proteins. We identified that mutant proteins showed different interactions than normal proteins. After several decades of life, the loss of neurons surpasses compensatory mechanisms, leading to the emergence of symptoms.
Funding Type: 
New Faculty II
Grant Number: 
RN2-00915
Investigator: 
Type: 
PI
ICOC Funds Committed: 
$2 994 328
Disease Focus: 
Neurological Disorders
Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Active
Public Abstract: 
Buried deep inside the brain are cells known as choroid plexus epithelial (CPe) cells. Although not as famous as other cells in the nervous system, CPe cells perform a large number of important jobs that keep the brain and spinal cord healthy. They produce the fluid (known as cerebrospinal fluid, or CSF) that bathes the brain and spinal cord with many nourishing chemicals, which promote normal nervous system health and function, learning and memory, and neural repair following injury. In addition, CPe cells protect the brain and spinal cord from toxins – such as heavy metals and the amyloid-beta peptide associated with Alzheimer’s disease – by absorbing them or preventing them from entering the nervous system altogether by forming the so-called blood-CSF barrier. Accordingly, as CPe functions diminish during normal aging or in accelerated fashion in certain diseases, memory loss, Alzheimer’s disease, and a number of other neurologic and neuropsychiatric disorders may ensue or become worse. The ability to grow and make CPe cells should therefore enable many clinical applications, such as CPe cell replacements, transplants, and pharmaceutical studies to identify beneficial drugs that can pass through the blood-CSF barrier. However, all of these potential applications are limited by the current inability to make and expand CPe cells in culture. Our published and preliminary studies suggest that it should be feasible to generate CPe cells in culture. Our broad goals are to study how CPe cells form during normal development, then use this information to make human CPe cells for clinical applications. To achieve this goal, our approach will be to use mice to study how the CPe develops normally, then use both mouse and human stem cells to make CPe cells in culture. Our published and preliminary studies have defined one critical factor for this process (known as Bmp4) and identify candidate factors that work with Bmp4 to regulate whether or not CPe cells are formed. In Aim 1, we test whether a molecule known as Fgf8 provides CPe “competency” – i.e. whether Fgf8 allows cells to become CPe cells when exposed to Bmp4. In Aim 2, we test whether a gene known as Lhx2 prevents cortical cells from becoming CPe cells in response to Bmp4. In Aim 3, we manipulate Bmp4, Fgf8, and Lhx2 in hESC cultures to make human CPe cells. If successful, this proposal should greatly improve our understanding of normal CPe development and enable a number of CPe-based clinical applications with significant potential to improve human health.
Statement of Benefit to California: 
Our proposal to study choroid plexus epithelial (CPe) cell development and to make CPe cells in culture for clinical applications should benefit the State of California and its citizens in a number of ways. In the short term, this project will provide employment, education and training in stem cell research for a handful of California residents, and will support California-based companies that provide supplies for the stem cell and biomedical research communities. In the longer term, success in making CPe cells in culture should enable many new CPe-based clinical applications, stimulate CPe studies and applications by stem cell companies, and enable screens to identify agents that allow for passage of therapeutics across the blood-CSF barrier, which remains a significant roadblock to the development of pharmaceuticals for neurological and neuropsychiatric disorders. Such outcomes would ultimately stimulate investment in California-based companies and benefit the health of many California citizens, which may reduce the economic burden of health care in the state.
Progress Report: 
  • Our project goals are to define the factors involved in choroid plexus epithelial (CPe) cell development in mice, then apply this information to generate CPe cells from mouse and human embryonic stem cells (ESCs) for clinical applications. The first Aim is to determine whether a factor known as Fgf8 promotes CPe fate, the second Aim addresses whether the Lhx2 transcription factor inhibits CPe, and the third Aim is to generate human CPe cells in culture. Significant progress on these Aims has been made during this first year of the grant. Most importantly, multiple lines of evidence for CPe differentiation from both mouse and human ESCs have been obtained. In addition, the genetically-engineered mESC lines needed for the Lhx2 studies in Aim 2 have been successfully generated and validated. Our major goals for the next year are to further replicate, confirm, and optimize the generation of CPe cells in our mouse and human ESC cultures, and to perform the initial experiments that should determine whether manipulating Fgf8 and Lhx2 in the ESC cultures will enhance CPe generation in culture.
  • Our goal is to define the factors involved in choroid plexus epithelial (CPe) cell development in mice, then to apply this knowledge to generate CPe cells from mouse and human embryonic stem cells (ESCs) for clinical applications. The first two Aims examine Fgf8 and Lhx2 as promoter and inhibitor, respectively, of CPe fate, and the third Aim is to generate human CPe cells in culture. Unexpectedly, we obtained significant evidence for CPe differentiation from both mouse and human ESCs during year 1 of the award. Our aims for year 2 were therefore modified to accelerate the translation of our findings towards a CPe-based regenerative medicine. This year, we developed a second cell culture system for deriving mouse CPe cells, and established a functional assay for CPe cells in culture, which we used to confirm the function of our derived mouse CPe cells. To sort and purify CPe cells for clinical applications, we began characterizing CPe cell complexity, size, and mitochondrial content by flow cytometry, obtained a mouse line with fluorescent CPe cells, and identified three antibodies that may be useful for sorting human CPe cells. A stereotaxic injection system was built, and institutional approvals were obtained, to establish methods for replacing or transplanting CPe cells in the mouse brain.
  • The goal of this project is to define the factors involved in choroid plexus epithelial cell (CPEC) development in mice, then to apply this knowledge to generate CPECs from mouse and human embryonic stem cells (ESCs) for clinical applications. The first two Aims used mice to examine a potential promoter and inhibitor, respectively, of CPEC fate, and the third Aim is to generate human CPECs in culture. Unexpectedly early success in CPEC derivation from human ESCs has allowed us to accelerate Aim 3 and the pursuit of translational goals this year. We further optimized our existing human CPEC derivation method and developed a second method (a combined suspension-adherent system) that may prove to be much more efficient. Several new GMP-compliant human ESC lines were approved and obtained. To facilitate the translational efforts, we made many new mouse ESC lines that were designed to fluoresce when CPECs are produced, and this was confirmed using the first of these lines. A crude CPEC purification strategy was also developed, and using this strategy, transplantation of partially-purified CPECs into mice was established in the lab this year. Remarkably, we found that transplanted mESC-derived CPECs, on their own, can integrate into endogenous choroid plexus with relatively high efficiency. This opens up several new and exciting therapeutic possibilities. To further enhance choroid plexus engraftment, a mouse CPEC ablation approach is currently being tested. A collaboration was initiated to profile all of the genes expressed by the purified mouse ESC-derived CPECs, and to compare this profile to those expressed by the choroid plexus in developing mice and humans. Industry partnerships and non-provisional patenting were also pursued to enhance the prospects for human CPEC applications in drug screening and treating patients with a wide range of neurodegenerative and other nervous system disorders.
  • The goal of this project is to define factors involved in choroid plexus epithelial cell (CPEC) development in mice, then to apply this knowledge to generate CPECs from mouse and human embryonic stem cells (ESCs) for clinical applications. Unexpected early success in generating ESC-derived CPECs (dCPECs) allowed us to accelerate and focus on the more translational goals of the project this year. We tested two new culture systems, with promising results from a more controllable and scalable monolayer culture system that will facilitate the improvement of dCPEC generation efficiency. New transcriptome profiling studies allowed us to better define highly-expressed genes for cell surface proteins, which will be targeted to purify dCPECs for downstream applications. New double-labelling and whole mount preparations of mouse choroid plexus have been devised to facilitate ongoing efforts to improve dCPEC engraftment of host choroid plexus after injection, and a new functional assay for dCPEC barrier formation and regulation has been established to complement an already-existing functional secretion assay in the lab. Efforts are also now underway to generate fluorescent and luminescent CPEC reporter hESC lines that should greatly facilitate dCPEC process development (derivation and purification). During this past year, new industry partners were recruited, an initial paper describing the dCPEC technology was published, and an initial patent application on the dCPEC technology was filed.
  • The goal of this project is to define factors involved in choroid plexus epithelial cell (CPEC) development in mice, then to apply this knowledge to generate CPECs from mouse and human embryonic stem cells (ESCs) for clinical applications. Unexpected early success in generating ESC-derived CPECs (dCPECs) allowed us to accelerate and focus on the more translational goals of the project this year. We further developed two culture systems - a more controllable monolayer system and more scalable rotational aggregate system - that will facilitate the dCPEC work. After several disappointments, improvements in dCPEC differentiation efficiency were obtained with two pharmacologic agents. With help from transcriptome profiling studies, we identified cell surface proteins that could be utilized for dCPEC enrichment, with initial promising results for one candidate surface antigen. A robust whole mount choroid plexus culture system was newly developed to facilitate efforts to improve dCPEC engraftment of host choroid plexus, and methods surrounding the stereotactic injection of dCPECs have been improved. After some difficulties, human TTR BAC constructs that express fluorescent and luminescent reporters were created and validated; these will be used to generate new CPEC reporter mouse lines for endpoint and longitudinal studies, and for in vivo drug testing of compounds that enhance TTR production and CPEC secretion. The initial patent application on the dCPEC technology was reviewed by the US PTO, and a revision was submitted.
Funding Type: 
New Cell Lines
Grant Number: 
RL1-00682
Investigator: 
ICOC Funds Committed: 
$1 589 760
Disease Focus: 
Parkinson's Disease
Neurological Disorders
Stem Cell Use: 
Embryonic Stem Cell
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Closed
Public Abstract: 
Parkinson's disease (PD) is currently the most common neurodegenerative movement disorder, severely debilitating approximately 1-2% of the US population. The disease is caused by a selective loss of dopamine-producing neurons located in a specific region of the brain. This loss leads to significant motor function impairment and age-dependent tremors. Unfortunately there is currently no cure for PD, however a synthetic dopamine treatment (L-DOPA), temporarily alleviates symptoms. The mechanisms of PD progression are currently unknown. However, genetic studies have identified that mutations (changes) in seven genes, including ?-synuclein, LRRK2, uchL1, parkin, PINK1, DJ-1 and ATP13A2 cause familial PD. Although the familial form of PD only affects a small portion of PD cases, uncovering the function of these genes may provide insight into the mechanisms that lead to the majority of PD cases. One of the best strategies to study PD mechanisms is to generate experimental models that mimic the initiation and progression of PD. A number of cellular and animal models have been developed for PD research. However, a model, which closely resembles the human degeneration process of PD, is currently not available because human neurons are unable to continuously propagate (grow) in culture. Human stem cells provide an opportunity to fulfill this task because these cells can grow and be programmed to generate dopamine nerve cells (the neurons under assault in PD patients). In this study, we propose to create stem cell lines that possess PD-associated mutations in two causative genes, PINK1 and parkin, using either rejected early stage embryos or cultured patient fibroblasts. These cell lines will in effect, represent a model of human PD degeneration of dopaminergic neurons. Our working hypothesis is that PD-associated abnormal parkin or PINK1 genes cause degeneration of stem cell-derived dopaminergic neurons, and dopaminergic neurons in vivo via the same mechanism. We will fulfill three tasks in this study; 1/ To generate the PD-stem cell (PD-SCs) line which harbor abnormal or mutant parkin or PINK1 genes; 2/ To determine the whether the PD-SCs cell lines can form into midbrain dopaminergic nerve cells; 3/ To determine whether mutations in parkin and PINK1 effect the survival of dopaminergic neurons which are derived from the PD-SCs cells. Successful completion of this study will yield novel cellular models for studying the mechanisms involved in PD initiation and progression, and further screening remedies for PD treatment.
Statement of Benefit to California: 
Parkinson's disease (PD) is the second leading neurodegenerative disease with no current cure available. Compared to other states, California is the highest in the incidence of this particular disease. First, California growers use approximately 250 million pounds of pesticides annually, about a quarter of all pesticides used in the US (Cal Pesticide use reporting system). A commonly used herbicide, paraquat, has been shown to induce parkinsonism in both animals and human. Other pesticides are also proposed as potential causative agents for PD. Studies have shown increased PD-caused mortality in agricultural pesticide-use counties in comparison to those non-use counties in California. Second, California has the largest Hispanic population. Studies suggest that incidence of PD is the highest among Hispanics (Van Den Eeden et al, American Journal of Epidemiology, Vol 157, pages 1015-1022, 2003). Thus, finding effective treatments of PD will significantly benefit citizens in California.
Progress Report: 
  • Parkinson’s disease (PD) is currently the most common neurodegenerative movement disorder, severely debilitating approximately 1-2% of the US population. The disease is caused by a selective loss of dopamine-producing neurons located in a specific region of the brain. This loss leads to significant motor function impairment and age-dependent tremors. Unfortunately there is currently no cure for PD, however a synthetic dopamine treatment (L-DOPA), temporarily alleviates symptoms.
  • The mechanism of PD progression are currently unknown. However, genetic studies have identified that mutations (changes) in multiple genes, including α-synuclein, LRRK2, uchL1, parkin, PINK1, DJ-1 and ATP13A2 cause familial PD. Although the familial form of PD only affects a small portion of PD cases, uncovering the function of these genes may provide insight into the mechanisms that lead to the majority of PD cases.
  • One of the best strategies to study PD mechanisms is to generate experimental models that mimic the initiation and progression of PD. A number of cellular and animal models have been developed for PD research. However, a model, which closely resembles the human degeneration process of PD, is currently not available because human neurons are unable to continuously propagate (grow) in culture. Human stem cells provide an opportunity to fulfill this task because these cells can grow and be programmed to generate dopamine nerve cells (the neurons under assault in PD patients).
  • In this study, we propose to create stem cell lines that possess PD-associated mutations in two causative genes, PINK1 and parkin, using either rejected early stage embryos or cultured patient fibroblasts. These cell lines will in effect, represent a model of human PD degeneration of dopaminergic neurons. Our working hypothesis is that PD-associated abnormal parkin or PINK1 genes cause degeneration of stem cell-derived dopaminergic neurons, and dopaminergic neurons in vivo via the same mechanism. We will fulfill three tasks in this study; 1/ To generate the PD-stem cell (PD-SCs) line which harbor abnormal or mutant parkin or PINK1 genes; 2/ To determine the whether the PD-SCs cell lines can form into midbrain dopaminergic nerve cells; 3/ To determine whether mutations in parkin and PINK1 effect the survival of dopaminergic neurons which are derived from the PD-SCs cells. Successful completion of this study will yield novel cellular models for studying the mechanisms involved in PD initiation and progression, and further screening remedies for PD treatment.
  • During last year, we have successfully generated primary skin fibroblast cultures from PD patients harboring mutations of parkin, PINK1, and DJ-1 genes, as well as sporadic PD patients and normal individuals. By using these cells, we have already generated four induced stem cell lines expressing multiple pluripotent markers (two from PD patients and two from normal individuals. These lines can also form teratomas with cells from three germ layers using mouse as host. These findings suggest that the induced pluripotent cell lines generated in the lab are likely PD patient specific stem cells.
  • During the next report year, we will continue to generate more PD patient-specific induced pluripotent stem cells. We will carefully characterize all lines generated in the lab as proposed. Furthermore, we will adapt protocols to differentiate the new lines into dopaminergic neurons.
  • Public Summary of Scientific Progress
  • Parkinson’s disease (PD) is currently the most common neurodegenerative movement disorder affecting approximately 1-2% of the US population. The disease is caused by a selective loss of dopamine-producing neurons located in a specific region of the brain. This loss leads to significant motor function impairment and age-dependent tremors. Unfortunately, there is currently no cure for PD, however a synthetic dopamine treatment (L-DOPA), temporarily alleviates symptoms.
  • Genetic studies have identified that mutations (changes) in multiple genes cause familial PD. Although the familial form of PD only affects a small portion of PD cases, uncovering the function of these genes in PD-affected dopamine-secretion neurons may provide insight into the mechanisms that lead to the majority of PD cases.
  • One of the best strategies to study PD mechanisms is to generate experimental models that mimic the initiation and progression of PD. A number of cellular and animal models have been developed for PD research. However, a model, which closely resembles the human degeneration process of PD, is currently not available because human neurons are unable to continuously propagate (grow) in culture. Human stem cells provide an opportunity to fulfill this task because these cells can grow and be programmed to generate dopamine nerve cells (the neurons under assault in PD patients).
  • In this study, we propose to create stem cell lines that possess PD-associated mutations in two causative genes, PINK1 and parkin, using either rejected early stage embryos or cultured patient fibroblasts. These cell lines will in effect, represent a model of human PD degeneration of dopaminergic neurons. Our working hypothesis is that PD-associated abnormal parkin or PINK1 genes cause degeneration of stem cell-derived dopaminergic neurons, and dopaminergic neurons in vivo via the same mechanism. We will fulfill three tasks in this study; 1/ To generate the PD-stem cell (PD-SCs) line which harbor abnormal or mutant parkin or PINK1 genes; 2/ To determine the whether the PD-SCs cell lines can form into midbrain dopaminergic nerve cells; 3/ To determine whether mutations in parkin and PINK1 effect the survival of dopaminergic neurons which are derived from the PD-SCs cells. Successful completion of this study will yield novel cellular models for studying the mechanisms involved in PD initiation and progression, and further screening remedies for PD treatment.
  • During last year, we have successfully obtained more primary skin fibroblast cultures from PD patients harboring mutations of parkin, PINK1, DJ-1 and PLA2G6 genes, as well as sporadic PD patients and normal control individuals. By using these cells, we have already generated 9 induced stem cell lines expressing multiple pluripotent markers (7 from PD patients and 2 from normal individuals). These lines can also form teratomas with cells from three germ layers using mouse as host. These findings suggest that the induced pluripotent cell lines generated in the lab are likely PD patient specific stem cells.
  • During the next report year, we will continue to generate more PD patient-specific induced pluripotent stem cells. We will carefully characterize all lines generated in the lab as proposed. Furthermore, we will adapt protocols to differentiate the new lines into dopaminergic neurons.
  • Parkinson’s disease (PD) is currently the most common neurodegenerative movement disorder, severely debilitating approximately 1-2% of the US population. The disease is caused by a selective loss of dopamine-producing neurons located in a specific region of the brain. This loss leads to significant motor function impairment and age-dependent tremors. Unfortunately there is currently no cure for PD, however a synthetic dopamine treatment (L-DOPA), temporarily alleviates symptoms.
  • The mechanism of PD progression is currently unknown. However, genetic studies have identified that mutations (changes) in multiple genes, including α-synuclein, LRRK2, uchL1, parkin, PINK1, DJ-1 and ATP13A2 cause familial PD. Although the familial form of PD only affects a small portion of PD cases, uncovering the function of these genes may provide insight into the mechanisms that lead to the majority of PD cases.
  • One of the best strategies to study PD mechanisms is to generate experimental models that mimic the initiation and progression of PD. A number of cellular and animal models have been developed for PD research. However, a model, which closely resembles the human degeneration process of PD, is currently not available because human neurons are unable to continuously propagate (grow) in culture. Human stem cells provide an opportunity to fulfill this task because these cells can grow and be programmed to generate dopamine nerve cells (the neurons under assault in PD patients).
  • In this study, we propose to create stem cell lines that either have the genetic background of sporadic PD patients or possess PD-associated mutations using cultured patient fibroblasts. These cell lines will in effect, represent a model of human PD degeneration of dopaminergic neurons. Our working hypothesis is that the degeneration of stem cell-derived dopaminergic neurons and dopaminergic neurons in vivo via the same mechanism. We will fulfill three tasks in this study; 1/ To generate the PD-stem cell (PD-SCs) line which either have the genetic background of sporadic PD patients or harbor PD specific gene mutantions; 2/ To determine the whether the PD-SCs cell lines can form into midbrain dopaminergic nerve cells; 3/ To determine whether mutations in parkin and PINK1 effect the survival of dopaminergic neurons which are derived from the PD-SCs cells. Successful completion of this study will yield novel cellular models for studying the mechanisms involved in PD initiation and progression, and further screening remedies for PD treatment.
  • During last year, we have finished to develop 15 lines of iPSCs. These include 5 lines from normal control individuals, 5 lines from sporadic Parkinson disease patients, and 5 lines from Parkinson disease patients harboring disease related mutations of PINK1, DJ-1 and PLA2G6 genes. These lines provide an unique opportunity to systematically study comparative pathophysiology of Parkinson disease using sporadic and genetic cases. Moreover, we indeed spent more than a year in optimizing the condition for differentiation of these lines. It is recognized that iPSCs are more difficult to differentiate than the hESCs. We are now able to finalize the protocols to have all lines be differentiated in vitro. Therefore, we will be able to compare differences among the controls, sporadic PD and genetic PD at the level of cell biology and molecular biology.
  • During the next report year, we will differentiate all lines into DA neurons and carefully the functional changes of these cells. We hope that the results will reveal some molecular basis of PD pathogenesis from these human neurons.
  • Parkinson’s disease (PD) is currently the most common neurodegenerative movement disorder, severely debilitating approximately 1-2% of the US population. The disease is caused by a selective loss of dopamine-producing neurons located in a specific region of the brain. This loss leads to significant motor function impairment and age-dependent tremors. Unfortunately there is currently no cure for PD, however a synthetic dopamine treatment (L-DOPA), temporarily alleviates symptoms.
  • The mechanism of PD progression is currently unknown. However, genetic studies have identified that mutations (changes) in multiple genes, including α-synuclein, LRRK2, uchL1, parkin, PINK1, DJ-1 and ATP13A2 cause familial PD. Although the familial form of PD only affects a small portion of PD cases, uncovering the function of these genes may provide insight into the mechanisms that lead to the majority of PD cases.
  • One of the best strategies to study PD mechanisms is to generate experimental models that mimic the initiation and progression of PD. A number of cellular and animal models have been developed for PD research. However, a model, which closely resembles the human degeneration process of PD, is currently not available because human neurons are unable to continuously propagate (grow) in culture. Human stem cells provide an opportunity to fulfill this task because these cells can grow and be programmed to generate dopamine nerve cells (the neurons under assault in PD patients).
  • In this study, we propose to create stem cell lines that either have the genetic background of sporadic PD patients or possess PD-associated mutations using cultured patient fibroblasts. These cell lines will in effect, represent a model of human PD degeneration of dopaminergic neurons. Our working hypothesis is that the degeneration of stem cell-derived dopaminergic neurons and dopaminergic neurons in vivo via the same mechanism. We will fulfill three tasks in this study; 1/ To generate the PD-stem cell (PD-SCs) line which either have the genetic background of sporadic PD patients or harbor PD specific gene mutantions; 2/ To determine the whether the PD-SCs cell lines can form into midbrain dopaminergic nerve cells; 3/ To determine whether mutations in parkin and PINK1 effect the survival of dopaminergic neurons which are derived from the PD-SCs cells. Successful completion of this study will yield novel cellular models for studying the mechanisms involved in PD initiation and progression, and further screening remedies for PD treatment.
  • During last four years, we have finished to develop 15 lines of iPSCs. These include 5 lines from normal control individuals, 5 lines from sporadic Parkinson disease patients, and 5 lines from Parkinson disease patients harboring disease related mutations of PINK1, DJ-1 and PLA2G6 genes. These iPS lines are shown to have biochemical and genomic characteristics of human ES cells. These lines provide an unique opportunity to systematically study comparative pathophysiology of Parkinson disease using sporadic and genetic cases. Using these lines, we have identified a group of genes differentially expressed and differentially methylated between iPS cells derived from PD patients and iPS cells derived from normal control individuals. However, we recognize that iPSCs are more difficult to differentiate than the hESCs. We are yet to finalize the protocols to have all lines be differentiated in vitro. Our goal is to compare differences among the controls, sporadic PD and genetic PD at the level of cell biology and molecular biology.
Funding Type: 
New Cell Lines
Grant Number: 
RL1-00681
Investigator: 
Type: 
PI
ICOC Funds Committed: 
$1 382 400
Disease Focus: 
Amyotrophic Lateral Sclerosis
Neurological Disorders
Melanoma
Cancer
Muscular Dystrophy
Neurological Disorders
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Closed
Public Abstract: 
The therapeutic use of stem cells depends on the availability of pluripotent cells that are not limited by technical, ethical or immunological considerations. The goal of this proposal is to develop and bank safe and well-characterized patient-specific pluripotent stem cell lines that can be used to study and potentially ameliorate human diseases. Several groups, including ours have recently shown that adult skin cells can be reprogrammed in the laboratory to create new cells that behave like embryonic stem cells. These new cells, known as induced pluripotent stem (iPS) cells should have the potential to develop into any cell type or tissue type in the body. Importantly, the generation of these cells does not require human embryos or human eggs. Since these cells can be derived directly from patients, they will be genetically identical to the patient, and cannot be rejected by the immune system. This concept opens the door to the generation of patient-specific stem cell lines with unlimited differentiation potential. While the current iPS cell technology enables us now to generate patient-specific stem cells, this technology has not yet been applied to derive disease-specific human stem cell lines for laboratory study. Importantly, these new cells are also not yet suitable for use in transplantation medicine. For example, the current method to make these cells uses retroviruses and genes that could generate tumors or other undesirable mutations in cells derived from iPS cells. Thus, in this proposal, we aim to improve the iPS cell reprogramming method, to make these cells safer for future use in transplant medicine. We will also generate a large number of iPS lines of different genetic or disease backgrounds, to allow us to characterize these cells for function and as targets to study new therapeutic approaches for various diseases. Lastly, we will establish protocols that would allow the preparation of these types of cells for clinical use by physicians investigating new stem cell-based therapies in a wide variety of diseases.
Statement of Benefit to California: 
Several groups, including ours have recently shown that adult skin cells can be reprogrammed in the laboratory to create new cells that behave like embryonic stem cells. These new cells, known as induced pluripotent stem (iPS) cells should have, similar to embryonic stem cells, the potential to develop into any cell type or tissue type in the body. This new technology holds great promise for patient-specific stem-cell based therapies, the production of in vitro models for human disease, and is thought to provide the opportunity to perform experiments in human cells that were not previously possible, such as screening for compounds that inhibit or reverse disease progression. The advantage of using iPS cells for transplantation medicine would be that the patient’s own cells would be reprogrammed to an embryonic stem cell state and therefore, when transplanted back into the patient, the cells would not be attacked and destroyed by the body's immune system. Importantly, these new cells are not yet suitable for use in transplantation medicine or studies of human diseases, as their derivation results in permanent genetic changes, and their differentiation potential has not been fully studied. The goal of this proposal is to develop and bank genetically unmodified and well-characterized iPS cell lines of different genetic or disease backgrounds that can be used to characterize these cells for function and as targets to study new therapeutic approaches for various human diseases. We will establish protocols that would allow the preparation of these types of cells for clinical use by physicians investigating new stem cell-based therapies in a wide variety of diseases. Taken together, this would be beneficial to the people of California as tens of millions of Americans suffer from diseases and injuries that could benefit from such research. Californians will also benefit greatly as these studies should speed the transition of iPS cells to clinical use, allowing faster development of stem cell-based therapies.
Progress Report: 
  • The goal of this project is to develop and bank safe, well-characterized pluripotent stem cell lines that can be used to study and potentially ameliorate human diseases, and that are not limited by technical, ethical or immunological considerations. To that end, we proposed to establish protocols for generation of human induced pluripotent stem cells (hiPSC) that would not involve viral vector integration, and that would be compatible with Good Manufacturing Processes (GMP) standards. To establish baseline characteristics of hiPSCs, we performed a complete molecular characterization of all existing hiPSCs in comparison to human embryonic stem cells (hESCs). We found that all hiPSC lines created to date, regardless of the method by which they were reprogrammed, shared a common gene expression signature, distinct from that of hESCs. The functional role of this gene expression signature is still unclear, but any lines that are generated under the guise of this grant will be subjected to a similar analysis to set the framework by which these new lines are functionally characterized. Our efforts to develop new strategies for the production of safe iPS cells have yielded many new cell lines generated by various techniques, all of which are safer than the standard retroviral protocol. We are currently expanding many of the hiPSCs lines generated and will soon demonstrate whether their gene expression profile, differentiation capability, and genomic stability make them suitable for banking in our iPSC core facility. Once fully characterized, these cells will be available from our bank for other investigators.
  • For hiPSC technology to be useful clinically, the procedures to derive these cells must be robust enough that iPSC can be obtained from the majority of donors. To determine the versatility of generation of iPS cells, we have now derived hiPSCs from commercially obtained fibroblasts derived from people of different ages (newborn through 66 years old) as well as from different races (Caucasian and mixed race). We are currently evaluating medium preparations that will be suitable for GMP-level use. Future work will ascertain the best current system for obtaining hiPSC, and establish GMP-compliant methodologies.
  • The goal of this project is to develop and bank safe, well-characterized pluripotent stem cell lines that can be used to study and potentially ameliorate human diseases. To speed this process, we are taking approaches that are not limited by technical, ethical or immunological considerations. We are establishing protocols for generation of human induced pluripotent stem cells (hiPSCs) that would not involve viral vector integration, and that are compatible with Good Manufacturing Practices (GMP) standards. Our efforts to develop new strategies for the production of safe hiPSC have yielded many new cell lines generated by various techniques. We are characterizing these lines molecularly, and have found hiPSCs can be made that are nearly indistinguishable from human embryonic stem cells (hESC). We have also recently found in all the hiPSCs generated from female fibroblasts, none reactivated the X chromosome. This finding has opened a new frontier in the study and potential treatment of X-linked diseases. We are currently optimizing protocols to generate hiPSC lines that are derived, reprogrammed and differentiated in the absence of animal cell products, and preparing detailed standard operating procedures that will ready this technology for clinical utility.
  • This project was designed to generate protocols whereby human induced pluripotent stem cells could be generated in a manner consistent with use in clinical trials. This required optimization of protocols and generation of standard operating procedures such that animal products were not involved in generation and growth of the cells. We have successfully identified such a protocol as a resource to facilitate widespread adoption of these practices.
Funding Type: 
New Cell Lines
Grant Number: 
RL1-00678
Investigator: 
Type: 
PI
ICOC Funds Committed: 
$1 369 800
Disease Focus: 
Huntington's Disease
Neurological Disorders
Stem Cell Use: 
Embryonic Stem Cell
iPS Cell
Cell Line Generation: 
Embryonic Stem Cell
iPS Cell
oldStatus: 
Closed
Public Abstract: 
Huntington’s disease (HD) is a devastating neurodegenerative disease with a 1/10,000 disease risk that always leads to death. These numbers do not fully reflect the large societal and familial cost of HD, which requires extensive caregiving and has a 50% chance of passing the mutation to the next generation. Current treatments treat some symptoms but do not change the course of disease. Symptoms of the disease include movement abnormalities, inability to perform daily tasks and and psychiatric problems. A loss os specific regions of the brain are observed. The mutation for HD is an expansion of a region of repeated DNA in the HD gene and the longer the repeat, in general the earlier the onset of disease. While the length of this polyglutamine repeat largely determines the age-of-onset, there is variance in onset age that is not accounted for by repeat length but is determined by genetic and environmental factors. In addition, the symptoms can vary significantly among patients in a non-repeat dependent manner. To assist in preventing onset of HD, there is a great need to identify genes that are involved in why one individual with 45 repeats will manifest symptoms at age 40 while another manifests symptoms at age 70. Further, there is a lack of early readouts to determine when to begin HD treatments. Because the disease mutation is known, preimplantation genetic diagnosis (PGD) is possible and mutant Htt embryos are available. Stem cell lines can be derived from PGD embryos with varying repeat lengths and genetic backgrounds to provide new methods to identify genetic modifiers and readouts of disease progression. The development of pluripotent stem cells, termed induced pluripotent stem cells (iPS) cells, derived directly from HD patient fibroblasts, would also provide new methods for these analyses. Chemical compound screens to identify drugs that protect against the effect of mutant Htt protein expression in patient derived hESCs cells would allow evaluation of drug responses in on cells having different genetic backgrounds Ultimately, the iPS cells can provide a way to transplant neurons or neuronal support cells from affected individuals or from unaffected family members having a normal range repeat. Such cells would help reduce immune rejection effects likely to occur with transplantation, however, while patient-derived cells overcome the problems of immune rejection, the mutant protein is still expressed. To overcome this problem we will genetically modify these stem cells to reduce the mutant protein and produce a normal gene. Beyond the immediate application to HD, the development of these models is applicable to a range of neurodegenerative diseases including Alzheimer’s and Parkinson’s diseases.
Statement of Benefit to California: 
The disability and loss of earning power and personal freedom resulting from Huntington's disease (HD) is devastating and creates a financial burden for California. Individuals are struck in the prime of life, at a point when they are their most productive and have their highest earning potential. Further, as the disease progressives, individuals require institutional care facilities at great financial cost. Therapies using human embryonic stem cells (hESCs) have the potential to change the lives of hundreds of individuals and their families, which brings the human cost into the thousands. Further, hESCs from HD patients will help us understand the factors that dictate the course of the disease and provide a resource for drug development. For the potential of hESCs in HD to be realized, a very forward approach such as that proposed will allow experienced investigators in HD and stem cell research and clinical trials to come together and create cell lines to more fully mimic the diseases neurons and allow for future treatment options. The federal constraints on hESCs create a critical need for the development of treatments using hESCs supported and staffed with non-federal funds. We have proposed goals and strategies for generating new stem cells derived from patient preimplantation diagnosis embryos and patient fibroblasts. We have put in place critical milestones to be met We will build on existing regional stem cell resources . Anticipated benefits to the citizens of California include: 1) development of new stem cell lines that will allow us to more closely model the disease for mechanistic studies and drug screening, 2) improved methods for following the course of the disease in order to treat HD as early as possible before symptoms are manifest; 3) development of new cell-based treatments for Huntington's disease with application to other neurodegenerative diseases such as Alzheimer's and Parkinson's diseases that affect thousands of individuals in California; 4) development of intellectual property that could form the basis of new biotech startup companies; and 5) improved methods for drug development that could directly benefit citizens of the state.
Progress Report: 
  • Huntington’s disease (HD) is a devastating neurodegenerative disease with a 1/10,000 disease risk that always leads to death. These numbers do not fully reflect the large societal and familial cost of HD, which requires extensive caregiving and has a 50% chance of passing the mutation to the next generation. Current treatments treat some symptoms but do not change the course of disease. Symptoms of the disease include movement abnormalities, inability to perform daily tasks and psychiatric problems. A loss of specific regions of the brain are observed. The mutation for HD is an expansion of a region of repeated DNA in the HD gene and the longer the repeat, in general the earlier the onset of disease. While the length of this polyglutamine repeat largely determines the age-of-onset, there is variance in onset age that is not accounted for by repeat length but is determined by genetic and environmental factors. In addition, the symptoms can vary significantly among patients in a non-repeat dependent manner. There is a lack of early readouts to determine when to begin HD treatments. Because the disease mutation is known, preimplantation genetic diagnosis (PGD) is possible and mutant Htt embryos are available. We have obtained a number of HD PGD embryos with varying repeat lengths and genetic backgrounds to derive hES cell lines and provide new methods to identify genetic modifiers and readouts of disease progression. Development of multiple lines has begun during this funding period. The development of pluripotent stem cells, termed induced pluripotent stem (iPS) cells, derived directly from HD patient fibroblasts, also provide new methods for these analyses. We have begun the establishment of a bank of HD fibroblasts and have derived three new iPS lines to date with unique CAG repeat expansions. Characterization of the lines for HD phenotypes is in progress. An additional line is being generated and additional fibroblast collection from both HD patients and individuals who do not carry the HD gene is planned for the coming year to generate other sets of iPS lines. These lines will allow mechanistic studies and chemical compound screens to identify drugs that protect against the effect of mutant Htt protein expression in patient derived stem cells to be performed. Ultimately, the iPS cells will provide a way to transplant neurons or neuronal support cells from affected individuals or from unaffected family members having a normal range repeat. Such cells would help reduce immune rejection effects likely to occur with transplantation, however, while patient-derived cells overcome the problems of immune rejection, the mutant protein is still expressed. To overcome this problem we will genetically modify these stem cells to reduce the mutant protein and produce a normal gene in the next portion of the project.
  • Huntington’s disease (HD) is a devastating neurodegenerative disease that strikes in mid-life and inevitably leads to death. As it is genetic, offspring of affected individuals are 50% at risk. Current medications treat some symptoms, which include movement abnormalities, inability to perform daily tasks and psychiatric problems, but do not change the course of disease. The mutation for HD is an expansion of a region of repeated DNA in the HD gene. In general, the longer the repeat the earlier the onset of disease. While the length of this polyglutamine repeat largely determines the age-of-onset, there is variance in onset age that is not accounted for by repeat length but is determined by genetic and environmental factors. In addition, the symptoms can vary significantly among patients in a non-repeat dependent manner. There is a lack of early readouts to determine when to begin HD treatments. Because the disease mutation is known, preimplantation genetic diagnosis (PGD) is possible and mutant Htt embryos are available. We have obtained a number of HD PGD embryos with varying repeat lengths and genetic backgrounds to derive hES cell lines and have derived a line that is now fully characterized as a stem cell line. The development of pluripotent stem cells, termed induced pluripotent stem (iPS) cells, derived directly from HD patient skin cells (fibroblasts), also provide new methods for these analyses. We have made significant progress in establishing a bank of HD fibroblasts and have derived seven new iPS lines to date with unique CAG repeat expansions. Characterization of the lines for HD phenotypes is either complete or in progress. Additional lines are being generated and additional fibroblast collection from both HD patients and individuals who do not carry the HD gene is planned for the coming year to generate other sets of iPS lines. These lines will allow mechanistic studies and chemical compound screens to identify drugs that protect against the effect of mutant Htt protein expression in patient derived stem cells to be performed.
  • Huntington’s disease (HD) is a devastating neurodegenerative disease that strikes in mid-life and inevitably leads to death. As it is genetic, offspring of affected individuals are 50% at risk. Current medications treat some symptoms, which include movement abnormalities, inability to perform daily tasks and psychiatric problems, but do not change the course of disease. The mutation for HD is an expansion of a region of repeated DNA in the HD gene. In general, the longer the repeat the earlier the onset of disease. While the length of this polyglutamine repeat largely determines the age-of-onset, there is variance in onset age that is not accounted for by repeat length but is determined by genetic and environmental factors. In addition, the symptoms can vary significantly among patients in a non-repeat dependent manner. There is a lack of early readouts to determine when to begin HD treatments. Because the disease mutation is known, preimplantation genetic diagnosis (PGD) is possible and mutant Htt embryos are available. We have obtained HD PGD embryos and have derived a line that is now fully characterized as a stem cell line that is capable of becoming brain cells. The development of pluripotent stem cells, termed induced pluripotent stem (iPS) cells, derived directly from HD patient skin cells (fibroblasts), also provide new methods for these analyses. We have established a bank of HD fibroblasts and have derived seven new iPS lines with unique CAG repeat expansions. Characterization of the lines for HD symptoms is either complete or in progress. Additional lines are being generated and additional skin cells collected from both HD patients and individuals who do not carry the HD gene. These lines are allowing mechanistic studies and chemical compound screens to identify drugs that protect against the effect of mutant Htt protein expression in patient derived stem cells to be performed. Finally, we are developing a method to reduce the level of the mutant protein to provide options for future transplantation from an individual's own skin cells to prevent immune rejection.
Funding Type: 
New Cell Lines
Grant Number: 
RL1-00650
Investigator: 
Type: 
PI
ICOC Funds Committed: 
$1 708 560
Disease Focus: 
Dementia
Neurological Disorders
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Closed
Public Abstract: 
We propose to generate induced pluripotent stem (iPS) cells from skin cells derived from human subjects with frontotemporal dementia (FTD). FTD accounts for 15–20% of all dementia cases and, with newly identified genetic causes, is now recognized as the most common dementia in patients under 65 years of age. FTD patients suffer progressive neurodegeneration in the frontal and temporal lobes and other brain regions, resulting in behavioral changes and memory and motor neuron deficits. The median age of onset for this devastating disease is 58 years, and disease progression is rapid, with death in 3–8 years. Compared with other age-dependent neurodegenerative diseases, the molecular, cellular, and genetic bases of FTD remain poorly understood. Genetic causes are estimated to account for ~40% of FTD. In addition to tau identified in 1998, mutations in three causative genes have been identified during the last three years. The identification of FTD mutations opens exciting new avenues for understanding the causes of FTD. Research on these mutations will help to identify effective therapies. However, the ability to study the functions of these factors is severely limited due to the lack of available human neurons from FTD patients. To address the need for disease– and patient–specific neurons, we will use the powerful new technique of iPS cells. iPS cells are derived from skin cells and can be used to generate any cell types in the body, including neurons. We will obtain human skin cells from FTD patients with disease-causing mutations and generate many FTD mutation–specific iPS cell lines. We will then use these iPS cells to generate FTD mutation–specific neurons to study disease mechanisms. The bank of iPS cell lines we generate will also enable the development of sensitive assays for drug screening and testing of therapeutic agents for treating FTD. All cell lines will be made available to the global FTD research community. The generation of human neurons from FTD patients will be a tremendous advance toward finding a cure for this disease.
Statement of Benefit to California: 
California is the U.S. leader in basic research into stem cell–based therapies for disease. To help California remain at the forefront of research on neurological disease, we propose to use induced pluripotent stem (iPS) cells—a revolutionary new technique developed recently by Dr. Shinya Yamanaka—to target frontotemporal dementia (FTD). FTD is a devastating and common form of dementia. {REDACTED} The proposed research will establish California as the leader in generating human patient–specific neurons from iPS cells. The potential long-term benefits to California include growth of the clinical enterprise in the diagnosis and treatment of FTD, the establishment of biotechnology to generate new drugs for FTD, and potential intellectual properties for driving private enterprises to develop therapies.
Progress Report: 
  • In this grant, we proposed to generate induced pluripotent stem (iPS) cells from skin cells derived from human subjects with frontotemporal dementia (FTD). FTD accounts for 15–20% of all dementia cases and, with newly identified genetic causes, is now recognized as the most common dementia in patients under 65 years of age. FTD patients suffer progressive neurodegeneration in the frontal and temporal lobes and other brain regions, resulting in behavioral changes and memory and motor neuron deficits. The median age of onset of this devastating disease is 58 years, and it progresses rapidly, causing death in 3–8 years. Compared with other age-dependent neurodegenerative diseases, the molecular, cellular, and genetic bases of FTD are poorly understood. Genetic causes are estimated to account for ~40% of FTD. In addition to tau identified in 1998, mutations in three causative genes have been identified during the last three years. The identification of FTD mutations opens exciting new avenues for understanding the causes of FTD. Research on these mutations will help to identify effective therapies. However, the ability to study the functions of these factors is severely limited due to the lack of available human neurons from FTD patients. To address the need for disease– and patient–specific neurons, we proposed to use the powerful new technique of iPS cells. iPS cells are derived from skin cells and can be used to generate any cell types in the body, including neurons. During the last 10 months, we have obtained human skin cells from more than 30 FTD patients with disease-causing mutations and unaffected family members. We have generated about 200 putative iPS cell lines from two FTD patients with defined genetic mutations, one sporadic case, and one control. We characterized some of the iPS cell lines and differentiated one patient-specific iPS cell line into human postmitotic neurons. These results represent a major advance toward finding a cure for FTD, and we will continue to pursue this line of research as proposed.
  • We have collected numerous skin samples from patients with a kind of dementia that affects the frontal lobes. We have also collected samples from unaffected family members (controls). For many of these samples we have made induced pluripotent stem cells (iPS), which can give rise to any cell type. We are in the process of generating neurons from these stem cells. Our hope and intention is to study these cells to learn about the mechanisms that give rise to this dementia and to be able to test potential therapies.
  • We have collected numerous skin samples from patients with a kind of dementia that affects the frontal lobes. We have also collected samples from unaffected family members (controls). For many of these samples we have made induced pluripotent stem cells (iPS), which can give rise to any cell type. We are in the process of generating neurons and other cell types, such as cells that mediate inflammation, from these stem cells. Our hope and intention is to study these cells to learn about the mechanisms that give rise to this dementia and to be able to test potential therapies.
Funding Type: 
New Cell Lines
Grant Number: 
RL1-00649
Investigator: 
ICOC Funds Committed: 
$1 737 720
Disease Focus: 
Amyotrophic Lateral Sclerosis
Neurological Disorders
Autism
Blood Disorders
Rett's Syndrome
Neurological Disorders
Pediatrics
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Closed
Public Abstract: 
Human embryonic stem cells (hESC) hold great promise in regenerative medicine and cell replacement therapies because of their unique ability to self-renew and their developmental potential to form all cell lineages in the body. Traditional techniques for generating hESC rely on surplus IVF embryos and are incompatible with the generation of genetically diverse, patient or disease specific stem cells. Recently, it was reported that adult human skin cells could be induced to revert back to earlier stages of development and exhibit properties of authentic hES cells. The exact method for “reprogramming” has not been optimized but currently involves putting multiple genes into skin cells and then exposing the cells to specific chemical environments tailored to hES cell growth. While these cells appear to have similar developmental potential as hES cells, they are not derived from human embryos. To distinguish these reprogrammed cells from the embryonic sourced hES cells, they are termed induced pluripotent stem (iPS) cells. Validating and optimizing the reprogramming method would prove very useful for the generation of individual cell lines from many different patients to study the nature and complexity of disease. In addition, the problems of immune rejection for future therapeutic applications of this work will be greatly relieved by being able to generate reprogrammed cells from individual patients. We have initiated a series of studies to reprogram human and mouse fibroblasts to iPS cells using the genes that have already been suggested. While induction of these genes in various combinations have been reported to reprogram human cells, we plan to optimize conditions for generating iPS cells using methods that can control the level of the “reprogramming” genes, and also can be used to excise the inducing genes once reprogramming is complete; thus avoiding unanticipated effects on the iPS cells. Once we have optimized the methods of inducing human iPS cells from human fibroblasts, we will make iPS cells from patients with 2 different neurological diseases. We will then coax these iPS cells into specific types of neurons using methods pioneered and established in our lab to explore the biological processes that lead to these neurological diseases. Once we generate these cell based models of neural diseases, we can use these cells to screen for drugs that block the progress, or reverse the detrimental effects of neural degeneration. Additionally, we will use the reprogramming technique to study models of human blood and liver disease. In these cases, genetically healthy skin cells will be reprogrammed to iPS cells, followed by introduction of the deficient gene and then coaxed to differentiate into therapeutic cell types to be used in transplantation studies in animal models of these diseases. The ability of the reprogrammed cell types to rescue the disease state will serve as a proof of principle for therapeutic grafting in
Statement of Benefit to California: 
It has been close to a decade since the culture of human embryonic stem (hES) cells was first established. To this day there are still a fairly limited number of stem cell lines that are available for study due in part to historic federal funding restrictions and the challenges associated with deriving hES cell lines from human female egg cells or discarded embryos. In this proposal we aim to advance the revolutionary new reprogramming technique for generating new stem cell lines from adult cells, thus avoiding the technical and ethical challenges associated with the use of human eggs or embryos, and creating the tools and environment to generate the much needed next generation of human stem cell lines. Stem cells offer a great potential to treat a vast array of diseases that affect the citizens of our state. The establishment of these reprogramming techniques will enable the development of cellular models of human disease via the creation of new cell lines with genetic predisposition for specific diseases. Our proposal aims to establish cellular models of two specific neurological diseases, as well as developing methods for studying blood and liver disorders that can be alleviated by stem cell therapies. California has thrived as a state with a diverse population, but the stem cell lines currently available represent a very limited genetic diversity. In order to understand the variation in response to therapeutics, we need to generate cell lines that match the rich genetic diversity of our state. The generation of disease-specific and genetically diverse stem cell lines will represent great potential not only for CA health care patients but also for our state’s pharmaceutical and biotechnology industries in terms of improved models for drug discovery and toxicological testing. California is a strong leader in clinical research developments. To maintain this position we need to be able to create stem cell lines that are specific to individual patients to overcome the challenges of immune rejection and create safe and effective transplantation therapies. Our proposal advances the very technology needed to address these issues. As a further benefit to California stem cell researchers, we will be making available the new stem cell lines created by our work.
Progress Report: 
  • Public Summary for: CIRM New Cell Line Project - Progress Report.
  • Our research team has been working over the last year on developing new human stem cell lines that are specifically useful for studying human diseases and developing new therapeutic strategies. Human embryonic stem (hES) cells were first established in 1998 and in the past decade have been shown to be capable to differentiating to a vast array of different cell types. This full developmental potential is termed pluripotency. Until recently these were the only established human cell type that could be robustly grown in the laboratory setting and still maintain full pluripotent developmental potential. In November of 1997, a new type of human pluripotent cell was created. By turning on a set of 4 genes, researchers succeeded in reprogramming human skin cells back into a cell type that appeared to have very similar properties and potential as the hES cell. These new stem cells are called induced pluripotent stem (iPS) cells in order to keep the name distinct from their embryonic derived counterpart. One of the scientific limitations of hES cells is the impracticality of generating patient or disease specific stem cell lines. This opportunity now becomes theoretically practical with the advent of human iPS cell line generation. We report here on significant progress demonstrating the practicality of generating disease-linked cellular models of human diseases.
  • We have identified 2 specific human neurological diseases that have a known, or strongly suggested genetic component, and have set about to generate disease-linked iPS cell lines. We have obtained skin cell samples from patients with these neurological diseases and have successfully reprogrammed them back to iPS cells. These disease-linked pluripotent stem cells have been carefully characterized and we have demonstrated that they do indeed behave very similar to existing hES cells and also to the genetically healthy control iPS cell lines that we have generated. Therefore the disease phenotype is not detrimental to reprogramming or proliferation as a stem cell. Furthermore, we have succeeded in coaxing these disease-linked iPS cells to turn into specific types of human neurons, the very cells that are suspected to be involved in the neurological disorders. We now have established a viable model for studying human neural disorders in the laboratory, and have already observed some potentially important functional differences between the disease-linked and control iPS generated neurons. In the coming year we will be evaluating the differences between the disease-linked and control neurons and investigating potential therapeutic approaches to stop or reverse the defects.
  • We have also been working on developing new methods for generating iPS cells that will make them more useful in clinical or pre-clinical settings where it is important that the original set of 4 genes used to reprogram the skin cells are removed once they have become iPS cells. Significant progress has been made in this regard and will be completed in the coming year. Looking forward we will also be applying this approach to generate human disease-linked iPS cells for specific hematological (blood) related disorders. The derivation of iPS-based models of hematological disorders will allow us develop gene therapy approaches to correct the disease causing defects and establish proof of principle for therapeutic approaches.
  • This research project is focused on developing new human stem cell lines that are specifically useful for studying human diseases and developing new therapeutic strategies. Human embryonic stem (hES) cells were first established in 1998 and in the past decade have been shown to be capable of differentiating to a vast array of different cell types. This full developmental potential is termed "pluripotency." Until recently these were the only established human cell types that could be robustly grown in the laboratory setting and still maintain full pluripotent developmental potential. In November 1997 a new type of human pluripotent cell was created. By turning on a set of 4 genes, researchers succeeded in reprogramming human skin cells back into a cell type that appeared to have very similar properties and potential as the hES cell. These new stem cells are called induced pluripotent stem (iPS) cells in order to keep the name distinct from their embryonic derived counterpart. One of the scientific limitations of hES cells is the impracticality of generating patient or disease specific stem cell lines. This opportunity now becomes theoretically practical with the advent of human iPS cell line generation. We report here on significant progress demonstrating the practicality of generating disease-linked cellular models of human diseases.
  • We have identified 2 specific human neurological diseases that have known, or strongly suggested, genetic components and have set about to generate disease-linked iPS cell lines. We have obtained skin cell samples from patients with these neurological diseases and have successfully reprogrammed them back to iPS cells. These disease-linked pluripotent stem cells have been carefully characterized and we have demonstrated that they do indeed behave very similar to existing hES cells and also to the genetically healthy control iPS cell lines that we have generated. Therefore, the disease phenotype is not detrimental to reprogramming or proliferation as a stem cell. Furthermore, we have succeeded in coaxing these disease-linked iPS cells to turn into specific types of human neurons, the very cells that are suspected to be involved in the neurological disorders. We now have established a viable model for studying human neural disorders in the laboratory, and have already observed some potentially important functional differences between the disease-linked and control iPS-generated neurons. Importantly, we have found defects in the function of disease-linked neurons that can be corrected in part following specific drug treatments. This discovery demonstrates the potential utility to use this method of modeling human diseases in the laboratory as a tool for understanding the detailed pathways, which might contribute to the development of the disease state and, importantly, as a target for screening potential therapeutic compounds that might be used to block or slow the progress of human neural disorders. In the coming year we will finalize our efforts on this project.
  • We have also succeeded in developing an improved method for the delivery of the reprogramming genes into the patient cells in order to become iPS cells. This method allows the reprogramming genes to be removed thus mitigating the potential for unwanted and potentially detrimental reactivation of these reprogramming genes subsequent to the iPS cell state. We have begun work using this new reprogramming methodology to generate iPS cell lines that are specifically linked to diseases of the blood and immune system. The new methodology appears to be working well and we anticipate completing the generation and characterization of these new disease-linked stem cell lines within the next year of this project.
  • This research project has been focused on developing new human stem cell lines that are specifically useful for studying human diseases and developing new therapeutic strategies. Human embryonic stem (hES) cells were first established in 1998 and in the past decade have been shown to be capable to differentiating of a vast array of different cell types. This full developmental potential is termed "pluripotency". Until recently these were the only established human cell type that could be robustly grown in the laboratory setting and still maintain full pluripotent developmental potential. In November of 2007, a new type of human pluripotent cell was created. By turning on a set of 4 genes, researchers succeeded in reprogramming human skin cells back into a cell type that appears to have very similar properties and potential as the hES cell. These new stem cells are called induced pluripotent stem (iPS) cells in order to keep the name distinct from their embryonic derived counterpart. One of the scientific limitations of hES cells is the impracticality of generating patient or disease specific stem cell lines. This opportunity now becomes theoretically practical with the advent of human iPS cell line generation. We report here on significant progress demonstrating the practicality of generating disease-linked cellular models of human diseases.
  • We have identified 2 specific human neurological diseases, Rett’s Syndrome and Schizophrenia that have a known, or strongly suggested genetic components, and have set about to generate disease-linked iPS cell lines. We have obtained skin cell samples from patients with these neurological diseases and have successfully reprogrammed them back to iPS cells. These disease-linked pluripotent stem cells have been carefully characterized and we have demonstrated that they do indeed behave very similar to existing hES cells and also to the healthy control iPS cell lines that we have generated. Therefore, the disease phenotype is not detrimental to reprogramming or proliferation as a stem cell. Furthermore, we have succeeded in coaxing these disease-linked iPS cells to turn into specific types of functional human neurons, the very cells that are suspected to be involved in the neurological disorders. We now have established a viable model for studying human neural disorders in the laboratory, and have already observed some potentially important functional differences between the disease-linked and control iPS generated neurons. Importantly, we have found defects in the function of disease-linked neurons that can be corrected in part following specific drug treatments. This discovery demonstrates the potential utility to use this method of modeling human diseases in the laboratory as a tool for understanding the detailed pathways that might contribute to the development of the disease state and importantly as a target for screening potential therapeutic compounds that might be used to block or slow the progress of human neural disorders.
  • We have also succeeded in developing an improved method for the delivery of the reprogramming genes into the patient cells in order to become iPS cells. This method combines all the of the reprogramming genes into a single cassette, and also allows the reprogramming genes to be removed thus mitigating the potential for unwanted and potentially detrimental reactivation of these reprogramming genes subsequent to the iPS cell state. We have demonstrated the success of this new reprogramming methodology to generate iPS cell lines that are specifically linked to a disease of the immune system. In addition to creating a panel of disease-linked iPS cell lines that are free of the externally introduced reprogramming transgenes, we have shown progress in achieving correction of the DNA mutation that leads to the disease state. Our extended research on these new disease specific iPS cell lines has shown utility for creating in vitro models of human neural disorders, and potential for genetically corrected patient specific iPS cell lines that could be used for cell based transplantation therapies.
Funding Type: 
Comprehensive Grant
Grant Number: 
RC1-00346
Investigator: 
ICOC Funds Committed: 
$2 507 223
Disease Focus: 
Parkinson's Disease
Neurological Disorders
Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Closed
Public Abstract: 
Parkinson’s disease (PD) is caused by degeneration of a specific population of dopamine-producing nerve cells in the brain and is chronic, progressive, and incurable. Loss of dopamine-containing cells results in profound physiological disturbances producing tremors, rigidity, and severe deterioration of gate and balance. In the United States, approximately 1.5 million people suffer with PD and it is estimated that 60,000 new cases are diagnosed each year. Drugs can modify some of the disease symptoms, but many patients develop disabling drug-induced movements that are unresponsive to medication. Deep brain stimulation can alleviate motor symptoms in some patients but is not a cure. We plan an entirely novel approach to treat PD. We propose to utilize a specific class of inhibitory nerve cells found in the embryonic brain, known as MGE cells, as donor transplant cells to inhibit those brain regions whose activity is abnormally increased in PD. In preliminary studies we have demonstrated that this approach can relieve symptoms in an animal model of PD. To turn this approach into a patient therapy, we will need to develop methods to obtain large numbers of human cells suitable for transplantation. This proposal seeks to address this problem by producing unlimited numbers of exactly the right type of MGE nerve cell using human embryonic stem cells. The inhibitory nerve cells we seek to produce will reduce brain activity in target regions. They may therefore be used to treat other conditions characterized by excessive brain activity, such as epilepsy. Epilepsy can be a life threatening and disabling condition. Nearly two million Americans suffer with some form of epilepsy. Unfortunately, modulation of brain excitability using antiepileptic drugs can have serious side-effects, especially in the developing brain, and many patients can only be improved by surgically removing areas of the brain containing the seizure focus. Using MGE cells made from human embryonic stem cell lines, we hope to develop a novel epilepsy treatment that could replace the need for surgery or possibly even drug therapy. We propose an integrated approach that combines the complementary expertise of four UCSF laboratories to achieve our goals. We have already determined that mouse MGE cells can improve the symptoms of PD and epilepsy when grafted into animal models. We now need to develop methods to obtain large numbers of human cells suitable for grafting. We need to ensure that when delivered, the cells will migrate and integrate in the target brain regions, and we need to evaluate therapeutic efficacy in animal models of Parkinson’s disease and epilepsy. This proposal addresses these goals. If successful, this accomplishment will set the stage for studies in primates and hasten the day when MGE cells may be used as patient therapy for a wide variety of debilitating neurological disorders.
Statement of Benefit to California: 
This collaborative proposal promises to accelerate progress toward a novel cell based therapeutic agent with potentially widespread benefit for the treatment of a variety of grave neurological disorders. The promise of this work to eventually help our patients is our primary motivation. Additionally, our studies, if successful, could form the basis of a new stem cell technology to produce unlimited numbers of cellular therapeutic products of uniform quality and effectiveness. The production of neurons from stable nerve cell lines derived from human embryonic stem cells is a much-needed biotechnology and a central challenge in embryonic stem (ES) cell biology. Current methods are inefficient at producing neurons that can effectively migrate and integrate into adult brain, and available cell lines generally lack the ability to differentiate into specific neuronal subtypes. Moreover, while many cells resist neuronal differentiation others often take on a glial cell fate. Identification of key factors driving ES cells into a specific neuronal lineage is the primary focus of the current proposal, and if achieved, will generate valuable intellectual property. As such, it may attract biotechnology interest and promote local business growth and development. Moreover, the inhibitory nerve cell type that is the goal of this proposal would be a potentially valuable therapeutic agent. This achievement could attract additional funding from state or industry to begin primate studies and ultimately convert any success into a safe and effective product for the treatment of patients. To produce and distribute stable medicinal-grade cells of a purity and consistency appropriate for therapeutic use will require partnering with industry. Industry participation would be expected to provide economic benefits in terms of job creation and tax revenues. Hopefully, there may ultimately be health benefits for the citizens of California who are suffering from neurological disease.
Progress Report: 
  • Our goal is to develop a novel cell-based therapy to treat patients with epilepsy, Parkinson’s disease and brain injury. The strategy is to use human embryonic stem cells to produce inhibitory nerve cells for transplantation and therapeutic modulation of neural circuits, an approach that may have widespread clinical application. In preliminary studies using inhibitory neuron precursors from embryonic rodent brains, we have demonstrated that this approach can relieve symptoms in animal models of Parkinson’s disease and epilepsy. To turn this approach into a patient therapy we need to develop methods to obtain large numbers of human cells suitable for transplantation. The object of this proposal is to develop methods for producing unlimited numbers of exactly the right type of inhibitory nerve cell using human embryonic stem (ES) cells as the starting material.
  • One strategy to make large numbers of inhibitory neurons would be to convert human ES cells into neural stem (NS) cell lines that could be stably propagated indefinitely, and then to convert the NS cells into inhibitory nerve cells. However, we discovered that NS cell lines do not retain the capacity to generate neurons after extended culture periods but instead produce only glial cells. We have therefore begun to create neurons directly from ES cells, without interrupting the differentiation to amplify cell number at the neural progenitor phase. Using this approach, we have been successful at specifying the right pathway to produce the specific neural progenitor cell we need during the process of differentiation from ES cells. Because there are multiple subytpes of inhibitory neuron, we are testing various cell culture manipulations to enrich for the specific neuron subtype that matches our desired cell type. In addition, we are developing reporter cell lines that will allow us to observe differentiation from ES cell to inhibitory neuron in real time and purify the cells of interest for transplantation. Finally, we are also testing whether artificially expressing key proteins that regulate gene expression and are required for inhibitory neuron production during brain development can more efficiently drive a high percentage of ES cells to differentiate into the desired cell type.
  • With these tools in place, we hope to begin animal transplantation studies using human ES-derived inhibitory nerve cells within the coming year. If successful, this accomplishment will set the stage for studies in primates, and hasten the day when inhibitory nerve cells may be used as patient therapy for a wide variety of debilitating neurological disorders including Parkinson’s disease, epilepsy, and brain injury.
  • This past year, we have made significant strides toward the production of inhibitory nerve cells and precursor (MGE) cells from human embryonic stem (ES) and induced pluripotent stem (iPS) cells. These stem cell-derived MGE progenitor cells appropriately mature into inhibitory neurons upon further culture and following transplantation into the newborn mouse brain. Additionally, human ES cell-derived inhibitory neurons possess active membrane properties by electrophysiology analysis. Work is ongoing to determine their functional potential following transplantation: whether these cells can make connections, or synapses, with each other and with neurons in the host brain in order to elevate inhibitory tone in the transplanted animals. Following successful completion of this aim in the coming year, we will be well positioned to examine the therapeutic potential of these cells in pre-clinical epilepsy and Parkinson's disease animal models.
  • Inhibitory nerve cell deficiencies have been implicated in many neurological disorders including epilepsy. The decreased inhibition and/or increased excitation lead to hyper-excitability and brain imbalance. We are pursuing a strategy to re-balance the brain by injecting inhibitory nerve precursor cells. Most inhibitory nerve cells come from the medial ganglionic eminence (MGE) during fetal development. We have previously documented that mouse MGE transplants reduce seizures in animal models of epilepsy and ameliorate motor symptoms in a rat model of Parkinson’s disease. This project aims to develop human MGE cells from human embryonic stem (ES) cells and to investigate their function in animal models of human disease. In the past year, we have successfully developed a robust and reproducible method to generate human ES cell-derived MGE cells and have performed extensive gene expression and functional analyses. The gene expression profiles of these ES-derived MGE cells resemble those of mouse and human fetal MGE. They appropriately mature into inhibitory nerve cells in culture and following injection into rodent brain. Also, the ES-derived inhibitory cells exhibit active electrical properties and establish connections (synapses) with other nerve cells in culture and in the rodent brain. Thus, we have succeeded in deriving inhibitory human MGE cells from human ES cells and are now transplanting these cells into animal models of disease.
Funding Type: 
Comprehensive Grant
Grant Number: 
RC1-00345
Investigator: 
Type: 
PI
ICOC Funds Committed: 
$2 396 932
Disease Focus: 
Amyotrophic Lateral Sclerosis
Neurological Disorders
Spinal Muscular Atrophy
Spinal Cord Injury
Neurological Disorders
Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Closed
Public Abstract: 
Cervical spinal cord injuries result in a loss of upper limb function because the cells within the spinal cord that control upper limb muscles are destroyed. The goal of this research program is to create a renewable human source of these cells, to restore upper limb function in both acute and chronic spinal cord injuries. There are two primary challenges to the realization of this goal: 1) a source of these human cells in high purity, and 2) functional integration of these cells in the body after transplantation. Human embryonic stem cells (hESCs) can form any cell in the body, and can reproduce themselves almost indefinitely to generate large quantities of human tissue. One of the greatest challenges of hESC research is to find ways to restrict hESCs such that they generate large amounts on only one cell type in high purity such that they could be used to replace lost cells in disease or trauma. Our laboratory was the first laboratory in the world to develop a method to restrict hESCs such that they generate large amounts of only one cell type in high purity. That cell type is called an oligodendrocyte, which insulates connections in the spinal cord to allow them to conduct electricity. Transplantation of these cells was useful for treating spinal cord injuries in rats if the treatment was given one week after the injury. That treatment is being developed for use in humans. Recent studies in our laboratory indicate that we have succeeded in restricting hESCs to generate large quantities of a different cell type in the spinal cord, that which controls upper limb muscles. We have generated large quantities of these human cells, grown them with human muscle, and demonstrated that they connect and control the human muscle. The cells also express markers that are appropriate for this cell type. Here we propose to generate these cells in high purity from hESCs and genetically modify them so that they can be induced to grow over inhibitory environments that exist in the injured spinal cord. We will then determine whether these human cells have the ability to regenerate the injured tissue in the spinal cord, and restore lost function. All of our studies will be conducted in an FDA-compliant manner, which will speed the translation of our results to humans if we are successful. The studies outlined in this proposal represent a novel approach to treating spinal cord injury, which might work for both acute and chronic injuries.
Statement of Benefit to California: 
This research plan will position California for international competitiveness in this emerging area of biotechnology, as our research strategy addresses critical scientific problems limiting the development of this sector in California and abroad. High purity cultures of hESC-derivatives enable transplantation approaches to disease, drug discovery, and predictive toxicology. This research plan will lead to the development and thorough characterization of a renewable source of human motor neurons that enables these 3 strategies as they pertain to acute spinal cord injury, chronic spinal cord injury, amyotrophic lateral sclerosis, polio, and spinal muscular atrophy. Clinically relevant scientific advance leads to the development of biotechnology companies, creating jobs and taxation. The treatment and care of individuals with disease or trauma-induced disorders of the central nervous system represents a significant economic burden to the State of California. If successful, our research plan will form the basis of a clinical strategy to improve the function and quality of life of spinal cord injured individuals, which may lessen the cost that the State bears in terms of patient care.
Progress Report: 
  • We have completed the first two AIMs of our proposal on time, and on budget, and we reported on these AIMs in our previous progress report. During this reporting period we have made progress on AIMs 3, 4 and 5. In AIM 3, we transplanted hESC-derived motor neuron progenitor cells into sites of motor neuron death in adult rats. We experienced minor technical difficulties that have set us back by a few months, due to sub-optimal expression of a growth factor in muscles, which is necessary to draw motor neuron axons out to muscles. We have fixed the problem and have confirmed long term growth factor expression in muscles. We have also confirmed that our toxin model induces motor neuron death using several methods, that transplanted motor neurons survive and connect with the spinal cord, and standardized all testing protocols to determine whether transplants along with growth factor addition to muscles will benefit the behavior of the treated animals. Our final experiment is in progress. This delay will not alter the project costs.
  • With regards to AIM 4, we are well ahead of schedule. This AIM was to begin in Year 3, but we began the experiments in Year 2. In this AIM, we transplanted hESC-derived motor neuron progenitor cells into sites of spinal cord injury in adult rats. We have confirmed that transplanted motor neurons survive and connect with the spinal cord, that transplantation enhances the survival of the host spinal cord that otherwise would have been lost, that transplantation enhances axon branching of the host spinal cord, and that these ‘nursing’ effects cause behavioral improvement of locomotion. Our increased productivity has not affected the budget.
  • With regards to AIM 5, are on track and on budget. We have generated FDA-compliant documents for all of the studies listed above.
  • We are on schedule with our research plan, having made progress on the last two AIMs of the proposal according to schedule. The goal of the 4th AIM was to transplant cells to the spinal cord of rats and see if they connect to muscle in the limbs that had been engineered to express an attractant for the processes of the cells in the spinal cord. We confirmed that we can induce the muscle in the limbs to express the attractant, and have the cells in the spinal cord survive, differentiate appropriately, become connected in the spinal cord to other circuits, and extend processes. In addition, we have evidence that these treatments benefit the locomotor ability of the rats. We wrote a scientific article concerning some of this work, and it was accepted for publication in an excellent journal. The goal of the 5th AIM was to document regulatory oversight for the project, to ensure compliance with FDA policies. We have generated FDA-compliant paperwork for all of our studies to date. Thus, our progress is in line with the original proposal.
  • This study tested the hypothesis that high purity motor neurons (MNs) derived from human embryonic stem cells could benefit spinal cord injury. In the first AIM, we proved that MNs could extend processes to muscle and cause it’s contraction, in a dish. In the second AIM, we proved that we could enhance process extension to muscle, in a dish. In the third and fourth AIMs, we proved that MNs transplanted into the diseased or injured spinal cord could integrate and benefit the function and spinal cord tissue structure of animals. In neither case did we see projection of MN processes to muscles, despite the provision of a MN process attractant in the muscles. Nonetheless, MN transplantation reduced tissue loss that normally results from injury or disease, and enhanced regeneration of the spinal cord and functional recovery of the animals.
Funding Type: 
Comprehensive Grant
Grant Number: 
RC1-00135
Investigator: 
ICOC Funds Committed: 
$2 566 701
Disease Focus: 
Multiple Sclerosis
Neurological Disorders
Stroke
Immune Disease
Stem Cell Use: 
Adult Stem Cell
Embryonic Stem Cell
oldStatus: 
Closed
Public Abstract: 
Strokes that affect the nerves cells, i.e., “gray matter”, consistently receive the most attention. However, the kind of strokes that affecting the “wiring” of the brain, i.e., “white matter”, cause nearly as much disability. The most severe disability is caused when the stroke is in the wiring (axons) that connect the brain and spinal cord; as many as 150,000 patients are disabled per year in the US from this type of stroke. Although oligodendrocytes (“oligos”) are the white matter cells that produce the lipid rich axonal insulator called myelin) are preferentially damaged during these events, stem cell-derived oligos have not been tested for their efficacy in preclinical (animal) trials. These same white matter tracts (located underneath the gray matter, called subcortical) are also the primary sites of injury in MS, where multifocal inflammatory attack is responsible for stripping the insulating myelin sheaths from axons resulting in axonal dysfunction and degeneration. Attempts to treat MS-like lesions in animals using undifferentiated stem cell transplants are promising, but most evidence suggests that these approaches work by changing the inflammation response (immunomodulation) rather than myelin regeneration. While immunomodulation is unlikely to be sufficient to treat the disease completely, MS may not be amenable to localized oligo transplantation since it is such a multifocal process. This has led to new emphasis on approaches designed to maximize the response of endogenous oligo precursors that may be able to regenerate myelin if stimulated. We hypothesize that by exploiting novel features of oligo differentiation in vitro (that we have discovered and that are described in our preliminary data) that we will be able to improve our ability to generate oligo lineage cells from human embryonic stem cells and neural stem cells for transplantation, and also to develop approaches to maximize oligo development from endogenous precursors at the site of injury in the brain. This proposal will build on our recent successes in driving oligo precursor production from multipotential mouse neural stem cells by expressing regulatory transcription factors, and apply this approach to human embryonic and neural stem cells to produce cells that will be tested for their ability to ameliorate brain damage in rodent models of human stroke. Furthermore, we hope to develop approaches that may facilitate endogenous recruitment of oligo precursors to produce mature oligos, which may prove a viable regenerative approach to treat a variety of white matter diseases including MS and stroke.
Statement of Benefit to California: 
Diseases associated with disruption of oligodendrocyte function and integrity (such as subcortical ischemic stroke and multiple sclerosis) are major causes of morbidity and mortality. Stroke is the third leading cause of death and the leading cause of permanent disability in the United States, costing over $50 billion dollars annually, as approximately 150,000 chronic stroke patients survive the acute event and are left with permanent, severe motor and/or sensory deficits. While much less common, multiple sclerosis (MS) is the primary non-traumatic cause of neurologic disability in young adults. Most patients are diagnosed in their 20s-40s and live for many decades after diagnosis with increasing needs for expensive services, medications and ultimately long-term care. Existing strategies for stem cell based therapies include both strategies to replace lost cells and to augment regeneration after injury, but most of these efforts have emphasized the role of undifferentiated stem cells in treatment despite the realization that the main nexus of injury in both diseases is frequently a differentiated cell type – the oligodendrocyte. This project will use new insights into the development of oligodendrocytes from the laboratories of the investigators to find ways to improve production of oligodendrocytes from human ES cells and human neural stem cells, test whether these cells can improve the clinical outcome in rodent models of stroke and MS after transplantation and search for new molecular treatments that would augment the regeneration of oligodendrocytes from resident brain stem cells after injury. This is the first step to translating the basic fundamental understanding of oligodendrocyte development into viable therapies for important human diseases that are major burdens on the citizens of California.
Progress Report: 
  • Over the last year we have succeeded in generating nearly pure cultures of human ES cell derived oligodendrocyte precursors from two different human ES cell lines. We are now also testing whether manipulation of transcription factors or morphogenic signaling pathways regulates the ability of these cells to differentiate into oligodendrocytes that produce myelin. We are testing these cells in a rodent stroke model to determine if they survive in the region of the stroke. If they survive, we will test whether they help to treat the strokes. We are also testing cells in transplantation into a developmental ischemia model and a model for genetic failure to produce myelin.
  • Our proposal centers on developing novel effective methods to generate oligodendrocytes from human ES cells. We focus on identifying signaling pathways (using studies in rodent neural stem cells) that can be adapted to human ES cells and used to regulate the efficiency of oligodendrocyte specification and differentiation from human ES cells. We then hope to use these human ES cell derived oligodendrocytes to determine whether transplantation of these cells is feasible in well characterized animal models associated with damage to oligodendrocytes. Over the last year we have made major progress toward these goals.
  • First, we have completed and submitted for publication two studies identifying the roles of Wnts and Sox10 in regulating the development of oligodendrocytes both during brain development and during stem cell differentiation in vitro. One of these papers is in the final stages of consideration after revision and the other is submitted awaiting reviews.
  • Second, we have developed a novel method for culturing human ES cell derived oligodendrocyte precursors. This is based on modifications of published methods but leads to greatly enhanced purity of final oligodendrocytes in our cultures (about 80% oligodendrocytes and 20% astrocytes). We have used this culture approach to address the role of sonic hedgehog in the differentiation of oligodendrocytes from human oligodendrocyte progenitors and have identified sonic hedgehog as a major regulator of oligodendrocyte differentiation and myelin production. This is quite distinct from rodent neural cells where sonic hedgehog doesn't appear to have this function. This will provide a novel therapeutic target to affect oligodendrocyte maturation and regeneration in disease models and will be of great utility for studying the function of mature human oligodendrocytes. This work is in preparation for submission.
  • Third, we have made some significant progress in our transplantation studies. We completed studies transplanting human ES derived oligodendrocyte progenitors into a rodent model of focal stroke and found that at 1 week post stroke and 2 weeks post stroke the survival of oligodendrocytes from these transplants is very minimal. Thus, we have discontinued this work because of this feasibility issue. We have moved on to examine studies of transplantation into newborn rodents with hypoxic injury and with dysmyelination becahse of the shiverer mutation. The progress here is good. The hypoxia model we are using is a chronic (up to 1 week) exposure to low oxygen tension of P2 mice, which is known to cause oligodendrocyte injury. We are initially characterizing the injury to oligodendrocytes at various durations of hypoxic exposure so that we can identify the best time point to transplant our cells into the brains. We are using immunodeficient mice to decrease the chances of rejection of the transplanted cells. In addition, we are generating a mouse colony with the shiverer allele combined with an immunodeficiency allele in order to be able to transplant cells in this model. In the meantime, we are determining the survival of transplanted cells into newborn mice to identify technical factors that will need to be overcome to allow efficient transplantation and to determine if our human cells participate in differentiation in these mice. Preliminarily we have found good survival of oligodendrocyte lineage cells after transplantation into P2 mice and the expression of myelin antigens after an appropriate period of development in vivo. This is very encouraging.
  • In the last year we have continued our efforts to transplant oligodendrocyte progenitors obtained by differentiation of human ES cells. Our progress in this area has been mixed because of substantial technical hurdles in consistent production of the oligodendrocyte progenitors from frozen stocks of cells. This will necessitate a no-cost extension for a small portion of the work to allow completion of the analysis of already transplanted animals.
  • We have made substantial progress as well in showing that these cells are capable of myelinating axons effectively in vitro. In addition, we've found that the human ES derived oligodendrocytes are capable of myelinating artificial nanofibers in vitro as well. This may serve as a useful platform in the future for drug discovery or other high throughput studies.
  • We have also identified an important novel molecular regulator of oligodendrocyte number and development and this work will continue into the future.
  • In this NCE period we were completing studies with animals that had received neonatal ischemic injury and were implanted with human ES cell derived cells of the oligodendrocyte lineage. These experiments showed that the cells survive and have oligodendrocyte lineage markers for three weeks post injection. Longer survival experiments are still ongoing.

Pages