Heart Disease

Coding Dimension ID: 
295
Coding Dimension path name: 
Heart Disease

Generation and characterization of high-quality, footprint-free human induced pluripotent stem cell lines from 3,000 donors to investigate multigenic diseases

Funding Type: 
hiPSC Derivation
Grant Number: 
ID1-06557
ICOC Funds Committed: 
$16 000 000
Disease Focus: 
Developmental Disorders
Genetic Disorder
Heart Disease
Infectious Disease
Alzheimer's Disease
Neurological Disorders
Autism
Respiratory Disorders
Vision Loss
Cell Line Generation: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
Induced pluripotent stem cells (iPSCs) have the potential to differentiate to nearly any cells of the body, thereby providing a new paradigm for studying normal and aberrant biological networks in nearly all stages of development. Donor-specific iPSCs and differentiated cells made from them can be used for basic and applied research, for developing better disease models, and for regenerative medicine involving novel cell therapies and tissue engineering platforms. When iPSCs are derived from a disease-carrying donor; the iPSC-derived differentiated cells may show the same disease phenotype as the donor, producing a very valuable cell type as a disease model. To facilitate wider access to large numbers of iPSCs in order to develop cures for polygenic diseases, we will use a an episomal reprogramming system to produce 3 well-characterized iPSC lines from each of 3,000 selected donors. These donors may express traits related to Alzheimer’s disease, autism spectrum disorders, autoimmune diseases, cardiovascular diseases, cerebral palsy, diabetes, or respiratory diseases. The footprint-free iPSCs will be derived from donor peripheral blood or skin biopsies. iPSCs made by this method have been thoroughly tested, routinely grown at large scale, and differentiated to produce cardiomyocytes, neurons, hepatocytes, and endothelial cells. The 9,000 iPSC lines developed in this proposal will be made widely available to stem cell researchers studying these often intractable diseases.
Statement of Benefit to California: 
Induced pluripotent stem cells (iPSCs) offer great promise to the large number of Californians suffering from often intractable polygenic diseases such as Alzheimer’s disease, autism spectrum disorders, autoimmune and cardiovascular diseases, diabetes, and respiratory disease. iPSCs can be generated from numerous adult tissues, including blood or skin, in 4–5 weeks and then differentiated to almost any desired terminal cell type. When iPSCs are derived from a disease-carrying donor, the iPSC-derived differentiated cells may show the same disease phenotype as the donor. In these cases, the cells will be useful for understanding disease biology and for screening drug candidates, and California researchers will benefit from access to a large, genetically diverse iPSC bank. The goal of this project is to reprogram 3,000 tissue samples from patients who have been diagnosed with various complex diseases and from healthy controls. These tissue samples will be used to generate fully characterized, high-quality iPSC lines that will be banked and made readily available to researchers for basic and clinical research. These efforts will ultimately lead to better medicines and/or cellular therapies to treat afflicted Californians. As iPSC research progresses to commercial development and clinical applications, more and more California patients will benefit and a substantial number of new jobs will be created in the state.
Progress Report: 
  • First year progress on grant ID1-06557, " Generation and Characterization of High-Quality, Footprint-Free Human Induced Pluripotent Stem Cell (iPSC) Lines From 3000 Donors to Investigate Multigenic Disease" has met all agreed-upon milestones. In particular, Cellular Dynamics International (CDI) has taken lease to approximately 5000 square feet of lab space at the Buck Institute for Research on Aging in Novato, CA. The majority of this space is located within the new CIRM-funded Stem Cell Research Building at the Buck Institute and was extensively reconfigured to meet the specific needs of this grant. All equipment, including tissue culture safety cabinets and incubators, liquid-handling robotics, and QC instrumentation have been installed and qualified. A total of 16 scientists have been hired and trained (13 in Production and 3 in Quality) and more than 20 Standard Operating Procedures (SOPs) have been developed and approved specifically for this project. These SOPs serve to govern the daily activities of the Production and Quality staff and help ensure consistency and quality throughout the iPSC derivation and characterization process. In addition, a Laboratory Information Management System (LIMS) had to be developed to handle the large amount of data generated by this project and to track all samples from start to finish. The first and most important phase of this LIMS project has been completed; additional functionalities will likely be added to the LIMS during the next year, but completion of phase 1 will allow us to enter full production mode on schedule in the first quarter of year 2. Procedures for the shipping, infectious disease testing, and processing of donor samples were successfully implemented with the seven Tissue Collectors. To date, over 700 samples have been received from these Tissue Collectors and derivation of the first 50 patient-derived iPSC lines has been completed on schedule. These cells have been banked in the Coriell BioRepository, also located at the Buck Institute. The first Distribution Banks will be available for commercial release during year 2.

Improving Existing Drugs for Long QT Syndrome type 3 (LQT3) by hiPSC Disease-in-Dish Model

Funding Type: 
Early Translational IV
Grant Number: 
TR4-06857
ICOC Funds Committed: 
$6 361 618
Disease Focus: 
Heart Disease
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
This project uses patient hiPSC-derived cardiomyocytes to develop a safe and effective drug to treat a serious heart health condition. This research and product development will provide a novel method for a human genetic heart disorder characterized by long delay (long Q-T interval) between heart beats caused by mutations in the Na+ channel α subunit. Certain patients are genetically predisposed to a potentially fatal arrhythmogenic response to existing drugs to treat LQT3 since the drugs have off-target effects on other important ion channels in cardiomyocytes. We will use patient-derived hiPSC-cardiomyocytes to develop a safer drug (development candidate, DC) that will retain efficacy against the "leaky" Na+-channel yet minimize off-target effects in particular against the K+ hERG channel that can be responsible for the existing drug’s pro-arrhythmic effect. Since this problem is thought to occur severely in patients with the common KCHN2 variant, K897T (~33% of the white population), removing the off-target liability addresses a serious unmet clinical need. Futher, since we propose to modify an existing drug (i.e., do drug rescue), the path from patient-specific hiPSCs to clinic might be easier than for a completely new chemical entity. Lastly, an appealing aspect is that the hiPSCs were derived from a child to test his therapy, & we aim to produce a better drug for his treatment. Our goal is to complete development of the DC and initiate IND-enabling in vivo studies.
Statement of Benefit to California: 
In the US, an estimated 850,000 adults are hospitalized for arrhythmias each year, making arrhythmias one of the top five causes of healthcare expenditures in the US with a direct cost of more than $40 billion annually for diagnosis, treatment & rehabilitation. The State of California has approximately 12% of the US population which translates to 102,000 individuals hospitalized every year for arrhythmias. Another 30,000 Californians die of sudden arrhythmic death syndrome every year. Arrhythmias are very common in older adults and because the population of California is aging, research to address this issue is important for human health and the State economy. Most serious arrhythmias affect people older than 60. This is because older adults are more likely to have heart disease & other health problems that can lead to arrhythmias. Older adults also tend to be more sensitive to the side effects of medicines, some of which can cause arrhythmias. Some medicines used to treat arrhythmias can even cause arrhythmias as a side effect. In the US, atrial fibrillation (a common type of arrhythmia that can cause problems) affects millions of people & the number is rising. Accordingly, the same problem is present in California. Thus, successful completion of this work will not only provide citizens of California much needed advances in cardiovascular health technology & improvement in health care but an improved heart drug. This will provide high paying jobs & significant tax revenue.
Progress Report: 
  • The project objective is to design, synthesize and test a sodium-channel inhibitor analog that selectively inhibits the sodium channel and not the potassium channel in patient-derived IPSCs. The strategy is to first work out the approach with wild-type human IPSCs in advance of the patient-derived cells. The status is that the milestones for Year 1 have largely been accomplished. The achievements for this reporting period include nearly locking down the IPSC protocol, developing ultra high throughput kinetic analysis of human cardiomyocytes, developing an enantioselective synthesis of sodium-channel inhibitors and analogs and identifying from a pool of only 49 compounds, a promising sodium-channel inhibitor that provides insight into selective sodium channel inhibition.

The CIRM Human Pluripotent Stem Cell Biorepository – A Resource for Safe Storage and Distribution of High Quality iPSCs

Funding Type: 
hPSC Repository
Grant Number: 
IR1-06600
ICOC Funds Committed: 
$9 999 834
Disease Focus: 
Developmental Disorders
Heart Disease
Infectious Disease
Alzheimer's Disease
Neurological Disorders
Autism
Respiratory Disorders
Vision Loss
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
Critical to the long term success of the CIRM iPSC Initiative of generating and ensuring the availability of high quality disease-specific human IPSC lines is the establishment and successful operation of a biorepository with proven methods for quality control, safe storage and capabilities for worldwide distribution of high quality, highly-characterized iPSCs. Specifically the biorepository will be responsible for receipt, expansion, quality characterization, safe storage and distribution of human pluripotent stem cells generated by the CIRM stem cell initiative. This biobanking resource will ensure the availability of the highest quality hiPSC resources for researchers to use in disease modeling, target discovery and drug discovery and development for prevalent, genetically complex diseases.
Statement of Benefit to California: 
The generation of induced pluripotent stem cells (iPSCs) from patients and subsequently, the ability to differentiate these iPSCs into disease-relevant cell types holds great promise in facilitating the “disease-in-a-dish” approach for studying our understanding of the pathological mechanisms of human disease. iPSCs have already proven to be a useful model for several monogenic diseases such as Parkinson’s, Fragile X Syndrome, Schizophrenia, Spinal Muscular Atrophy, and inherited metabolic diseases such as 1-antitrypsin deficiency, familial hypercholesterolemia, and glycogen storage disease. In addition, the differentiated cells obtained from iPSCs represent a renewable, disease-relevant cell model for high-throughput drug screening and toxicology/safety assessment which will ultimately lead to the successful development of new therapeutic agents. iPSCs also hold great hope for advancing the use of live cells as therapies for correcting the physiological manifestations caused by disease or injury.
Progress Report: 
  • The California Institute for Regenerative Medicine (CIRM) Human Pluripotent Stem Cell Biorepository is operated by the Coriell Institute for Medical Research and is a critical component of the CIRM Human Stem Cell Initiative. The overall goal of this initiative is to generate, for world-wide use by non-profit and for-profit entities, high quality, disease-specific induced pluripotent stem cells (iPSCs). These cells are derived from existing tissues such as blood or skin, and are genetically manipulated in the laboratory to change into cells that resemble embryonic stem cells. iPSCs can be grown indefinitely in the Petri dish and have the remarkable capability to be converted into most of the major cell types in the body including neurons, heart cells, and liver cells. This ability makes iPSCs an exceptional resource for disease modeling as well as for drug screening. The expectation is that these cells will be a major benefit to the process for understanding prevalent, genetically complex diseases and in developing innovative therapeutics.
  • The Coriell CIRM iPSC Biorepository, located at the Buck Institute for Research on Aging in Novato, CA, is funded through a competitive grant award to Coriell from CIRM and is managed by Mr. Matt Self under the supervision of the Program Director, Dr. Steven Madore, Director of Molecular Biology at Coriell. The Biorepository will receive biospecimens consisting of peripheral blood mononuclear cells (PBMCs) and skin biopsies obtained from donors recruited by seven Tissue Collector grant awardees. These biospecimens will serve as the starting material for iPSC derivation by Cellular Dynamics, Inc (CDI). Under a contractual agreement with Coriell, CDI will expand each iPSC line to generate sufficient aliquots of high quality cryopreserved cells for distribution via the Coriell on-line catalogue. Aliquots of frozen cell lines and iPSCs will be stored in liquid nitrogen vapor in storage units at the Buck Institute with back-up aliquots stored in a safe off-site location.
  • Renovation and construction of the Biorepository began at the Buck Institute in late January. The Biorepository Manger was hired March 1 and after installation of cryogenic storage vessels and alarm validation, the first biospecimens were received on April 30, 2014. Additionally, Coriell has developed a Clinical Information Management System (CIMS) for storing all clinical and demographic data associated with enrolled subjects. Tissue Collectors utilize CIMS via a web interface to upload and edit the subject demographic and clinical information that will ultimately be made available, along with the iPSCs, via Coriell’s on-line catalogue
  • As of November 1 specimens representing a total of 725 unique individuals have been received at the Biorepository. These samples include PBMCs obtained from 550 unique individuals, skin biopsies from 72 unique individuals, and 103 primary dermal fibroblast cultures previously prepared in the laboratories of the CIRM Tissue Collectors. A total of 280 biospecimen samples have been delivered to CDI for the purpose of iPSC derivation. The Biorepository is anticipating delivery of the first batches of iPSCs for distribution in early 2015. These lines, along with the associated clinical data, will become available to scientists via the on-line Coriell catalogue. The CIRM Coriell iPSC Biorepository will ensure safe long-term storage and distribution of high quality iPSCs.

A new paradigm of lineage-specific reprogramming

Funding Type: 
Basic Biology IV
Grant Number: 
RB4-06035
ICOC Funds Committed: 
$1 708 560
Disease Focus: 
Heart Disease
Stem Cell Use: 
Directly Reprogrammed Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
Recently, we devised and reported a new regenerative medicine paradigm that entails temporal/transient overexpression of induced pluripotent stem cell based reprogramming factors in skin cells, leading to the rapid generation of “activated” cells, which can then be directed by specific growth factors and small molecules to “relax” back into various defined and homogenous tissue-specific precursor cell types (including nervous cells, heart cells, blood vessel cells, and pancreas and liver progenitor cells), which can be expanded and further differentiated into mature cells entirely distinct from fibroblasts. In this proposal, combined with small molecules that can functionally replace reprogramming transcription factors as well as substantially improve reprogramming efficiency and kinetics, we aim to further develop and mechanistically characterize chemically defined, non-integrating approaches (e.g., mRNA, miRNA, episomal plasmids and/or small molecule-based) to robustly and efficiently reprogram skin fibroblast cells into expandable heart precursor cells. Specifically, we will: determine if we can use non-integrating methods to destabilize human fibroblasts and facilitate their direct reprogramming into the heart precursor cells; characterize of heart cells generated by the direct programming methods, both in the tissue culture dish and in a mouse model of heart attack; and characterize newly identified reprogramming enhancing small molecules mechanistically.
Statement of Benefit to California: 
This study will develop and mechanistically characterize a new method of generating safe patient specific heart cells that could be useful in treating heart failure which afflicts millions of Californians and accounts for billions of dollars in healthcare spending annually. Additionally, the small molecules discovered in this study could be good candidates for future drug development as well as being broadly useful for other regenerative medicine applications. These advances could also be a platform for new personalized medicine/ cell banking businesses which could bring economic growth in addition to improving the health of Californians.
Progress Report: 
  • During the reporting period, we have made very significant progress toward the following research aims: (1) Using the Oct4-based reprogramming assay system established, we were able to screen for and identify small molecules that can replace the other three genes in the Cell-Activation and Signaling-Directed (CASD) lineage conversion paradigm for reprogramming fibroblasts into cardiac lineage. (2) Using in-depth assays, we have examined the process using lineage-tracing methods and characterized those Oct4/small molecules-reprogrammed cardiac cells in vitro. (3) Most importantly, we were able to identify a baseline condition that appears to reprogram human fibroblasts into cardiac cells using defined conditions.
  • Cardiomyocyte-like cells can be reprogrammed from somatic fibroblasts by combinations of genes in vitro1 and in vivo, providing a new avenue for cardiac regenerative therapy. However, transdifferentiating human cells to generate fully functional cardiomyocytes remains a challenge. Moreover, genetic manipulations with multiple factors used in such conventional strategies pose safety, efficacy, and technical concerns that may limit their clinical potential. In the work funded by CIRM we identified and demonstrated that functional cardiomyocytes can be rapidly and efficiently generated from fibroblasts by a combination of small molecules. These cardiomyocytes express characteristic cardiac markers, have a well-organized sarcomeric structure, contract spontaneously, and respond to pharmacological modulations. They closely resemble cardiomyocytes in their global gene expression profiles, and electrophysiological properties. This novel pharmacological reprogramming approach may have important implications in cardiac regenerative medicine.

Epigenetic regulation of human cardiac differentiation

Funding Type: 
Basic Biology IV
Grant Number: 
RB4-05901
ICOC Funds Committed: 
$1 708 560
Disease Focus: 
Heart Disease
Stem Cell Use: 
Embryonic Stem Cell
iPS Cell
oldStatus: 
Active
Public Abstract: 
Each cell type in our body has its own identity. This identity allows a heart cell to contract repetitively, and a brain cell to conduct nerve impulses. Each cell type gains its identity by turning on or off thousands of genes that together give the cell its identity. Understanding how these sets of genes are regulated together as a cell gains its identity is important to be able to generate new cells in disease. For example, after a heart attack, heart muscle dies, leaving scar tissue and a poorly functioning heart. It would be very useful to be able to make new heart muscle by introducing the right set of instructions into other cells in the heart, and turn them into new heart muscle cells. One way that many genes are turned on or off together is by a cellular mechanism called epigenetic regulation. This global regulation coordinates thousands of genes. We plan to understand the epigenetic regulatory mechanisms that give a human heart muscle cell its identity. Understanding their epigenetic blueprint of cardiac muscle cells will help develop strategies for cardiac regeneration, and for a deeper understanding of how cells in our body acquire their individual identities and function.
Statement of Benefit to California: 
This research will benefit the state of California and its citizens by helping develop new approaches to cardiac regeneration that will be more efficient than current approaches, and amenable to drug-based approaches. In addition, the knowledge acquired in these studies will be important not only for heart disease, but for any other disease where reprogramming to regenerate new cells is desirable. The mechanisms revealed by this research will also lead to new understanding of the basis for congenital heart defects, which affect several thousand Californian children every year, and for which we understand very little.
Progress Report: 
  • We have made considerable progress on this project, which is aimed at understanding how genes are controlled during the conversion of human stem cells into heart cells. We have been able to use advanced techniques that allow us to make millions of human heart cells in a dish from "Induced Pluripotent Stem Cells" (known as iPS cells), which are cells derived from skin cells that have properties of embryonic stem cells. We are now using genome engineering techniques to insert a mutation that is associated with human congenital heart defects. We are now starting to map the chromatin marks that will tell us how heart genes are turned on, while genes belonging to other cell types are kept off. This "blueprint" of a heart cell will help us understand how to make better heart cells to repair injured hearts, and will allow us to model human congenital heart disease in a human experimental system.
  • We have made considerable progress on this project, which is aimed at understanding how genes are controlled during the conversion of human stem cells into heart cells. We have been able to use advanced techniques that allow us to make millions of human heart cells in a dish from "Induced Pluripotent Stem Cells" (known as iPS cells), which are cells derived from skin cells that have properties of embryonic stem cells. We are now using genome engineering techniques to insert a mutation that is associated with human congenital heart defects. We are now starting to map the chromatin marks that will tell us how heart genes are turned on, while genes belonging to other cell types are kept off. This "blueprint" of a heart cell will help us understand how to make better heart cells to repair injured hearts, and will allow us to model human congenital heart disease in a human experimental system.

VEGF signaling in adventitial stem cells in vascular physiology and disease

Funding Type: 
New Faculty II
Grant Number: 
RN2-00909
ICOC Funds Committed: 
$3 155 931
Disease Focus: 
Heart Disease
Stem Cell Use: 
Adult Stem Cell
oldStatus: 
Active
Public Abstract: 
Coronary heart disease is the leading cause of death in the developed world. This disease results from atherosclerosis or fatty deposits in the vessel wall that causes blockage of coronary arteries. Blockage of these arteries cut off supplies of nutrients and oxygen to the heart muscle, causing heart attacks, heart failure or sudden death. To restore coronary blood supply, physicians use guide-wires to position an inflatable balloon at the blockage site of the artery, where the balloon is inflated to open up the artery. This procedure is called percutaneous transluminal coronary angioplasty or PTCA, which is usually accompanied by the placement of a metal tube (or stent) at the diseased site to maintain vessel opening. PTCA is the dominant procedure to restore blood flow in coronary arteries- in the United States alone nearly 1.3 million PTCA procedures were performed in 2004. However, as a response to PTCA-related vessel wall damage, cells from the vessel wall are activated to divide and grow into the vessel lumen, causing re-narrowing or restenosis of the artery. Restenosis of the vessel lumen is the major hurdle limiting the success of PTCA. It occurs in 20-50% of cases within six months of the initial PTCA procedure and requires repeated PTCA to open up the re-narrowed artery, leading to tremendous human and social expenses. Stents which contain drug inhibitors of cell growth (drug eluting stents, or DES) reduce restenosis; however, considerable concerns have emerged regarding the safety of DES due to an increased risk of sudden stent occlusion by platelet aggregates (or thrombosis). This sudden occlusion is caused by a concomitant drug inhibition of cells that cover the raw surface of metal stents to prevent platelet aggregation. This complication is frequently lethal, resulting in death or heart attack in 85% of cases. The safety concerns over DES have created an urgent need to define the mechanisms underlying the biology of restenosis. A population of cells resident in the vessel wall consists of progenitor cells that divide and grow into the vessel lumen when vessels are injured. The repair process mediated by these cells directly contributes to vessel restenosis. Our goal is to understand the biology of these stem cells in the repair of injured arteries- how vessel injury signals these cells to divide and invade the vessel lumen, what molecular effectors control the cellular responses, and how to intercept these signals and effectors to prevent vessel restenosis. This will provide a solid scientific basis for new therapeutic targets and strategies for vessel restenosis after PTCA. The proposal is a targeted response to CIRM New Faculty Awards II. It seeks to extend my research expertise into the field of stem cell biology related to clinically important vascular diseases. We are confident that our proposed studies will generate significant progress in this field, in both scientific knowledge and useful therapies.
Statement of Benefit to California: 
Coronary heart disease is the leading cause of death in California. This disease results from atherosclerosis or fatty deposits in the vessel wall that causes blockage of coronary arteries of the heart, causing heart attacks, heart failure or sudden death. Physicians use wires and balloons to open up the blocked artery (angioplasty) and a metal tube (stent) to keep the artery open and restore blood flow. Although effective, angioplasty and stenting cause some damages to the blood vessel, which leads to a recurrent blockage (or restenosis) of the vessel in 20-50% of patients within 6 months of the procedure. This vessel restenosis requires repeated angioplasties and stenting for restoration of blood flow. Given the large number of patients with coronary heart disease in California, the need for repeated surgical procedures has resulted in tremendous human, social and economic costs in our state. An attempt to reduce vessel restenosis is the placement of drug-eluting stents (or DES) in angioplastied vessels. Although drugs released from the stents reduce vessel restenosis, this approach creates a new and frequently fatal complication- sudden occlusion of the stented arteries. This complication is because drugs in the stents delay the repair of inner lining of the artery, whose function is to prevent platelet aggregation within the lumen of the artery. Sudden platelet aggregation (or thrombosis) within the vessel lumen causes instantaneous obstruction of the artery, leading to acute heart attacks or death. Thus, the safety concerns over DES have created an urgent need to define the mechanisms underlying the biology of restenosis. A population of cells present at the vessel wall possess stem cell characteristics. After vessel injury, these cells increase in number and turn into different kinds of cells, which then migrate from the vessel wall into the lumen, causing blockage of the vessel. Thus, understanding how these cells behave will inspire new ideas for treating recurrent vessel blockage or restenosis. We propose to study how and what molecular signals activate these cells when vessels are injured. Our goal is to provide a scientific strategy of intercepting these signals for the treatment of vessel restenosis. We believe that understanding the biology of vascular stem cells will lead to significant advances in the research and novel therapies of vessel injury and restenosis. Given the scope of this problem , an improved therapy of vessel restenosis will have a significant economic and social impact. We have proposed to use modern methods in genetics, cell biology, and molecular biology to attack the challenges of this project. At the same time, we will train a new generation of bright students and junior scientists in the areas of stem cell biology highly relevant to human disease. This ensures that an essential knowledge base will be preserved, passed on and expanded in California for the foreseeable future.
Progress Report: 
  • Coronary heart disease is the leading cause of death in the developed world. This disease results from atherosclerosis or fatty deposits in the vessel wall that causes blockage of coronary arteries. Blockage of these arteries cut off supplies of nutrients and oxygen to the heart muscle, causing heart attacks, heart failure or sudden death. To restore coronary blood supply, physicians use guide-wires to position an inflatable balloon at the blockage site of the artery, where the balloon is inflated to open up the artery. This procedure is called percutaneous transluminal coronary angioplasty or PTCA, which is usually accompanied by the placement of a metal tube (or stent) at the diseased site to maintain vessel opening. However, as a response to PTCA, cells from the vessel wall are mobilized to divide and grow into the vessel lumen, causing re-narrowing of the artery. Renarrowing of the vessel lumen is the major hurdle limiting the success of PTCA. Mental stents which contain drug inhibitors of cell growth (drug eluting stents, or DES) reduce re-narrowing; however, considerable concerns have emerged regarding the safety of DES due to an increased risk of sudden stent occlusion by platelet aggregates (or thrombosis). This sudden occlusion is caused by a concomitant drug inhibition of cells that cover the raw surface of metal stents to prevent platelet aggregation. This complication is frequently lethal, resulting in death or heart attack in 85% of cases. The safety concerns over DES have created an urgent need to define the mechanisms underlying the biology of vascular re-narrowing.
  • A population of cells resident in the vessel wall consists of stem cells that divide and grow into the vessel lumen when vessels are injured. The repair process mediated by these cells directly contributes to vessel re-narrowing. Our goal is to understand the biology of these stem cells in the repair of injured arteries- how vessel injury signals these cells to divide and invade the vessel lumen, what molecular effectors control the cellular responses, and how to intercept these signals and effectors to prevent vessel re-narrowing. This will provide a solid scientific basis for new therapeutic targets and strategies for vessel re-narrowing after PTCA.
  • In the past year, we have successfully developed in the laboratory a more efficient method of isolating the vessel wall stem cells (or adventitial stem cells) and growing these cells in test tubes. The ability to isolate and grow these stem cells has allowed us to study the effects of many biologically active molecules on these cells critical for vascular repair and re-narrowing. We are now using this method to study molecular pathways that can modify the biological behavior of the vessel wall stem cells. Furthermore, we have developed a different method of injuring the blood vessels to study how the vessel wall stem cells respond to different types of vessel injury. This method allows us to track the mobilization of vessel wall stem cells more precisely in the vascular repair process. We are using this method to study the activity of vessel wall stem cells following injury.
  • Coronary heart disease is the leading cause of death in the developed world. This disease results from atherosclerosis or fatty deposits in the vessel wall that causes blockage of coronary arteries, causing shortage of blood supply with consequent heart attacks, sudden death, or heart failure. To restore coronary blood supply, physicians use guide-wires to position an inflatable balloon at the blockage site of the artery, where the balloon is inflated to open the artery. This angioplasty procedure is usually accompanied by the placement of a metal stent at the diseased site to maintain vessel opening. Such percutaneous coronary intervention (PCI) with angioplasty and stenting is the dominant procedure for opening obstructed coronary arteries. However, PCI activates a population of cells in the vessel wall to grow into the vessel lumen, causing re-narrowing of the artery. This vessel re-narrowing (restenosis) is the major hurdle limiting the success of PCI. Mental stents coated with drug inhibitors of cell growth (drug eluting stents, or DES) reduce re-narrowing; however, considerable concerns have emerged regarding the safety of DES due to an increased risk of sudden stent occlusion by platelet aggregates (or thrombosis) and the need for prolonged anti-platelet therapy, which poses bleeding risks especially to older patients or patients who need surgery. These concerns call for defining mechanisms that control re-narrowing of injured arteries.
  • A population of cells resident in the vessel wall consists of stem cells that are activated when vessels are injured. Activation of these cells directly contributes to vessel re-narrowing. Our goal is to understand how these cells are activated by vessel injury, how injury signals these cells to divide and invade the vessel lumen, what molecular effectors control the cellular responses, and how to intercept these signals and effectors to prevent vessel re-narrowing. In the past year, we successfully developed new methods for isolating and growing these vascular stem cells in test tubes. These new methods allowed us to determine how these stem cells turn into other types of vessel cells after injury and how they contribute to re-narrowing of injured vessels. We are using this method to define molecular pathways that control vessel wall stem cells to respond to vessel injury.
  • Coronary heart disease is a leading cause of morbidity and mortality. This disease results from blockage of coronary arteries that supply blood to the heart muscle. To restore blood supply, physicians use angioplasty to open the obstructed artery and apply stenting to maintain the arterial patency. Approximately 1.3 million angioplasty and stenting procedures are performed every year in the US to relieve coronary obstruction. However, these procedures activate a population of vascular cells to grow into the arterial lumen, causing re-narrowing of the artery. This re-narrowing (restenosis) is the major hurdle limiting the success of angioplasty and stenting. Mental stents coated with drug inhibitors of cell growth (drug eluting stents, or DES) reduce re-narrowing; however, considerable concerns have emerged regarding the safety of DES due to an increased risk of sudden stent occlusion by platelet aggregates (or thrombosis) and the need for prolonged anti-platelet therapy, which poses bleeding risks. These concerns call for defining mechanisms that control re-narrowing of injured arteries.
  • A population of stem cells resides in the arterial wall. These cells are activated when arteries are injured by mechanical stress such as angioplasty and stenting. Activation of these cells directly contributes to arterial re-narrowing. Our goal is to understand how these stem cells are activated by vessel injury, how injury signals these cells to divide and invade the vessel lumen, what molecular effectors control the cellular responses, and how to intercept these signals and effectors to prevent vessel re-narrowing. We developed new methods for isolating and growing these vascular stem cells in test tubes. In the past year, we successfully used these methods to determine how arterial injury or mechanical stress signals the stem cells to produce different types of cells which grow into the arterial lumen, causing narrowing of the artery. We are using these methods and also developing new methods to define molecular pathways that control the reaction of stem cells to arterial injury. This will help identify drug targets for therapeutic intervention.
  • Coronary heart disease, the major cause of morbidity and mortality in our society, results from blockage of the coronary arteries that supply blood to the heart muscle. Blockage of the coronary arteries causes heart attack. Angioplasty and stenting are used to open the obstructed coronary artery and maintain the arterial patency. ~1.3 million angioplasty and stenting procedures are performed in the US every year to treat coronary artery disease. However, these procedures activate a population of vascular cells to grow into the arterial lumen, causing re-narrowing of the artery. This re-narrowing (restenosis) is the major hurdle limiting the success of angioplasty and stenting. Mental stents coated with drug inhibitors of cell growth (drug eluting stents, or DES) reduce re-narrowing; however, considerable concerns have emerged regarding the safety of DES due to an increased risk of sudden stent occlusion by platelet aggregates (or thrombosis) and the need for prolonged anti-platelet therapy, which poses bleeding risks. Defining the mechanisms that control re-narrowing of injured arteries is therefore important for treating coronary artery disease.
  • The arterial wall contains a population of stem cells. These stem cells are activated when arteries are injured by mechanical stress such as angioplasty and stenting. Activation of these cells directly contributes to arterial re-narrowing. Our goal is to understand how these stem cells are activated by vessel injury, how injury signals these cells to divide and invade the vessel lumen, what molecular effectors control the cellular responses, and how to intercept these signals and effectors to prevent vessel re-narrowing. We developed new methods for isolating and growing these vascular stem cells in test tubes, and we have successfully used these methods to determine how arterial injury or mechanical stress signals the stem cells to produce different types of cells which grow into the arterial lumen, causing narrowing of the artery. In the past year, we developed new genetic tools to further understand the mechanism of vascular injury and repair. We are using the new genetic tool to define molecular and cellular pathways that control the reaction of stem cells to arterial injury.
  • Blockage of coronary arteries that supply blood to the heart muscle is the major cause of morbidity and mortality in our society. Angioplasty and stenting are used to open the obstructed coronary artery and maintain the arterial patency. In US, ~1.3 million angioplasty and stenting procedures are performed every year to treat coronary artery disease. Although effective in restoring the blood flow, these procedures activate a population of vascular cells resident in the arterial wall to grow into the vesslel lumen, causing re-narrowing (restenosis) of the treated artery months or years later. This arterial re-narrowing is a major hurdle limiting the success of angioplasty and stenting. Mental stents coated with drug inhibitors of cell growth (drug eluting stents, or DES) reduce re-narrowing; however, the safety of DES has raised considerable concerns due to an increased risk of sudden stent occlusion by platelet aggregates (or thrombosis) as well as the need for prolonged anti-platelet therapy, which poses bleeding risks, especially in the elderly population. It is therefore important to define the underlying mechanisms of re-narrowing of injured arteries in order to design new therapies for coronary artery disease.
  • A population of stem cells resides in the arterial wall. These stem cells are activated when arteries are injured by angioplasty and stenting. Once activated, these cells grow and differentiate into cells that invade the vascular luman and contribute to arterial re-narrowing. We developed new genetic tools to further understand the mechanism of vascular injury and repair. We are using the new genetic tool to define molecular and cellular pathways that control the reaction of stem cells to arterial injury. The goal is to understand how these stem cells are activated by vessel injury, how injury signals these cells to divide and invade the vessel lumen, what molecular effectors control the cellular responses, and how to intercept these signals and effectors to prevent vessel re-narrowing.

Mechanism of heart regeneration by cardiosphere-derived cells

Funding Type: 
Basic Biology IV
Grant Number: 
RB4-06215
ICOC Funds Committed: 
$1 367 604
Disease Focus: 
Heart Disease
Stem Cell Use: 
Adult Stem Cell
oldStatus: 
Active
Public Abstract: 
In the process of a heart attack, clots form suddenly on top of cholesterol-laden plaques, blocking blood flow to heart muscle. As a result, living heart tissue dies and is replaced by scar. The larger the scar, the higher the chance of premature death and disability following the heart attack. While conventional treatments aim to limit the initial injury (by promptly opening the clogged artery) and to prevent further damage (using various drugs), regenerative therapy for heart attacks seeks to regrow healthy heart muscle and to dissolve scar. To date, cell therapy with CDCs is the only intervention which has been shown to be clinically effective in regenerating the injured human heart. However, the cellular origin of the newly-formed heart muscle and the mechanisms underlying its generation remain unknown. The present grant seeks to understand those basic mechanisms in detail, relying upon state-of-the-art scientific methods and preclinical disease models. Our work to date suggests that much of the benefit is due to an indirect effect of transplanted CDCs to stimulate the proliferation of surrounding host heart cells. This represents a major, previously-unrecognized mechanism of cardiac regeneration in response to cell therapy. The proposed project will open up novel mechanistic insights which will hopefully enable us to boost the efficacy of stem cell-based treatments by bolstering the regeneration of injured heart muscle.
Statement of Benefit to California: 
Coronary artery disease is the predominant cause of premature death and disability in California. Clots form suddenly on top of cholesterol-laden plaques in the wall of a coronary artery, blocking blood flow to the heart muscle. This leads to a “heart attack”, in which living heart muscle dies and is replaced by scar. The larger the scar, the greater the chance of death and disability following the heart attack. While conventional treatments aim to limit the initial injury (by promptly opening the clogged artery) and to prevent further injury (using various drugs), regenerative therapy for heart attacks seeks to regrow healthy heart muscle and to dissolve scar. To date, cell therapy with CDCs is the only intervention that has been shown to be clinically effective in regenerating the injured human heart. However, the cellular origin of the newly-formed heart muscle and the mechanisms underlying its generation remain unknown. The present grant seeks to understand those basic mechanisms in detail, relying upon state-of-the-art scientific methods and preclinical disease models. The resulting insights will enable more rational development of novel therapeutic approaches, to the benefit of the public health of the citizens of California. Economic benefits may also accrue from licensing of new technology.
Progress Report: 
  • Key abbreviations:
  • CDCs: cardiosphere-derived cells
  • MI: myocardial infarction
  • The present award tests the hypothesis that CDCs promote regrowth of normal mammalian heart tissue through induction of adult cardiomyocyte cell cycle re-entry and proliferation (as occurs naturally in zebrafish and neonatal mice). Such a mechanism, if established, would challenge the dogma that terminally-differentiated adult cardiomyocytes cannot re-enter the cell cycle. We have employed an inducible cardiomyocyte-specific fate-mapping approach (to specifically mark resident myocytes and their progeny), coupled with novel methods of myocyte purification and rigorous quantification. We have also developed assays that enable us to exclude potential technical confounding factors. The use of bitransgenic mice is essential for our experimental design (as it enables fate mapping of resident myocytes in a mammalian model), while the use of mouse CDCs in our in vivo experiments (as opposed to human CDCs) enables us to avoid immunosuppression and its complications. To date, mouse, rat and pig models have proven to be reliable in predicting clinical effects of CDC therapy in humans, and results with human and mouse CDCs in comparable models (e.g., SCID mice for human CDCs versus wild-type mice for mouse CDCs) have not revealed any major mechanistic divergence. Our results demonstrate that induction of cardiomyocyte proliferation represents a major, previously-unrecognized mechanism of cardiac regeneration in response to cell therapy. One full-length publication describing these findings has appeared (K. Malliaras et al., EMBO Mol Med, 2013, 5:191-209), and another paper has been submitted. The work has already begun to open up novel mechanistic insights which will enable us to improve the efficacy of stem cell-based treatments and bolster cardiomyocyte repopulation of infarcted myocardium.
  • CDCs: cardiosphere-derived cells
  • MI: myocardial infarction
  • The present award tests the hypothesis that CDCs promote regrowth of normal mammalian heart tissue through induction of adult cardiomyocyte cell cycle re-entry and proliferation (as occurs naturally in zebrafish and neonatal mice). Such a mechanism, if established, would challenge the dogma that terminally-differentiated adult cardiomyocytes cannot reenter the cell cycle. We have employed an inducible cardiomyocyte-specific fate-mapping approach (to specifically mark resident myocytes and their progeny), coupled with novel methods of myocyte purification and rigorous quantification. We have also developed assays that enable us to exclude potential technical confounding factors. The use of bitransgenic mice is essential for our experimental design (as it enables fate mapping of resident myocytes in a mammalian model), while the use of mouse CDCs in our in vivo experiments (as opposed to human CDCs) enables us to avoid immunosuppression and its complications. To date, mouse, rat, and pig models have proven to be reliable in predicting clinical effects of CDC therapy in humans, and results with human and mouse CDCs in comparable models (e.g., SCID mice for human CDCs versus wild-type mice for mouse CDCs) have not revealed any major mechanistic divergence. Our results demonstrate that induction of cardiomyocyte proliferation represents a major, previously-unrecognized mechanism of cardiac regeneration in response to cell therapy. Two full-length publications describing these findings has appeared (Malliaras, K, et al., EMBO Mol Med. 2014, 6:760-777; Malliaras K, et al., EMBO Mol Med, 2013, 5:191-209). The work has already begun to open up novel mechanistic insights which will enable us to improve the efficacy of stem cell-based treatments and bolster cardiomyocyte repopulation of infarcted myocardium.

Development of a scalable, practical, and transferable GMP-compliant suspension culture-based differentiation process for cardiomyocyte production from human embryonic stem cells.

Funding Type: 
Tools and Technologies III
Grant Number: 
RT3-07838
ICOC Funds Committed: 
$899 728
Disease Focus: 
Heart Disease
Stem Cell Use: 
Embryonic Stem Cell
Public Abstract: 
As ongoing CIRM-funded development of regenerative medicine (RM) progresses, the demand for increasing numbers of pluripotent stem cells and their differentiated derivatives has also increased. We have established a scalable suspension culture system for the production of large quantities of hESC for banking and to seed production of a number of regenerative medicine cell types, notably retinal pigmented epithelia, neural stem cells, dopaminergic neurons and cardiomyocytes, that support a number of CIRM and NIH-funded groups. In addition, we have adapted this system for the suspension production of several hESC derivative cell types, notably cardiomyocytes. While our system has provided unprecedented production capability for a number of cell products in pre-clinical and imminent clinical studies, it has proven impractical to scale up to the level that will be required for clinical trials for some hESC cell products, notably cardiomyocytes, due to high expected human doses. This project will resolve this scale-up challenge by adapting our suspension cell culture system, that is limited to 1-3L spinner culture flasks, to a more readily scalable and controllable suspension bioreactor system that utilizes “bags” capable of volumes up to 500L. Achieving this objective will remove a key barrier to progressing RM for cardiac applications as well as open the door to large clinical trials and commercialization of other regenerative medicine cell products in the years to come.
Statement of Benefit to California: 
We have developed GMP-compliant suspension cell culture processes for scalable production of hPSC and derivatives. These processes have been invaluable in our support of CIRM- and NIH-funded regenerative medicine projects, including those with RPE, NSC, DA neurons and cardiomyocytes (CM), as well as for production of GMP banks of hPSC for various projects. Our GMP-compliant suspension culture CM production process has made pre-clinical animal studies and small early clinical trials practical. However, while our current CM system is readily transferred to other groups and is meeting current production requirements, the scale requirements for anticipated high dose clinical trials is beyond the practical limitation of our spinner flask-based system. hPSC and CM are sensitive to changes in shear encountered at every scale-up step and re-optimizing conditions at each step is prohibitively expensive. Our experience using bag-based bioreactors for non-hESC products suggests that scale-up in bags will be more controllable and predictable than spinners or stir-tanks reactors. It is also a readily transferred technology. We propose to adapt our suspension hPSC and CM processes to a bag system, optimize conditions at a small scale, then demonstrate scalability at a moderate scale. Success in this project will remove a key barrier to developing many regenerative medicine products, and in particular those where high human doses are anticipated, such as CM.

Elucidating Molecular Basis of Hypertrophic Cardiomyopathy with Human Induced Pluripotent Stem Cells

Funding Type: 
Basic Biology III
Grant Number: 
RB3-05129
Investigator: 
ICOC Funds Committed: 
$1 425 600
Disease Focus: 
Heart Disease
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
Familial hypertrophic cardiomyopathy (HCM) is the leading cause of sudden cardiac death in young people, including trained athletes, and is the most common inherited heart defect. Until now, studies in humans with HCM have been limited by a variety of factors, including variable environmental stimuli which may differ between individuals (e.g., diet, exercise, and lifestyle), the relative difficulty in obtaining human cardiac samples, and inadequate methods of maintaining human heart tissue in cell culture systems. Cellular reprogramming methods that enable derivation of human induced pluripotent stem cells (hiPSCs) from adult cells, which can then be differentiated into cardiomyocytes (hiPSC-CMs), are a revolutionary tool for creating disease-specific cell lines that may lead to effective targeted therapies. In this proposal, we will derive hiPSC-CMs from patients with HCM and healthy controls, then perform a battery of functional and molecular tests to determine the presence of cardiomyopathic disease and associated abnormal molecular programs. With these preliminary studies, we believe hiPSC-CMs with HCM phenotype will dramatically enhance the ability to perform future high-throughput drug screens, evaluate gene and cell therapies, and assess novel electrophysiologic interventions for potential new therapies of HCM. Because HCM is not a rare disease but rather the leading cause of inherited heart defects, we believe the findings here should have broad clinical and scientific impact toward understanding the molecular and cellular basis of HCM.
Statement of Benefit to California: 
Familial hypertrophic cardiomyopathy (HCM) is the leading cause of sudden cardiac death in young people and is the most common inherited heart defect. In this study, we will generate hiPSC-derived cardiomyocytes from patients with HCM, then perform a number of functional, molecular, bioinformatic, and imaging analyses to determine the extent and nature of cardiomyopathic disease. We believe hiPSC-CMs with HCM phenotype will dramatically enhance the ability to perform future high-throughput drug screens, evaluate gene and cell therapies, and assess electrophysiologic interventions for potential novel therapies of HCM. The experiments outlined are pertinent and central to the overall mission of CIRM, which seeks to explore the use of stem cell platforms to yield novel mechanistic insights into the molecular and cellular basis of disease. Because HCM is not an orphan disease, but rather the leading cause of sudden cardiac death in young people, we believe the research findings will benefit the state of California and its citizens.
Progress Report: 
  • Familial hypertrophic cardiomyopathy (HCM) is the leading cause of sudden cardiac death in young people, including trained athletes, and is the most common inherited heart defect. In this proposal, we will generate human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from patients with HCM. The specific aims are as follow:
  • Specific Aim 1: Generate iPSCs from patients with HCM and healthy controls.
  • Specific Aim 2: Determine the extent of disease by performing molecular and functional analyses of hiPSC-CMs.
  • Specific Aim 3: Rescue the molecular and functional phenotypes using zinc finger nuclease (ZFN) technology.
  • Over the past year, we have now derived iPSCs from a 10-patient family cohort with the MYH7 mutation. Established iPSC lines from all subjects were differentiated into cardiomyocyte lineages (iPSC-CMs) using standard 3D EB differentiation protocols. We found hypertrophic iPSC-CMs exhibited features of HCM such as cellular enlargement and multi-nucleation beginning in the sixth week following induction of cardiac differentiation. We also found hypertrophic iPSC-CMs demonstrated other hallmarks of HCM including expression of atrial natriuretic factor (ANF), elevation of β-myosin/α-myosin ratio, calcineurin activation, and nuclear translocation of nuclear factor of activated T-cells (NFAT) as detected by immunostaining. Blockade of calcineurin-NFAT interaction in HCM iPSC-CMs by cyclosporin A (CsA) and FK506 reduced hypertrophy by over 40%. In the absence of inhibition, NFAT-activated mediators of hypertrophy such as GATA4 and MEF2C were found to be significantly upregulated in HCM iPSC-CMs beginning day 40 post-induction of cardiac differentiation, but not prior to this point. Taken together, these results indicate that calcineurin-NFAT signaling plays a central role in the development of the HCM phenotype as caused by the Arg663His mutation.
  • Familial hypertrophic cardiomyopathy (HCM) is the leading cause of sudden cardiac death in young people, including trained athletes, and is the most common
  • inherited heart defect. In this proposal, we will generate and characterize human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from patients with HCM. The
  • specific aims are as follow:
  • Specific Aim 1: Generate iPSCs from patients with HCM and healthy controls.
  • Specific Aim 2: Determine the extent of disease by performing molecular and functional analyses of hiPSC-CMs.
  • Specific Aim 3: Rescue the molecular and functional phenotypes using zinc finger nuclease (ZFN) technology.
  • Over the past year, we have characterized the pathological phenotypes from iPSCs derived from a 10-patient family cohort with the MYH7 mutation.
  • We've differentiated all stablished iPSC lines from all subjects into cardiomyocyte using a modified protocol from that published by Palacek in PNAS 2011. This protocol increased the yield of cardiomyocytes significantly to consistently greater than 70% beating cardiomyocytes. We then tested the electrophysiological properties of iPSC-CMs from control and patients with HCM and found that both control and patient iPSC-CM display atrial, ventricular and nodal-like electrical waveforms by whole cell patch clamping. However, by day 30, a large subfraction (~40%) of the HCM iPSC-CM exhibit arrhythmic waveforms including delayed after-depolarizations (DADs) compared with control (~5.1%). In addition we found that treatment of HCM hiPSC-CM with positive inotropic agents (beta-adrenergic agonist - isoproterenal) for 5 days caused an earlier increase in cell size by 1.7 fold as compared to controls and significant increase in irregular calcium transients. Furthermore, we found that HCM iPSC-CMs exhibited frequent arrhythmia due to their increased intracellular calcium level by 30% at baseline. These HCM iPSC-CM also exhibited decreased calcium release by the sarcoplasmic reticulum. These findings emphasize the role of irregular calcium recycling in the pathogenesis of HCM. To confirm that the regulation of myocyte calcium is the key to HCM pathogenesis, we treated several lines from multiple HCM patients with calcium channel blocker (verapamil/diltiazem) and found that this treatment significantly ameliorated all aspects of the HCM phenotype including myocyte hypertrophy, calcium handling abnormalities, and arrhythmia. These finding supports the use of calcium channel blockers in patients with HCM and encourages further clinical studies in HCM patients using these agents.
  • Familial hypertrophic cardiomyopathy (HCM) is the leading cause of sudden cardiac death in young people, including trained athletes, and is the most common
  • inherited heart defect. In this proposal, we will generate human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from patients with HCM. The
  • specific aims are as follow:
  • Specific Aim 1: Generate iPSCs from patients with HCM and healthy controls.
  • Specific Aim 2: Determine the extent of disease by performing molecular and functional analyses of hiPSC-CMs.
  • Specific Aim 3: Rescue the molecular and functional phenotypes using zinc finger nuclease (ZFN) technology.
  • Over the past year, we have characterized iPSC-CMs from a 10-patient family cohort with the MYH7 mutation using standard 3D EB differentiation protocols.
  • We found normal and hypertrophic iPSC-CMs were predictive as in vitro model for arrhythmia screening using microelectroarrays and single cell patch-clamping
  • analysis. For example, we found that administration of catecholamine drug norepinephrine causes the formation of torsade de point which is a lethan arrhythmia.
  • This recapitulates the phenotype in patients with HCM receiving catecholamine drugs. We also found increase in torsade formation when the iPSC-CMs are treated
  • with hERG blockers that are also known to cause increases in arrhythmia in HCM patients. We believe the use of hiPSC-CM from healthy individuals and patients with
  • genetic heart disease can help predict the potential arrhythmic risk in existing or new drug agents that are undergoing FDA evaluation.
  • We have also generated HCM mutations in lines of normal iPSC to determine whether these mutant lines will exhibit HCM phenotype. This would satisfy the Koch's postulate
  • with regards to the role of the mutant DNA sequence on HCM manifestation. We found, using TALEN and piggyBac transposon technologies that genome edited can be generated
  • to carry R663H mutation in the MYH7 gene and that these genome edited iPSC-CM recapitulated the HCM phenotype associated with the R663H mutation such as sarcomere
  • disassembly and intracellular calcium abnormalities as well as contractile arrhythmias. We have also corrected mutant HCM human iPSC from patients with MYH7 R663H mutation
  • and show that these corrected iPSC-CM exhibit normal sarcomeric phenotype with smaller cell size and reduced calcium transient irregularities.

Human Induced Pluripotent Stem Cell-Derived Cardiovascular Progenitor Cells for Cardiac Cell Therapy.

Funding Type: 
New Faculty Physician Scientist
Grant Number: 
RN3-06455
ICOC Funds Committed: 
$3 004 315
Disease Focus: 
Heart Disease
Stem Cell Use: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
Despite therapeutic advances, cardiovascular disease remains a leading cause of mortality and morbidity in California. Regenerative therapies that restore normal function after a heart attack would have an enormous societal and financial impact. Although very promising, regenerative cardiac cell therapy faces a number of challenges and technological hurdles. Human induced pluripotent stem cells (hiPSC) allow the potential to deliver patient specific, well-defined cardiac progenitor cells (CPC) for regenerative clinical therapies. We propose to translate recent advances in our lab into the development of a novel, well-defined hiPSC-derived CPC therapy. All protocols will be based on clinical-grade, FDA-approvable, animal product-free methods to facilitate preclinical testing in a large animal model. This application will attempt to translate these findings by: -Developing techniques and protocols utilizing human induced pluripotent stem cell-derived cardiac progenitor cells at yields adequate to conduct preclinical large animal studies. -Validation of therapeutic activity will be in small and large animal models of ischemic heart disease by demonstrating effectiveness of hiPSC-derived CPCs in regenerating damaged myocardium post myocardial infarction in small and large animal models. This developmental candidate and techniques described here, if shown to be a feasible alternative to current approaches, would offer a novel approach to the treatment of ischemic heart disease.
Statement of Benefit to California: 
Cardiovascular disease remains the leading cause of morbidity and mortality in California and the US costing the healthcare system greater than 300 billion dollars a year. Although current therapies slow progression of heart disease, there are few options to reverse or repair the damaged heart. The limited ability of the heart to regenerate following a heart attack results in loss of function and heart failure. Human clinical trials testing the efficacy of adult stem cell therapy to restore mechanical function after a heart attack, although promising, have had variable results with modest improvements. The discovery of human induced pluripotent stem cells offers a potentially unlimited renewable source for patient specific cardiac progenitor cells. However, practical application of pluripotent stem cells or their derivatives face a number of challenges and technological hurdles. We have demonstrated that cardiac progenitor cells, which are capable of differentiating into all cardiovascular cell types, are present during normal fetal development and can be isolated from human induced pluripotent stem cells. We propose to translate these findings into a large animal pre-clinical model and eventually to human clinical trials. This could lead to new therapies that would restore heart function after a heart attack preventing heart failure and death. This will have tremendous societal and financial benefits to patients in California and the US in treating heart failure.
Progress Report: 
  • Cardiovascular disease remains to be a major cause of morbidity and mortality in California and the United States. Despite the best medical therapies, none address the issue of irreversible myocardial tissue loss after a heart attack and thus there has been a great interest to develop approaches to induce regeneration. Our lab has focused on harvesting the full potential of patient specific induced pluripotent stem cells (iPSCs) to use to attempt to regenerate the damaged tissue. We believe that these iPSCs can be potentially used in the future to generate sufficient number of cells to be implanted in the damaged heart to regenerate the lost tissue post heart attack. Our lab has studied how these cardiac progenitors evolve in the developing heart and applied our finding to iPSCs to recapitulate the cardiac progenitors to ultimately use in clinical therapies. We have successfully derived these cardiac progenitors from patient derived iPSCs in a clinical grade fashion to ensure that we can apply same protocols in the future to clinical use if we are successful in demonstrating the efficacy of this therapy in our translational large animal studies that we will be conducting.

Pages

Subscribe to RSS - Heart Disease

© 2013 California Institute for Regenerative Medicine