Heart Disease

Coding Dimension ID: 
295
Coding Dimension path name: 
Heart Disease
Funding Type: 
Early Translational IV
Grant Number: 
TR4-06857
Investigator: 
ICOC Funds Committed: 
$6 361 618
Disease Focus: 
Heart Disease
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Active
Public Abstract: 

This project uses patient hiPSC-derived cardiomyocytes to develop a safe and effective drug to treat a serious heart health condition. This research and product development will provide a novel method for a human genetic heart disorder characterized by long delay (long Q-T interval) between heart beats caused by mutations in the Na+ channel α subunit. Certain patients are genetically predisposed to a potentially fatal arrhythmogenic response to existing drugs to treat LQT3 since the drugs have off-target effects on other important ion channels in cardiomyocytes. We will use patient-derived hiPSC-cardiomyocytes to develop a safer drug (development candidate, DC) that will retain efficacy against the "leaky" Na+-channel yet minimize off-target effects in particular against the K+ hERG channel that can be responsible for the existing drug’s pro-arrhythmic effect. Since this problem is thought to occur severely in patients with the common KCHN2 variant, K897T (~33% of the white population), removing the off-target liability addresses a serious unmet clinical need. Futher, since we propose to modify an existing drug (i.e., do drug rescue), the path from patient-specific hiPSCs to clinic might be easier than for a completely new chemical entity. Lastly, an appealing aspect is that the hiPSCs were derived from a child to test his therapy, & we aim to produce a better drug for his treatment. Our goal is to complete development of the DC and initiate IND-enabling in vivo studies.

Statement of Benefit to California: 

In the US, an estimated 850,000 adults are hospitalized for arrhythmias each year, making arrhythmias one of the top five causes of healthcare expenditures in the US with a direct cost of more than $40 billion annually for diagnosis, treatment & rehabilitation. The State of California has approximately 12% of the US population which translates to 102,000 individuals hospitalized every year for arrhythmias. Another 30,000 Californians die of sudden arrhythmic death syndrome every year. Arrhythmias are very common in older adults and because the population of California is aging, research to address this issue is important for human health and the State economy. Most serious arrhythmias affect people older than 60. This is because older adults are more likely to have heart disease & other health problems that can lead to arrhythmias. Older adults also tend to be more sensitive to the side effects of medicines, some of which can cause arrhythmias. Some medicines used to treat arrhythmias can even cause arrhythmias as a side effect. In the US, atrial fibrillation (a common type of arrhythmia that can cause problems) affects millions of people & the number is rising. Accordingly, the same problem is present in California. Thus, successful completion of this work will not only provide citizens of California much needed advances in cardiovascular health technology & improvement in health care but an improved heart drug. This will provide high paying jobs & significant tax revenue.

Progress Report: 
  • The project objective is to design, synthesize and test a sodium-channel inhibitor analog that selectively inhibits the sodium channel and not the potassium channel in patient-derived IPSCs. The strategy is to first work out the approach with wild-type human IPSCs in advance of the patient-derived cells. The status is that the milestones for Year 1 have largely been accomplished. The achievements for this reporting period include nearly locking down the IPSC protocol, developing ultra high throughput kinetic analysis of human cardiomyocytes, developing an enantioselective synthesis of sodium-channel inhibitors and analogs and identifying from a pool of only 49 compounds, a promising sodium-channel inhibitor that provides insight into selective sodium channel inhibition.
Funding Type: 
Disease Team Therapy Development - Research
Grant Number: 
DR2A-05735
Investigator: 
Institution: 
Type: 
PI
Institution: 
Type: 
Co-PI
ICOC Funds Committed: 
$19 782 136
Disease Focus: 
Heart Disease
Stem Cell Use: 
Adult Stem Cell
oldStatus: 
Active
Public Abstract: 

The proposed research will demonstrate both safety and efficacy of a heart-derived stem cell product in patients who have experienced a heart attack either recently or in the past by conducting a mid-stage clinical trial. A prior early-stage trial showed that the product can repair damaged portions of the heart after a heart attack in ways that no commercial therapy currently can. Damaged areas turn irreversibly into scar tissue after the initial event, which can predispose a person to future events and lead to an ongoing worsening of general and heart health. Data from the early-stage trial suggest that treatment with the heart-derived cell product under development can turn scar tissue back into healthy heart muscle. The planned mid-stage trial will hopefully confirm that finding in a larger patient group and provide additional data to support the safety profile of the product. The product is manufactured using heart tissue obtained from a healthy donor and can be used in most other individuals. Its effect is thought to be long-lasting (months-years) although it is expected to be cleared from the body relatively quickly (weeks-months). Treatment is administered during a single brief procedure, requiring a local anesthetic and insertion of a tube (or catheter) into the heart. The overriding goal for the product is to prevent patients who have had a heart attack from deteriorating over time and developing heart failure, a condition which is defined by the heart’s inability to pump blood efficiently and one which affects millions of Americans. Successful completion of the proposed mid-stage trial would lead next to a final, confirmatory trial and then to the application process by which permission to market the product is obtained from the Food and Drug Administration. The end result could be an affordable stem cell therapy effective as part of a treatment regimen after a heart attack.

Statement of Benefit to California: 

The manufacturer of the heart-derived stem cell product under development is a California-based small company who currently employs 7 California residents. Five new local jobs will be created to support the proposed project. Three medical centers located in California will participate in the proposed mid-stage clinical trial. The trial will hopefully bring notoriety to both the company and the medical centers involved while at the same time provide a novel therapeutic option for the many citizens of California afflicted with heart disease. Recent statistics place California among the 50% of states with the highest death rates for heart disease. Therefore, a successfully developed cell product could have a meaningful impact on the home population. Furthermore, as manufacturing needs grow to accommodate the demands of early commercialization, the company anticipates generating 100+ new biotech jobs.

Progress Report: 
  • This project aims to demonstrate both safety and efficacy of a heart-derived cell product in patients who have experienced a heart attack either recently or in the past by conducting a mid-stage (Phase II) clinical trial. The cell product is manufactured using heart tissue obtained from a healthy donor and can be used in most other individuals. Its effect is thought to be long-lasting (months-years) although it is expected to be cleared from the body relatively quickly (weeks-months). Treatment is administered during a single brief procedure, requiring a local anesthetic and insertion of a tube (or catheter) into the heart. The overriding goal for the product is to prevent patients who have had a heart attack from deteriorating over time and developing heart failure, a condition which is defined by the heart’s inability to pump blood efficiently and one which affects millions of Americans. At the outset of the project, a Phase I trial was underway. By the close of the current reporting period, the Phase 1 trial had reached its main safety endpoint, and the Phase II trial was approved to proceed. Fourteen patients were treated with the heart-derived cell product as part of Phase I. The safety endpoint for the trial was pre-defined and took into consideration the following: inflammation in the heart accompanied by an immune response, death due to abnormal heart rhythms, sudden death, repeat heart attack, treatment for symptoms of heart failure, need for a heart assist device, and need for a heart transplant. Both an independent Data and Safety Monitoring Board (DSMB) and CIRM agreed that Phase I met its safety endpoint and that Phase II was approved to proceed. The Phase I participants continue to be monitored for safety and efficacy. Meanwhile, the manufacturing processes established to create cell products for use in Phase I, were employed to create cell products in anticipation of Phase II. A supply of products was readied for use in Phase II. Also in anticipation of Phase II, a number of clinical sites were readied for participation. Manufacturing data and trial status updates were also provided to the Food and Drug Administration (FDA).
  • This project aims to demonstrate both safety and efficacy of a heart-derived cell product in patients who have experienced a heart attack either recently or in the past by conducting a mid-stage (Phase II) clinical trial. The cell product is manufactured using heart tissue obtained from a healthy donor and can be used in most other individuals. Its effect is thought to be long-lasting (months-years) although it is expected to be cleared from the body relatively quickly (weeks-months). Treatment is administered during a single brief procedure, requiring a local anesthetic and insertion of a tube (or catheter) into the heart. The overriding goal for the product is to prevent patients who have had a heart attack from deteriorating over time and developing heart failure, a condition which is defined by the heart’s inability to pump blood efficiently and one which affects millions of Americans. At the outset of the project, a Phase I trial was underway. The Phase II trial was initiated at the beginning of the current reporting period, and all subjects enrolled in Phase I completed follow up during the current reporting period. Fourteen patients were treated with the heart-derived cell product as part of Phase I. The safety endpoint for the trial was pre-defined and took into consideration the following: inflammation in the heart accompanied by an immune response, death due to abnormal heart rhythms, sudden death, repeat heart attack, treatment for symptoms of heart failure, need for a heart assist device, and need for a heart transplant. Both an independent Data and Safety Monitoring Board (DSMB) and CIRM agreed that Phase I met its safety endpoint. Preliminary efficacy data from Phase I collected during the current reporting period showed evidence of improvements in scar size, a measure of damage in the heart, and ejection fraction, a measure of the heart’s ability to pump blood. At the end of the current reporting period, Phase II is still enrolling subjects and clinical trial sites are still being brought on for participation in the trial. Meanwhile, the manufacturing processes established continue to be employed to create cell products for use in Phase II. Manufacturing data and trial status updates were also provided to the Food and Drug Administration (FDA) as part of standard annual reporting.
Funding Type: 
Disease Team Therapy Development - Research
Grant Number: 
DR2A-05394
Investigator: 
Name: 
Institution: 
Type: 
PI
Institution: 
Type: 
Co-PI
ICOC Funds Committed: 
$19 999 899
Disease Focus: 
Heart Disease
Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Active
Public Abstract: 

Patients with end-stage heart failure have a 2-year survival rate of only 50% with conventional medical therapy. This dismal survival rate is actually significantly worse than patients with AIDS, liver cirrhosis, stroke, and other comparable debilitating diseases. Currently available therapies for end stage heart failure include drug and device therapies, as well as heart transplantation. While drug and device therapies have proven effective at reducing symptoms, hospitalizations and deaths due to heart failure, new approaches are clearly required to improve this low survival rate. Organ transplantation is highly effective at increasing patient survival, but is severely limited in its potential for broad-based application by the very low number of hearts that are available for transplantation each year. Stem cell therapy may be a promising strategy for improving heart failure patient outcomes by transplanting cells rather than a whole heart. Several studies have convincingly shown that human embryonic stem cells can be differentiated into heart muscle cells (cardiomyocytes) and that these cells can be used to improve cardiac function following a heart attack. The key objective of this CIRM Disease Team Therapy proposal is to perform the series of activities necessary to obtain FDA approval to initiate clinical testing of human embryonic stem cell-derived cardiomyocytes in end stage heart failure patients.

Statement of Benefit to California: 

Coronary artery disease (CAD) is the number one cause of mortality and morbidity in the US. The American Heart Association has estimated that 5.7 million Americans currently suffer from heart failure, and that another 670,000 patients develop this disease annually. Cardiovascular disease has been estimated to result in an estimated $286 billion in direct and indirect costs in the US annually (NHLBI, 2010). As the most populous state in the nation, California bears a substantial fraction of the social and economic costs of this devastating disease. In recent years, stem cell therapy has emerged as a promising candidate for treating ischemic heart disease. Research by our group and others has demonstrated that human embryonic stem cells (hESCs) can be differentiated to cardiomyocytes using robust, scalable, and cGMP-compliant manufacturing processes, and that hESC-derived cardiomyocytes (hESC-CMs) can improve cardiac function in relevant preclinical animal models. In this proposal, we seek to perform the series of manufacturing, product characterization, nonclinical testing, clinical protocol development, and regulatory activities necessary to enable filing of an IND for hESC-CMs within four years. These IND development activities will be in support of a Phase 1 clinical trial to test hESC-CMs in heart failure patients for the first time. If successful, this program will both pave the way for a promising new therapy to treat Californians with heart failure numbering in the hundreds of thousands, and will further enhance California’s continuing prominence as a leader in the promising field of stem cell research and therapeutics.

Progress Report: 
  • Patients with end-stage heart failure (ESHF), which can result from heart attacks, have a 2-year survival rate of 50% with conventional medical therapy. Unlike cells of other organs, the billions of cardiomyocytes lost due to damage or disease do not regenerate. Recently, implantable mechanical pumps that take over the function of the failing left ventricle (left ventricular assist devices; LVADs) have been used to prolong the lives of heart failure patients. However, these devices carry an increased risk of stroke. The only current bona fide cure for ESHF is heart transplantation, but the shortage of donor organs and the risks associated with life-long use of powerful immunosuppressive drugs limit the number of patients that can be helped.
  • Human embryonic stem cells (hESCs) have the unique properties of being able to grow without limit and to be converted into all the cell types of the body, including cardiomyocytes. Our project seeks to find ways to treat patients by replacing their lost cardiomyocytes with healthy ones derived from hESC. The ultimate goal of this 4 year project is to evaluate the feasibility, safety, and efficacy of this approach in both small and large animal models of heart disease and to use this data to initiate a clinical trial to test the therapy in patients.
  • In our first year, we developed methods for producing essentially unlimited quantities of cardiomyocytes from hESCs using a process that is compatible both with clinical needs and large-scale industrial cell production. We have also developed models of heart disease in both rats and pigs, and have begun transplanting the stem cell-derived cardiomyocytes into the rat model. We have demonstrated that stem cell-derived cardiomyocytes can engraft in this animal model and we are testing their effects on the pumping function of the heart, the growth of replacement blood vessels lost during a heart attack, and the size of the scar that typically forms after injury. In the next several years, we will continue to evaluate the safety and function of these cells and will start to transplant in our large animal model of heart disease, which will enable us to test these cells in a heart with very similar characteristics to humans, delivered in a minimally invasive way that would be ideal for clinical use.
  • Patients with end-stage heart failure (ESHF), which can result from heart attacks, have a 2-year survival rate of 50% with conventional medical therapy. Unlike cells of other organs, the billions of cardiomyocytes lost due to damage or disease do not regenerate. Recently, implantable mechanical pumps that take over the function of the failing left ventricle (left ventricular assist devices; LVADs) have been used to prolong the lives of heart failure patients. However, these devices carry an increased risk of stroke. The only current bona fide cure for ESHF is heart transplantation, but the shortage of donor organs and the risks associated with life-long use of powerful immunosuppressive drugs limit the number of patients that can be helped.
  • Human embryonic stem cells (hESCs) have the unique properties of being able to grow without limit and to be converted into all the cell types of the body, including cardiomyocytes. Our project seeks to find ways to treat patients by replacing their lost cardiomyocytes with healthy ones derived from hESC. The ultimate goal of this 4 year project is to evaluate the feasibility, safety, and efficacy of this approach in both small and large animal models of heart disease and to use this data to initiate a clinical trial to test the therapy in patients.
  • In our first year, we developed methods for producing essentially unlimited quantities of cardiomyocytes from hESCs using a process that is compatible both with clinical needs and large-scale industrial cell production. We also developed models of heart disease in both rats and pigs, and began transplanting the stem cell-derived cardiomyocytes into the rat model. We demonstrated that stem cell-derived cardiomyocytes could engraft in this animal model for at least 1 month, and we observed their effect on the damaged tissue- we saw engraftment of healthy human cardiomyocytes, and noted that the graft induced the formation of new blood vessels.
  • In the second year, we a) discussed our strategy with FDA to get their advice and input (a "pre-PreIND call"); b) transplanted larger numbers of rats with 2 different doses of hESC-derived cardiomyocytes and will monitor them for longer periods (up to 9 months) to verify that no tumors form and there are no unexpected effects on the animals; c) developed in vitro assays to characterize the cardiomyocytes and to rule out the presence of any significant residual undifferentiated stem cells in the final product that will be used for cell therapy; and d) began designing and evaluating different immunosuppression strategies for the pig model, in order to allow the transplanted human cells to survive.
Funding Type: 
Tissue Collection for Disease Modeling
Grant Number: 
IT1-06596
Investigator: 
Name: 
Institution: 
Type: 
PI
ICOC Funds Committed: 
$1 435 371
Disease Focus: 
Heart Disease
oldStatus: 
Active
Public Abstract: 

Heart failure is a very common and chronic condition defined by an inability of the heart to pump blood effectively. Over half of cases of heart failure are caused by a condition called dilated cardiomyopathy, which involves dilation of the heart cavity and weakening of the muscle. Importantly, many cases of this disease do not have a known cause and are called “idiopathic” (i.e., physicians do not know why). Over the past 2 decades, doctors and scientists started realizing the disease can cluster in families, leading them to think there is a genetic cause to the disease. This resulted in discovering multiple genes that cause this disease. Nonetheless, the majority of cases of dilated hearts that cluster in families do not have a known genetic cause. Now scientists can turn blood and skin cells into heart cells by genetically manipulating them and creating engineered stem cells called “induced pluripotent stem cells” or iPSCs. This approach enables the scientists to study what chemical or genetic changes are happening to cause the problem. Also because these cells behave similar to the cells in the heart, scientists can now test new medicines on these cells first before trying them in patients. Here we aim to collect tissue from 800 patients without a known cause for their dilated hearts (and 200 control individuals) to help accelerate our understanding of this debilitating disease and hopefully offer new and better treatments.

Statement of Benefit to California: 

Heart failure is a significant health burden in California with rising hospitalization and death rates in the state. We have a very limited understanding of the disease and so far the existing treatments only slow down the disease and the changes that happen rather than target the root cause. By studying a subgroup of the dilated cardiomyopathy patients who have no identified cause, we can work on identifying genetic causes of the disease, some of the biology happening inside the heart cell, and provide new treatments that can prevent the disease from happening or progressing. Improving the outcome of this debilitating disease and providing new treatments will go a long way to helping a large group of Californians lead healthier and longer lives. There are estimates that the US economy loses $10 billion (not counting medical costs), because heart failure patients are unable to work. Hence new knowledge and developments gained from this research can go a long way to ameliorating that cost. Finally, heart failure is the most common chronic disease patients in California are hospitalized for. This research targets over half of those admissions. If this research is able to cut the hospitalization rate even by 1%, this would translate to millions of dollars in savings to the state. Continuing to invest in innovation will make our state a hotbed for the biotechnology industry, which in turn advances the state’s economic and educational status.

Progress Report: 
  • Heart failure is a leading cause of morbidity and mortality in California and the Western world with a significant economic burden due to the disease. Over half of heart failure cases are due to dilated cardiomyopathy, a disorder of progressive ventricular dilation and decreased contractility. However, after ischemic cardiomyopathy, the majority of familial cases of dilated cardiomyopathy are unknown or "idiopathic", suggesting a polygenic etiology with a complex genetic-environmental interaction. Traditionally, studying this disorder has been impaired by inability to access cardiac tissue and the limitation of mouse models in recapitulating the disorder. Thus, we propose using human induced pluripotent stem cells (iPSCs) to study idiopathic familial dilated cardiomyopathy (IFDC). We propose collecting tissue from individuals identified with the disorder In summary, this proposal represents a unique
  • opportunity to improve our understanding of idiopathic familial dilated cardiomyopathy (which remains largely a mystery), identifying novel genetic causes (rendering many of these patients no longer “idiopathic), and proposing new therapeutic targets.
Funding Type: 
Tools and Technologies II
Grant Number: 
RT2-02060
Investigator: 
Institution: 
Type: 
PI
ICOC Funds Committed: 
$1 869 487
Disease Focus: 
Blood Disorders
Heart Disease
Liver Disease
Stem Cell Use: 
Embryonic Stem Cell
iPS Cell
oldStatus: 
Active
Public Abstract: 

Purity is as important for cell-based therapies as it is for treatments based on small-molecule drugs or biologics. Pluripotent stem cells possess two properties: they are capable of self regeneration and they can differentiate to all different tissue types (i.e. muscle, brain, heart, etc.). Despite the promise of pluripotent stem cells as a tool for regenerative medicine, these cells cannot be directly transplanted into patients. In their undifferentiated state they harbor the potential to develop into tumors. Thus, tissue-specific stem cells as they exist in the body or as derived from pluripotent cells are the true targets of stem cell-based therapeutic research, and the cell types most likely to be used clinically. Existing protocols for the generation of these target cells involve large scale differentiation cultures of pluripotent cells that often produce a mixture of different cell types, only a small fraction of which may possess therapeutic potential. Furthermore, there remains the real danger that a small number of these cells remains undifferentiated and retains tumor-forming potential. The ideal pluripotent stem cell-based therapeutic would be a pure population of tissue specific stem cells, devoid of impurities such as undifferentiated or aberrantly-differentiated cells.
We propose to develop antibody-based tools and protocols to purify therapeutic stem cells from heterogeneous cultures. We offer two general strategies to achieve this goal. The first is to develop antibodies and protocols to identify undifferentiated tumor-forming cells and remove them from cultures. The second strategy is to develop antibodies that can identify and isolate heart stem cells, and blood-forming stem cells capable of engraftment from cultures of pluripotent stem cells. The biological underpinning of our approach is that each cell type can be identified by a signature surface marker expression profile.
Antibodies that are specific to cell surface markers can be used to identify and isolate stem cells using flow cytometry. We can detect and isolate rare tissue stem cells by using combinations of antibodies that correspond to the surface marker signature for the given tissue stem cell. We can then functionally characterize the potential of these cells for use in regenerative medicine.
Our proposal aims to speed the clinical application of therapies derived from pluripotent cell products by reducing the risk of transplanting the wrong cell type - whether it is a tumor-causing residual pluripotent cell or a cell that is not native to the site of transplant - into patients. Antibodies, which exhibit exquisitely high sensitivity and specificity to target cellular populations, are the cornerstone of our proposal. The antibodies (and other technologies and reagents) identified and generated as a result of our experiments will greatly increase the safety of pluripotent stem cell-derived cellular therapies.

Statement of Benefit to California: 

Starting with human embryonic stem cells (hESC), which are capable of generating all cell types in the body, we aim to identify and isolate two tissue-specific stem cells – those that can make the heart and the blood – and remove cells that could cause tumors. Heart disease remains the leading cause of mortality and morbidity in the West. In California, 70,000 people die annually from cardiovascular diseases, and the cost exceeded $48 billion in 2006. Despite major advancement in treatments for patients with heart failure, which is mainly due to cellular loss upon myocardial injury, the mortality rate remains high. Similarly, diseases of the blood-forming system, e.g. leukemias, remain a major health problem in our state.
hESC and induced pluripotent stem cells (collectively, pluripotent stem cells, or PSC) could provide an attractive therapeutic option to treat patients with damaged or defective organs. PCS can differentiate into, and may represent a major source of regenerating, cells for these organs. However, the major issues that delay the clinical translation of PSC derivatives include lack of purification technologies for heart- or blood-specific stem cells from PSC cultures and persistence of pluripotent cells that develop into teratomas. We propose to develop reagents that can prospectively identify and isolate heart and blood stem cells, and to test their functional benefit upon engraftment in mice. We will develop reagents to identify and remove residual PSC, which give rise to teratomas. These reagents will enable us to purify patient-specific stem cells, which lack cancer-initiating potential, to replenish defective or damaged tissue.
The reagents generated in these studies can be patented forming an intellectual property portfolio shared by the state and the institutions where the research is carried out. The funds generated from the licensing of these technologies will provide revenue for the state, will help increase hiring of faculty and staff (many of whom will bring in other, out-of-state funds to support their research) and could be used to ameliorate the costs of clinical trials – the final step in translation of basic science research to clinical use. Only California businesses are likely to be able to license these reagents and to develop them into diagnostic and therapeutic entities; such businesses are at the heart of the CIRM strategy to enhance the California economy. Most importantly, this research will set the platform for future stem cell-based therapies. Because tissue stem cells are capable of lifelong self-renewal, stem cell therapies have the potential to be a single, curative treatment. Such therapies will address chronic diseases with no cure that cause considerable disability, leading to substantial medical expense. We expect that California hospitals and health care entities will be first in line for trials and therapies. Thus, California will benefit economically and it will help advance novel medical care.

Progress Report: 
  • Our program is focused on improving methods that can be used to purify stem cells so that they can be used safely and effectively for therapy. A significant limitation in translating laboratory discoveries into clinical practice remains our inability to separate specific stem cells that generate one type of desired tissue from a mixture of ‘pluripotent’ stem cells, which generate various types of tissue. An ideal transplant would then consist of only tissue-specific stem cells that retain a robust regenerative potential. Pluripotent cells, on the other hand, pose the risk, when transplanted, of generating normal tissue in the wrong location, abnormal tissue, or cancer. Thus, we have concentrated our efforts to devise strategies to either make pluripotent cells develop into desired tissue-specific stem cells or to separate these desired cells from a mixture of many types of cells.
  • Our approach to separating tissue-specific stem cells from mixed cultures is based on the theory that every type of cell has a very specific set of molecules on its surface that can act as a signature. Once this signature is known, antibodies (molecules that specifically bind to these surface markers) can be used to tag all the cells of a desired type and remove them from a mixed population. To improve stem cell therapy, our aim is to identify the signature markers on: (1) the stem cells that are pluripotent or especially likely to generate tumors; and (2) the tissue-specific stem cells. By then developing antibodies to the pluripotent or tumor-causing cells, we can exclude them from a group of cells to be transplanted. By developing antibodies to the tissue-specific stem cells, we can remove them from a mixture to select them for transplantation. For the second approach, we are particularly interested in targeting stem cells that develop into heart (cardiac) tissue and cells that develop into mature blood cells. As we develop ways to isolate the desired cells, we test them by transplanting them into animals and observing how they grow.
  • Thus, the first goal of our program is to develop tools to isolate pluripotent stem cells, especially those that can generate tumors in transplant recipients. To this end, we tested an antibody aimed at a pluripotent cell marker (stage-specific embryonic antigen-5 [SSEA-5]) that we previously identified. We transplanted into animals a population of stem cells that either had the SSEA-5-expressing cells removed or did not have them removed. The animals that received the transplants lacking the SSEA-5-expressing cells developed smaller and fewer teratomas (tumors consisting of an abnormal mixture of many tissues). Approaching the problem from another angle, we analyzed teratomas in animals that had received stem cell transplants. We found SSEA-5 on a small group of cells we believe to be responsible for generating the entire tumor.
  • The second goal of the program is to develop methods to selectively culture cardiac stem cells or isolate them from mixed cultures. Thus, in the last year we tested procedures for culturing pluripotent stem cells under conditions that cause them to develop into cardiac stem cells. We also tested a combination of four markers that we hypothesized would tag cardiac stem cells for separation. When these cells were grown under the proper conditions, they began to ‘beat’ and had electrical activity similar to that seen in normal heart cells. When we transplanted the cells with the four markers into mice with normal or damaged hearts, they seemed to develop into mature heart cells. However, these (human) cells did not integrate with the native (mouse) heart cells, perhaps because of the species difference. So we varied the approach and transplanted the human heart stem cells into human heart tissue that had been previously implanted in mice. In this case, we found some evidence that the transplanted cells differentiated into mature heart cells and integrated with the surrounding human cells.
  • The third goal of our project is to culture stem cells that give rise only to blood cells and test them for transplantation. In the past year, we developed a new procedure for treating cultures of pluripotent stem cells so that they differentiate into specific stem cells that generate blood cells and blood vessels. We are now working to refine our understanding and methods so that we end up with a culture of differentiated stem cells that generates only blood cells and not vessels.
  • In summary, we have discovered markers and tested combinations of antibodies for these markers that may select unwanted cells for removal or wanted cells for inclusion in stem cell transplants. We have also begun to develop techniques for taking a group of stem cells that can generate many tissue types, and growing them under conditions that cause them to develop into tissue-specific stem cells that can be used safely for transplantation.
  • Our program is focused on improving methods to purify blood-forming and heart-forming stem cells so that they can be used safely and effectively for therapy. Current methods to identify and isolate blood-forming stem cells from bone marrow and blood are efficient. In addition, we found that if blood-forming stem cells are transplanted, they create in the recipient an immune system that will tolerate (i.e., not reject) organs, tissues, or other types of tissue stem cells (e.g. skin, brain, or heart) from the same donor. Many living or recently deceased donors often cannot contribute these stem cells, so we need, in the future, a single biological source of each of the different types of stem cells (e.g., blood and heart) to change the entire field of regenerative medicine. The ultimate reason to fund embryonic stem cell and other pluripotent stem cell research is to create safe banks of predefined pluripotent cells. Protocols to differentiate these cells to the appropriate blood-forming stem cells could then be used to induce tolerance of other tissue stem cells from the same embryonic stem cell line. However, existing protocols to differentiation stem cells often lead to pluripotent cells (cells that generate multiple types of tissue), which pose a risk of generating normal tissue in the wrong location, abnormal tissue, or cancers called teratomas. To address these problems, we have concentrated our efforts to devise strategies to (a) make pluripotent cells develop into desired tissue-specific stem cells, and (b) to separate these desired cells from all other cells, including teratoma-causing cells. In the first funding period of this grant, we succeeded in raising antibodies that identify and eliminate teratoma-causing cells.
  • In the past year, we identified surface markers of cells that can only give rise to heart tissue. First we studied the genes that were activated in these cells, further confirming that they would likely give rise to heart tissue. Using antibodies against these surface markers, we purified heart stem cells to a higher concentration than has been achieved by other purification methods. We showed that these heart stem cells can be transplanted such that they integrate into the human heart, but not mouse heart, and participate in strong and correctly timed beating.
  • In the embryo, a group of early stem cells in the developing heart give rise to (a) heart cells; (b) cells lining the inner walls of blood vessels; and (c) muscle cells surrounding blood vessels. We identified cell surface markers that could be used to separate each of these subsets from each other and from their common stem cell parents. Finally, we determined that a specific chemical in the body, fibroblast growth factor, increased the growth of a group of pluripotent stem cells that give rise to more specific stem cells that produce either blood cells or the lining of blood vessels. This chemical also prevented blood-forming stem cells from developing into specific blood cells.
  • In the very early embryo, pluripotent cells separate into three distinct categories called ‘germ layers’: the endoderm, mesoderm, and ectoderm. Each of these germ layers later gives rise to certain organs. Our studies of the precursors of mesoderm (the layer that generates the heart, blood vessels, blood, etc.) led us by exclusion to develop techniques to direct ES cell differentiation towards endoderm (the layer that gives rise to liver, pancreas, intestinal lining, etc.). A graduate student before performed most of this work before he joined in our effort to find ways to make functional blood forming stem cells from ES cells. He had identified a group of proteins that we could use to sequentially direct embryonic stem cells to develop almost exclusively into endoderm, then subsets of digestive tract cells, and finally liver stem cells. These liver stem cells derived from embryonic stem cells integrated into mouse livers and showed signs of normal liver tissue function (e.g., secretion of albumin, a major protein in the blood). Using the guidelines of the protocols that generated these liver stem cells, we have now turned our attention back to our goal of generating from mesoderm the predecessors of blood-forming stem cells, and, ultimately, blood-forming stem cells.
  • In summary, we have continued to discover signals that cause pluripotent stem cells (which can generate many types of tissue) to become tissue-specific stem cells that exclusively develop into only heart, blood cells, blood vessel lining cells, cells that line certain sections of the digestive tract, or liver cells. This work has also involved determining the distinguishing molecules on the surface of various cells that allow them to be isolated and nearly purified. These results bring us closer to being able to purify a desired type of stem cell to be transplanted safely to generate only a single type of tissue.
  • The main focus of our program is to improve methods to generate pure populations of tissue-specific stem cells that form only heart tissue or blood. Such tissue-specific stem cells are necessary for developing safe and effective therapies. If injected into patients with heart damage, heart-forming stem cells might be used to regenerate healthy heart tissue. Blood-forming stem cells are capable of regenerating the blood-forming system after cancer therapy and replacing a defective blood forming-system. We showed that blood-forming stem cells from a given donor induce in the recipient permanent transplant tolerance of all organs, tissues, or other tissue stem cells from the same donor. Therefore, having a single biological source of each of the different types of stem cells (e.g., blood and heart) would revolutionize regenerative medicine.
  • Our projects involve generating tissue-specific stem cells from pluripotent stem cells (PSCs), the latter of which are stem cells that can form all tissues of the body. PSCs (which include embryonic stem cells and induced pluripotent stem cells) can turn into all types of more specialized cells in a process known as “differentiation.” Because PSCs can be grown to very large numbers, differentiating PSCs into tissue-specific stem cells could lead to banks of defined tissue stem cells for transplantation into patients—the ultimate reason to conduct PSC research.
  • However, current methods to differentiate PSCs often generate mixtures of various cell types that are unsafe for injection into patients. Therefore, generating a pure population of a desired cell type from PSC is pivotal for regenerative medicine—purity is a key concern for cell therapy as it is with medications.
  • We have invented technologies to purify desired types of cells from complex cell populations, allowing us to precisely isolate a pure population of tissue-specific stem cells from differentiating PSCs for cell therapy. For instance, in our work on heart-forming cells, we developed labels for cells that progressively give rise to heart cells. We used these labeled cells to clarify the natural, stepwise, differentiation process that leads from PSCs to heart-forming stem cells, and finally to different cells within the heart. Exploiting these technologies to isolate desired cell types, we have completed the first step of turning human PSCs into heart-forming stem cells. In the laboratory, when we transplanted these heart-forming stem cells into a human heart, they integrated with the surrounding tissue and participated in correctly timed beating. In the future we hope to deliver heart-forming stem cells into the damaged heart to regenerate healthy tissue.
  • We have also attempted to turn PSCs into blood-forming stem cells by understanding the complex process of blood formation in the early embryo. As mentioned above, if blood-forming stem cells are transplanted into patients, they create in the recipient an immune system that will tolerate (i.e., not reject) other tissues and types of tissue stem cells (e.g., for skin or heart) from the same donor. Thus, turning PSCs into blood-forming stem cells will provide the basis for all regenerative medicine, whereby the blood-forming stem cells and the needed other tissue stem cells can be generated from the same pluripotent cell line and be transplanted together.
  • In parallel studies to those above, we have turned PSCs into liver-forming stem cells. In the embryo, the liver emerges from a cell type known as endoderm, whereas the blood and heart emerge from a different cell type known as mesoderm. We learned that PSCs could only be steered to form endoderm (and subsequently, liver) by diverting them away from the path that leads to mesoderm. Through this approach, we could turn human PSCs into endoderm cells (at >99% purity) and then into liver-forming stem cells that, when injected into the mouse liver, gave rise to human liver cells. This could be of therapeutic importance for human patients with liver damage.
  • Finally, we have developed methods to deplete PSCs from mixtures of cells differentiated from PSCs, because residual PSCs in these mixtures can form tumors (known as teratomas). These methods should increase the safety of PSC-derived tissue stem cell therapy.
  • In summary, we have developed methods to turn PSCs to tissue-specific stem cells that exclusively develop into only heart, blood cells, or liver cells. This work has involved determining the distinguishing molecules on the surface of various cells that allow them to be isolated and nearly purified. These results bring us closer to being able to purify a desired type of stem cell to be transplanted safely to generate only a single type of tissue.
Funding Type: 
New Faculty Physician Scientist
Grant Number: 
RN3-06378
Investigator: 
ICOC Funds Committed: 
$2 930 388
Disease Focus: 
Heart Disease
Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Active
Public Abstract: 

Because the regenerative capacity of adult heart is limited, any substantial cell loss as a result of a heart attack is mostly irreversible and may lead to progressive heart failure. Human pluripotent stem cells can be differentiated to heart cells, but their properties when transplanted into an injured heart remain unresolved. We propose to perform preclinical evaluation for transplantation of pluripotent stem cell-derived cardiac cells into the injured heart of an appropriate animal model. However, an important issue that has limited the progress to clinical use is their fate upon transplantation; that is whether they are capable of integrating into their new environment or they will function in isolation at their own pace. As an analogy, the performance of a symphony can go into chaos if one member plays in isolation from all surrounding cues. Therefore, it is important to determine if the transplanted cells can beat in harmony with the rest of the heart and if these cells will provide functional benefit to the injured heart. We plan to isolate cardiac cells derived from human pluripotent stem cells, transplant them into the model’s injured heart, determine if they result in improvement of the heart function, and perform detailed electrophysiology studies to determine their integration into the host tissue. The success of the proposed project will set the platform for future clinical trails of stem cell therapy for heart disease.

Statement of Benefit to California: 

Heart disease remains the leading cause of mortality and morbidity in the US with an estimated annual cost of over $300 billion. In California alone, more than 70,000 people die every year from cardiovascular diseases. Despite major advancement in treatments for patients with heart failure, which is mainly due to cellular loss upon myocardial injury, the mortality rate remains high. Human embryonic stem cells (hESC) and induced pluripotent stem cells (iPSC) could provide an attractive therapeutic option to treat patients with damaged heart. We propose to isolate heart cells from hESCs and transplant them in an injured animal model's heart and study their fate. In the process, we will develop reagents that can be highly valuable for future research and clinical studies. The reagents generated in these studies can be patented forming an intellectual property portfolio shared by the state and the institution where the research is carried out. Most importantly, the research that is proposed in this application could lead to future stem cell-based therapies that would restore heart function after a heart attack. We expect that California hospitals and health care entities will be first in line for trials and therapies. Thus, California will benefit economically and it will help advance novel medical care.

Progress Report: 
  • Identification and isolation of pure cardiac cells derived from human pluripotent stem cells has proven to be a difficult task. We have designed a method to genetically engineer human embryonic stem cells (hESCs) to harbor a label that is expressed during sequential maturation of cardiac cells. This will allow us to prospectively isolate cardiac cells at different stages of development for further characterization and transplantation. Using this method, we have screened proteins that are expressed on the surface of cells as markers. Using antibodies against these surface markers allows for isolation of these cells using cell sorting techniques. Thus far, we have identified two surface markers that can be used to isolate early cardiac progenitors. Using these markers, we have enriched for cardiac cells from differentiating hESCs and have characterized their properties in the dish as well as in small animals. We plan to transplant these cells in large animal models and monitor their survival, expansion and their integration into the host myocardium. Molecular imaging techniques are used to track these cells upon transplantation.
  • Pluripotent stem cells (PSCs) harbor several attractive features for regenerative medicine: they are capable of self-renewal and have the capacity to differentiate to the tissue lineage of all three germ layers. The overall objective of this grant is to develop new technologies that can facilitate generation of cardiovascular progenitors that upon transplantation are capable to integrate into the host tissue and function as part of the normal myocardium with no adverse effect.
  • Several clinical trials of cell-based therapy have generated enthusiasm about the potential of adult stem cells to treat heart disease. However, no study has yet confirmed the delivery of a pure population of stem cells capable of robust regeneration of the injured myocardium. Furthermore, the electrical properties of the viable engrafted cells remain unknown. While adult stem cells have yet failed to convincingly regenerate myocardial tissue, human embryonic stem cells (hESCs) have proven to be a potential and unlimited source for cardiomyocyte regeneration. Most attempts to isolate transplantable cells from hESCs have aimed to isolate mature cells. Mature cardiomyocytes have passed the stage of self-renewal and may pose problems due to lack of proper integration. Cardiovascular progenitors, on the other hand, could adapt to the microenvironment for optimal integration into the host tissue and reside there for the lifetime of the patient.
  • We have employed gene editing technology to generate new hESC lines, in which fluorescent reporter proteins are expressed only in cardiac cells. Hence, upon differentiation of hESCs towards cardiac lineage, a distinct fluorescent color is expressed sequentially at each stage of cardiovascular development. We have isolated these cells and have performed detailed analysis to fully characterize their developmental potential. We have performed global gene expression analysis to identify novel biomarkers unique to specific cardiac populations.
  • An addition, we have transplanted cardiovascular progenitors (at different stages of development) and mature cardiomyocytes in animal models. We have shown engraftment of these cells into the host heart, albeit a very low efficiency. Furthermore, we have shown that transplantation of immature cardiovascular progenitors may generate cardiomyocytes in addition to supporting cells such as vascular endothelial cells and fibroblasts. These results highlight the potential benefit of progenitor cells to generate other cell types that contribute to heart regeneration.
  • A major challenge to clinical translation of stem cells for heart regeneration is the lack of data on the integration of the transplanted cells into the host heart. . It is possible that the transplanted cells fail to physiologically couple with the host tissue, or they may modify the substrate such that a pro-arrhythmic focus is created. As an analogy, consider the performance of a great symphony orchestra that is interrupted by several members playing in isolation. As such, grafted cells in the heart can also be an ectopic source of activities, promoting arrhythmic events. These are critical issues that need to be addressed in detail in the right animal models before any clinical application can be pursued. We plan to investigate the extent of structural and functional integration of the transplanted cells into the host heart.
Funding Type: 
New Faculty Physician Scientist
Grant Number: 
RN3-06455
Investigator: 
Name: 
Type: 
PI
ICOC Funds Committed: 
$3 004 315
Disease Focus: 
Heart Disease
Stem Cell Use: 
iPS Cell
oldStatus: 
Active
Public Abstract: 

Despite therapeutic advances, cardiovascular disease remains a leading cause of mortality and morbidity in California. Regenerative therapies that restore normal function after a heart attack would have an enormous societal and financial impact. Although very promising, regenerative cardiac cell therapy faces a number of challenges and technological hurdles. Human induced pluripotent stem cells (hiPSC) allow the potential to deliver patient specific, well-defined cardiac progenitor cells (CPC) for regenerative clinical therapies. We propose to translate recent advances in our lab into the development of a novel, well-defined hiPSC-derived CPC therapy. All protocols will be based on clinical-grade, FDA-approvable, animal product-free methods to facilitate preclinical testing in a large animal model.
This application will attempt to translate these findings by:
-Developing techniques and protocols utilizing human induced pluripotent stem cell-derived cardiac progenitor cells at yields adequate to conduct preclinical large animal studies.
-Validation of therapeutic activity will be in small and large animal models of ischemic heart disease by demonstrating effectiveness of hiPSC-derived CPCs in regenerating damaged myocardium post myocardial infarction in small and large animal models.
This developmental candidate and techniques described here, if shown to be a feasible alternative to current approaches, would offer a novel approach to the treatment of ischemic heart disease.

Statement of Benefit to California: 

Cardiovascular disease remains the leading cause of morbidity and mortality in California and the US costing the healthcare system greater than 300 billion dollars a year. Although current therapies slow progression of heart disease, there are few options to reverse or repair the damaged heart. The limited ability of the heart to regenerate following a heart attack results in loss of function and heart failure. Human clinical trials testing the efficacy of adult stem cell therapy to restore mechanical function after a heart attack, although promising, have had variable results with modest improvements.
The discovery of human induced pluripotent stem cells offers a potentially unlimited renewable source for patient specific cardiac progenitor cells. However, practical application of pluripotent stem cells or their derivatives face a number of challenges and technological hurdles. We have demonstrated that cardiac progenitor cells, which are capable of differentiating into all cardiovascular cell types, are present during normal fetal development and can be isolated from human induced pluripotent stem cells. We propose to translate these findings into a large animal pre-clinical model and eventually to human clinical trials. This could lead to new therapies that would restore heart function after a heart attack preventing heart failure and death. This will have tremendous societal and financial benefits to patients in California and the US in treating heart failure.

Progress Report: 
  • Cardiovascular disease remains to be a major cause of morbidity and mortality in California and the United States. Despite the best medical therapies, none address the issue of irreversible myocardial tissue loss after a heart attack and thus there has been a great interest to develop approaches to induce regeneration. Our lab has focused on harvesting the full potential of patient specific induced pluripotent stem cells (iPSCs) to use to attempt to regenerate the damaged tissue. We believe that these iPSCs can be potentially used in the future to generate sufficient number of cells to be implanted in the damaged heart to regenerate the lost tissue post heart attack. Our lab has studied how these cardiac progenitors evolve in the developing heart and applied our finding to iPSCs to recapitulate the cardiac progenitors to ultimately use in clinical therapies. We have successfully derived these cardiac progenitors from patient derived iPSCs in a clinical grade fashion to ensure that we can apply same protocols in the future to clinical use if we are successful in demonstrating the efficacy of this therapy in our translational large animal studies that we will be conducting.
  • Cardiovascular disease remains to be a major cause of morbidity and mortality in California and the United States. Despite the best medical therapies, none address the issue of irreversible myocardial tissue loss after a heart attack and thus there has been a great interest to develop approaches to induce regeneration. Our lab has focused on harvesting the full potential of patient specific induced pluripotent stem cells (iPSCs) to use to attempt to regenerate the damaged tissue. We believe that these iPSCs can be potentially used in the future to generate sufficient number of cells to be implanted in the damaged heart to regenerate the lost tissue post heart attack. Our lab has studied how these cardiac progenitors evolve in the developing heart and applied our finding to iPSCs to recapitulate the cardiac progenitors to ultimately use in clinical therapies. We have successfully derived these cardiac progenitors from patient derived iPSCs in a clinical grade fashion to ensure that we can apply same protocols in the future to clinical use if we are successful in demonstrating the efficacy of this therapy in our translational large animal studies that we will be conducting. We currently are testing their in vivo regeneration potential in small animal studies to assess their safety and efficacy in regenerating the damaged heart.
Funding Type: 
hPSC Repository
Grant Number: 
IR1-06600
Investigator: 
ICOC Funds Committed: 
$9 999 834
Disease Focus: 
Developmental Disorders
Heart Disease
Infectious Disease
Alzheimer's Disease
Neurological Disorders
Autism
Respiratory Disorders
Vision Loss
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Active
Public Abstract: 

Critical to the long term success of the CIRM iPSC Initiative of generating and ensuring the availability of high quality disease-specific human IPSC lines is the establishment and successful operation of a biorepository with proven methods for quality control, safe storage and capabilities for worldwide distribution of high quality, highly-characterized iPSCs. Specifically the biorepository will be responsible for receipt, expansion, quality characterization, safe storage and distribution of human pluripotent stem cells generated by the CIRM stem cell initiative. This biobanking resource will ensure the availability of the highest quality hiPSC resources for researchers to use in disease modeling, target discovery and drug discovery and development for prevalent, genetically complex diseases.

Statement of Benefit to California: 

The generation of induced pluripotent stem cells (iPSCs) from patients and subsequently, the ability to differentiate these iPSCs into disease-relevant cell types holds great promise in facilitating the “disease-in-a-dish” approach for studying our understanding of the pathological mechanisms of human disease. iPSCs have already proven to be a useful model for several monogenic diseases such as Parkinson’s, Fragile X Syndrome, Schizophrenia, Spinal Muscular Atrophy, and inherited metabolic diseases such as 1-antitrypsin deficiency, familial hypercholesterolemia, and glycogen storage disease. In addition, the differentiated cells obtained from iPSCs represent a renewable, disease-relevant cell model for high-throughput drug screening and toxicology/safety assessment which will ultimately lead to the successful development of new therapeutic agents. iPSCs also hold great hope for advancing the use of live cells as therapies for correcting the physiological manifestations caused by disease or injury.

Progress Report: 
  • The California Institute for Regenerative Medicine (CIRM) Human Pluripotent Stem Cell Biorepository is operated by the Coriell Institute for Medical Research and is a critical component of the CIRM Human Stem Cell Initiative. The overall goal of this initiative is to generate, for world-wide use by non-profit and for-profit entities, high quality, disease-specific induced pluripotent stem cells (iPSCs). These cells are derived from existing tissues such as blood or skin, and are genetically manipulated in the laboratory to change into cells that resemble embryonic stem cells. iPSCs can be grown indefinitely in the Petri dish and have the remarkable capability to be converted into most of the major cell types in the body including neurons, heart cells, and liver cells. This ability makes iPSCs an exceptional resource for disease modeling as well as for drug screening. The expectation is that these cells will be a major benefit to the process for understanding prevalent, genetically complex diseases and in developing innovative therapeutics.
  • The Coriell CIRM iPSC Biorepository, located at the Buck Institute for Research on Aging in Novato, CA, is funded through a competitive grant award to Coriell from CIRM and is managed by Mr. Matt Self under the supervision of the Program Director, Dr. Steven Madore, Director of Molecular Biology at Coriell. The Biorepository will receive biospecimens consisting of peripheral blood mononuclear cells (PBMCs) and skin biopsies obtained from donors recruited by seven Tissue Collector grant awardees. These biospecimens will serve as the starting material for iPSC derivation by Cellular Dynamics, Inc (CDI). Under a contractual agreement with Coriell, CDI will expand each iPSC line to generate sufficient aliquots of high quality cryopreserved cells for distribution via the Coriell on-line catalogue. Aliquots of frozen cell lines and iPSCs will be stored in liquid nitrogen vapor in storage units at the Buck Institute with back-up aliquots stored in a safe off-site location.
  • Renovation and construction of the Biorepository began at the Buck Institute in late January. The Biorepository Manger was hired March 1 and after installation of cryogenic storage vessels and alarm validation, the first biospecimens were received on April 30, 2014. Additionally, Coriell has developed a Clinical Information Management System (CIMS) for storing all clinical and demographic data associated with enrolled subjects. Tissue Collectors utilize CIMS via a web interface to upload and edit the subject demographic and clinical information that will ultimately be made available, along with the iPSCs, via Coriell’s on-line catalogue
  • As of November 1 specimens representing a total of 725 unique individuals have been received at the Biorepository. These samples include PBMCs obtained from 550 unique individuals, skin biopsies from 72 unique individuals, and 103 primary dermal fibroblast cultures previously prepared in the laboratories of the CIRM Tissue Collectors. A total of 280 biospecimen samples have been delivered to CDI for the purpose of iPSC derivation. The Biorepository is anticipating delivery of the first batches of iPSCs for distribution in early 2015. These lines, along with the associated clinical data, will become available to scientists via the on-line Coriell catalogue. The CIRM Coriell iPSC Biorepository will ensure safe long-term storage and distribution of high quality iPSCs.
Funding Type: 
Tools and Technologies III
Grant Number: 
RT3-07798
Investigator: 
Name: 
Institution: 
Type: 
PI
ICOC Funds Committed: 
$1 936 944
Disease Focus: 
Heart Disease
Stem Cell Use: 
iPS Cell
Public Abstract: 

Heart disease is the number one cause of death in the US. Heart muscle injured during a heart attack does not regenerate, and the resulting damage leads to heart failure, which inflicts almost 6 million people in the US alone. Recently, several studies have shown that direct injection of stem cell-derived heart cells may offer regenerative potential in the damaged heart. However, injected heart cells often lack the spatial and temporal organization required to create uniform tissue with synchronized beating, while rapid donor cell death poses another key limitation. For these reasons, we propose to transplant engineered heart muscle (EHM) that is spatially and temporally organized into a relevant large animal model. Our proposal addresses unique translational challenges pertaining to tissue engineered heart repair by scaling our established human induced pluripotent stem cell (iPSC) differentiation protocol to create one billion human and large animal model cardiomyocytes for each EHM, in order to meet clinical demands by: (1) adopting our established human EHM tissue engineering process to the large animal model; (2) defining conditions for EHM implantation; and (3) performing a pivotal feasibility, safety, and efficacy study in the large animal model with chronic heart failure. Our studies will establish long-term safety and efficacy of iPSC-EHM therapies in a clinically relevant large animal model, which will overcome a major unresolved bottleneck to the translation of stem cell therapies to humans.

Statement of Benefit to California: 

Cardiovascular disease (CVD) affects more than 1.7 million Californians. The societal and financial costs are tremendous, with CVD accounting annually for an estimated $8 billion in California health care costs alone. Following a heart attack, the endogenous regenerative process is not sufficient to compensate for heart tissue death. Thus, using regenerative therapies with human stem cells to form engineered heart tissue is emerging as a promising therapeutic avenue. Engineered tissues are already being used in patients needing artificial blood vessels, bladders, and tracheas. Our multidisciplinary team proposes to create human engineered heart tissue (EHT) for treatment of post-attack heart failure in a clinically-enabling large animal model, and we are confident we will be able to move our potential therapy into preclinical human trials. Development of therapies for diseases such as CVD could potentially improve the California health care system by reducing the long-term health care cost burden on California. In addition, our research may provide an opportunity for California to benefit from royalties, patents, and licensing fees, which will create cutting-edge projects, attractive jobs, and innovative therapies that will generate millions of dollars in new tax revenues and opportunities in our state. Finally, our research could further advance the flourishing biotech industry in California, serving as a crucial engine to power California’s economic future.

Funding Type: 
Genomics Centers of Excellence Awards (R)
Grant Number: 
GC1R-06673-A
Investigator: 
Institution: 
Type: 
PI
Type: 
Co-PI
ICOC Funds Committed: 
$40 000 000
Disease Focus: 
Brain Cancer
Cancer
Developmental Disorders
Heart Disease
Cancer
Genetic Disorder
Stem Cell Use: 
iPS Cell
Embryonic Stem Cell
Adult Stem Cell
Cancer Stem Cell
Cell Line Generation: 
iPS Cell
Public Abstract: 

The Center of Excellence in Stem Cell Genomics will bring together investigators from seven major California research institutions to bridge two fields – genomics and pluripotent stem cell research. The projects will combine the strengths of the center team members, each of whom is a leader in one or both fields. The program directors have significant prior experience managing large-scale federally-funded genomics research programs, and have published many high impact papers on human stem cell genomics. The lead investigators for the center-initiated projects are expert in genomics, hESC and iPSC derivation and differentiation, and bioinformatics. They will be joined by leaders in stem cell biology, cancer, epigenetics and computational systems analysis. Projects 1-3 will use multi-level genomics approaches to study stem cell derivation and differentiation in heart, tumors and the nervous system, with implications for understanding disease processes in cancer, diabetes, and cardiac and mental health. Project 4 will develop novel tools for computational systems and network analysis of stem cell genome function. A state-of-the-art data management program is also proposed. This research program will lead the way toward development of the safe use of stem cells in regenerative medicine. Finally, Center resources will be made available to researchers throughout the State of California through a peer-reviewed collaborative research program.

Statement of Benefit to California: 

Our Center of Excellence for Stem Cell Genomics will help California maintain its position at the cutting edge of Stem Cell research and greatly benefit California in many ways. First, diseases such as cardiovascular disease, cancer, neurological diseases, etc., pose a great financial burden to the State. Using advanced genomic technologies we will learn how stem cells change with growth and differentiation in culture and can best be handled for their safe use for therapy in humans. Second, through the collaborative research program, the center will provide genomics services to investigators throughout the State who are studying stem cells with a goal of understanding and treating specific diseases, thereby advancing treatments. Third, it will employ a large number of “high tech” individuals, thereby bringing high quality jobs to the state. Fourth, since many investigators in this center have experience in founding successful biotech companies it is likely to “spin off” new companies in this rapidly growing high tech field. Fifth, we believe that the iPS and information resources generated by this project will have significant value to science and industry and be valuable for the development of new therapies. Overall, the center activities will create a game-changing network effect for the state, propelling technology development, biological discovery and disease treatment in the field.

Progress Report: 
  • This grant has enabled a plethora of activities in California Stem Cell Genomics. The Stanford Administrative Core for the Center of Excellence in Stem Cell Genomics (CESCG) has been established and is responsible for overseeing joint center activities, and the administration of center-initiated projects (CIP) 1 and 2, and several collaborative research projects (CRP). In the first year of the award the CESCG administration organized monthly telephone conference calls to share research progress and coordinate activities across the Center. On May 1, 2015 the CESCG held its first center-wide retreat in a one-day event at Clark Center on the campus of the Stanford Medical School. The two CIPs have made significant progress. CIP1 has generated a valuable resource of 38 induced pluripotent stem cell lines and established a reliable platform for high throughput derivation of human induced pluripotent stem cell-derived cardiomyocytes for use in downstream high throughput toxicity and drug pharmacology screening assays. CIP2 has completed the first human single cell brain analysis and is in the process of deriving a single cell pancreatic map. We have launched our collaborative research progress grant. Following on the receipt of applications in October 2014 and successful review in January 2015, the Administrative Core at Stanford has also issued subcontract awards for 3 CRPs managed by the CESCG from the Northern California site – two comprehensive project awards CRP-C2 to Daniel Geschwind of UCLA and CRP-C3 to Arnold Kriegstein of UCSF, and a regular project award CRP-R4 to Jeremy Sanford of UCSC. These activities will transform stem cell research in California and continue its preeminence in this area.

Pages