Curing Sickle cell Disease with CRISPR-Cas9 genome editing

Grant Award Details

Curing Sickle cell Disease with CRISPR-Cas9 genome editing

Grant Type: Therapeutic Translational Research Projects
Grant Number: TRAN1-09292-A
Project Objective: Conduct a pre-IND meeting and prepare protocol for CRISPR/Cas9 gene edited autologous HSC therapy to cure sickle cell disease
Part B: post award activities to prepare for IND filing

Investigator:

<table>
<thead>
<tr>
<th>Name</th>
<th>Mark Walters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institution</td>
<td>UCSF Benioff Children’s Hospital Oakland</td>
</tr>
<tr>
<td>Type</td>
<td>PI</td>
</tr>
</tbody>
</table>

Disease Focus: Blood Disorders, Sickle Cell Disease
Human Stem Cell Use: Adult Stem Cell
Award Value: $4,394,276
Status: Closed

Progress Reports

Reporting Period: Final Operational Milestone #3
View Report

Grant Application Details

Application Title: Curing Sickle cell Disease with CRISPR-Cas9 genome editing
Public Abstract: Translational Candidate

The principal objective of this program is to bring a Cas9-based gene editing cure for sickle cell disease to the pre-IND stage of development.

Area of Impact

The principal barriers to transplant for SCD are lack of a donor and the toxicity of transplant, which can be overcome by the Cas9-based approach.

Mechanism of Action

Ex vivo editing of autologous stem cells would be followed by re-implantation of edited cells, bypassing donor requirements and eliminating risks of graft-versus-host disease and rejection. Because sickle RBCs have a markedly reduced lifespan, low level sickle gene correction would be predicted to generate a clinical benefit by virtue of enrichment of the longer-lived corrected RBCs in circulation. After conventional transplant, clinical benefit with as few as 2-5% donor HSCs has been observed.

Unmet Medical Need

Fewer than 1% of individuals with sickle cell disease pursue an allogeneic bone marrow transplant cure today, principally because most affected persons lack a suitable donor. This proposal could make a cure universally available because it corrects the sickle mutation in a person’s own stem cells.

Project Objective

class conduct a pre-IND meeting and prepare a protocol

Major Proposed Activities

- Test Optimal Editing Reagents in stem cells from subjects with sickle cell disease and show correction in >2% sickle stem cells
- Translate optimal method for gene editing with GMP-comparable reagents and processes for cell processing and cryopreservation.
- Ramp-up testing of reagents to manufacture a demonstration clinical-scale lot of the gene-corrected CD34+ cell product that meets all release criteria

Statement of Benefit to California:

Sickle cell disease (SCD) affects over 6000 primarily African-Americans in California. A survival of <40 years of age was observed in a large cohort of California patients. The estimated lifetime cost of care is $9 million per person. This project aims to improve SCD therapy by preparing for a clinical trial that might cure SCD after giving back sickle gene-corrected hematopoietic stem cells to a person with SCD. If successful, this would be a universal life-saving and cost-saving therapy.

Source URL: https://www.cirm.ca.gov/our-progress/awards/curing-sickle-cell-disease-crispr-cas9-genome-editing