Bone Marrow Targeting of Hematopoietic Stem Cells Engineered to Overexpress 25-OH-VD3 1-α-hydroxylase for Acute Myeloid Leukemia Therapy

Grant Award Details

Bone Marrow Targeting of Hematopoietic Stem Cells Engineered to Overexpress 25-OH-VD3 1-α-hydroxylase for Acute Myeloid Leukemia Therapy

Grant Type: Inception - Discovery Stage Research Projects

Grant Number: DISC1-10620

Project Objective: This project explores the feasibility of treating acute myeloid leukemia with a combination of 1) 5-Azacytidine chemotherapy, which primes the bone marrow niche and 2) transplantation of autologous HSCs modified to express Vitamin D in the bone marrow niche, thereby promoting terminal differentiation of leukemic stem cells

Investigator:

<table>
<thead>
<tr>
<th>Name</th>
<th>David Baylink</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institution</td>
<td>Loma Linda University</td>
</tr>
<tr>
<td>Type</td>
<td>PI</td>
</tr>
</tbody>
</table>

Disease Focus: Acute Myeloid Leukemia, Blood Cancer, Cancer

Human Stem Cell Use: Adult Stem Cell

Award Value: $178,967

Status: Active

Grant Application Details

Application Title: Bone Marrow Targeting of Hematopoietic Stem Cells Engineered to Overexpress 25-OH-VD3 1-α-hydroxylase for Acute Myeloid Leukemia Therapy
Public Abstract:

Research Objective

We propose a new approach to differentiation therapy for acute myeloid leukemia by producing local level of high-dose vitamin D in bone marrow via cell therapy with engineered hematopoietic stem cells

Impact

If proven successful, the proposed research can serve as a major breakthrough in the treatment of multiple subtypes of AML and particularly important for improving survival in older patients.

Major Proposed Activities

- Evaluate homing and expansion of engineered hematopoietic stem cells in bone marrow of human leukemic xenograft (HLX) mice after precondition with 5-Azacytidine
- Optimize the number of injected hematopoietic stem cells without causing hypercalcemia
- Determine if the local concentration of vitamin D3 is sufficient to differentiate leukemic blasts in bone marrow
- Determine the efficacy of combination therapy of 5-Azacytidine and cell therapy by measuring overall survival
- Determine the efficacy of combination therapy of 5-Azacytidine and cell therapy by measuring leukemia burden
- Monitor serum calcium level from peripheral blood during treatment period

Statement of Benefit to California:

Acute myeloid leukemia (AML) has poor outcome, especially in older, ailing patients who can't tolerate aggressive conventional chemotherapy. If proven successful, our work can serve as a major breakthrough in the treatment of multiple subtypes of AML and particularly important for improving survival in older patients. The State of California will be a leading authority in this field. Further, this work will benefit patients around the world, not limited citizens of California