Phase 1 Study of CD19/CD22 Chimeric Antigen Receptor (CAR) T Cells in Adults with Recurrent or Refractory B Cell Malignancies

Disease Area: B cell cancers, Leukemia
Investigator: Crystal Mackall
Institution: Stanford University
CIRM Grant: CLIN2-10846
Award Value: $11,034,982
Trial Sponsor: Stanford University
Trial Stage: Phase 1
Trial Status: Recruiting
Targeted Enrollment: 57
ClinicalTrials.gov ID: NCT03233854

Details:
Chimeric Antigen Receptor (CAR) T Cell Therapy is an innovative cancer therapy with very encouraging response rates in patients. The therapy works by isolating a patient’s own T cells (a type of immune cell) and then genetically engineering them to recognize a protein on the surface of cancer cells, triggering their destruction. In some patients with B cell leukemias, however, cancer cells escape detection by the modified T cells and cause the cancer’s reoccurrence.

Researchers at the Stanford University School of Medicine have developed an engineered T cell designed to recognize not one, but two, cell surface proteins on cancer cells with the aim of enhancing a patient’s response to the therapy and reducing the potential for relapse. In addition, some of the T cells will form memory stem cells that will survive for years and continue to survey the body, killing any new or surviving cancer cells.

Design:
Open label, dose escalation study.

Goal:
Safety and feasibility.

News about this clinical trial:
Mackall awarded $11.9 million for anti-leukemia clinical trial