Modeling Parkinson’s disease using induced pluripotent stem cells.

Return to Grants

Publication Year:
2012
Authors:
PubMed ID:
22538490
Public Summary:
Our understanding of Parkinson's disease's (PD) underlying molecular mechanism is hampered by a lack of accessible human dopaminergic (DA) neurons on which to base experimental research. Fortunately, the recent development of a PD disease model using induced pluripotent stem cells (iPSCs) provides access to cell types that were previously unobtainable in sufficient quantity or quality, and presents exciting promises for the elucidation of PD etiology and the development of potential therapeutics. To more effectively model PD, we generated two patient-derived iPSC lines: a line carrying a homozygous p.G2019S mutation in the leucine-rich repeat kinase 2 (LRRK2) gene and another carrying a full gene triplication of the α-synuclein encoding gene, SNCA. We demonstrated that these PD-linked pluripotent lines are capable of forming DA neurons and that these neurons exhibited PD linked phenotypes. Moreover, when compared to wild-type DA neurons, LRRK2-G2019S iPSC-derived DA neurons were more sensitive to caspase-3 activation. Given the high penetrance of the homozygous LRRK2 mutation, the expression of wild-type α-synuclein protein in the SNCA-triplication line, and the clinical resemblance of patients afflicted with these familial disorders to sporadic PD patients, these iPSC-derived neurons may be unique and valuable models for disease diagnostics and development of novel pharmacological agents for alleviation of relevant disease phenotypes.
Scientific Abstract:
Our understanding of the underlying molecular mechanism of Parkinson's disease (PD) is hampered by a lack of access to affected human dopaminergic (DA) neurons on which to base experimental research. Fortunately, the recent development of a PD disease model using induced pluripotent stem cells (iPSCs) provides access to cell types that were previously unobtainable in sufficient quantity or quality, and presents exciting promises for the elucidation of PD etiology and the development of potential therapeutics. To more effectively model PD, we generated two patient-derived iPSC lines: a line carrying a homozygous p.G2019S mutation in the leucine-rich repeat kinase 2 (LRRK2) gene and another carrying a full gene triplication of the alpha-synuclein encoding gene, SNCA. We demonstrated that these PD-linked pluripotent lines were able to differentiate into DA neurons and that these neurons exhibited increased expression of key oxidative stress response genes and alpha-synuclein protein. Moreover, when compared to wild-type DA neurons, LRRK2-G2019S iPSC-derived DA neurons were more sensitive to caspase-3 activation caused by exposure to hydrogen peroxide, MG-132, and 6-hydroxydopamine. In addition, SNCA-triplication iPSC-derived DA neurons formed early ubiquitin-positive puncta and were more sensitive to peak toxicity from hydrogen peroxide-induced stress. These aforementioned findings suggest that LRRK2-G2019S and SNCA-triplication iPSC-derived DA neurons exhibit early phenotypes linked to PD. Given the high penetrance of the homozygous LRRK2 mutation, the expression of wild-type alpha-synuclein protein in the SNCA-triplication line, and the clinical resemblance of patients afflicted with these familial disorders to sporadic PD patients, these iPSC-derived neurons may be unique and valuable models for disease diagnostics and development of novel pharmacological agents for alleviation of relevant disease phenotypes.