Facilitated maturation of Ca\(^{2+}\) handling properties of human embryonic stem cell-derived cardiomyocytes by calsequestrin expression.

Journal: Am J Physiol Cell Physiol

Publication Year: 2009

Authors: Jing Liu, Deborah K Lieu, Chung Wah Siu, Ji-Dong Fu, Hung-Fat Tse, Ronald A Li

PubMed link: 19357236

Funding Grants: Stem Cell Research Training Grant

Public Summary:
Cardiomyocytes (CMs) are nonregenerative. Self-renewable pluripotent human embryonic stem cells (hESCs) can differentiate into CMs for cell-based therapies. We recently reported that Ca\(^{2+}\) handling, crucial to excitation-contraction coupling of hESC-derived CMs (hESC-CMs), is functional but immature. Such immature properties as smaller cytosolic Ca\(^{2+}\) transient amplitudes, slower kinetics, and reduced Ca\(^{2+}\) content of sarcoplasmic reticulum (SR) can be attributed to the differential developmental expression profiles of specific Ca\(^{2+}\) handling and regulatory proteins in hESC-CMs and their adult counterparts. In particular, calsequestrin (CSQ), the most abundant, high-capacity but low-affinity, Ca\(^{2+}\)-binding protein in the SR that is anchored to the ryanodine receptor, is robustly expressed in adult CMs but completely absent in hESC-CMs. Here we hypothesized that gene transfer of CSQ in hESC-CMs suffices to induce functional improvement of SR. Transduction of hESC-CMs by the recombinant adenovirus Ad-CMV-CSQ-IRES-GFP (Ad-CSQ) significantly increased the transient amplitude, upstroke velocity, and transient decay compared with the control Ad-CMV-GFP (Ad-GFP) and Ad-CMV-CSQDelta-IRES-GFP (Ad-CSQDelta, which mediated the expression of a nonfunctional, truncated version of CSQ) groups. Ad-CSQ increased the SR Ca\(^{2+}\) content but did not alter L-type Ca\(^{2+}\) current. Pharmacologically, untransduced wild-type, Ad-GFP-, Ad-CSQDelta-, and Ad-CSQ-transduced hESC-CMs behaved similarly. Whereas ryanodine significantly reduced the Ca\(^{2+}\) transient amplitude and slowed the upstroke, thapsigargin slowed the decay. Neither triadin nor junctin was affected. We conclude that CSQ expression in hESC-CMs facilitates Ca\(^{2+}\) handling maturation. Our results shed insights into the suitability of hESC-CMs for therapies and as certain heart disease models for drug screening.

Scientific Abstract:
Cardiomyocytes (CMs) are nonregenerative. Self-renewable pluripotent human embryonic stem cells (hESCs) can differentiate into CMs for cell-based therapies. We recently reported that Ca\(^{2+}\) handling, crucial to excitation-contraction coupling of hESC-derived CMs (hESC-CMs), is functional but immature. Such immature properties as smaller cytosolic Ca\(^{2+}\) transient amplitudes, slower kinetics, and reduced Ca\(^{2+}\) content of sarcoplasmic reticulum (SR) can be attributed to the differential developmental expression profiles of specific Ca\(^{2+}\) handling and regulatory proteins in hESC-CMs and their adult counterparts. In particular, calsequestrin (CSQ), the most abundant, high-capacity but low-affinity, Ca\(^{2+}\)-binding protein in the SR that is anchored to the ryanodine receptor, is robustly expressed in adult CMs but completely absent in hESC-CMs. Here we hypothesized that gene transfer of CSQ in hESC-CMs suffices to induce functional improvement of SR. Transduction of hESC-CMs by the recombinant adenovirus Ad-CMV-CSQ-IRES-GFP (Ad-CSQ) significantly increased the transient amplitude, upstroke velocity, and transient decay compared with the control Ad-CMV-GFP (Ad-GFP) and Ad-CMV-CSQDelta-IRES-GFP (Ad-CSQDelta, which mediated the expression of a nonfunctional, truncated version of CSQ) groups. Ad-CSQ increased the SR Ca\(^{2+}\) content but did not alter L-type Ca\(^{2+}\) current. Pharmacologically, untransduced wild-type, Ad-GFP-, Ad-CSQDelta-, and Ad-CSQ-transduced hESC-CMs behaved similarly. Whereas ryanodine significantly reduced the Ca\(^{2+}\) transient amplitude and slowed the upstroke, thapsigargin slowed the decay. Neither triadin nor junctin was affected. We conclude that CSQ expression in hESC-CMs facilitates Ca\(^{2+}\) handling maturation. Our results shed insights into the suitability of hESC-CMs for therapies and as certain heart disease models for drug screening.