Clinical grade manufacturing of human alloantigen-reactive regulatory T cells for use in transplantation.

Journal: Am J Transplant
Publication Year: 2013

PubMed link: 24102808

Funding Grants: Stem cell tolerance through the use of engineered antigen-specific regulatory T cells, A CIRM Disease Team for the Treatment and Cure of Diabetes

Public Summary: Regulatory T cell (Treg) therapy has the potential to induce transplantation tolerance so that immunosuppression and associated morbidity can be minimized. Alloantigen-reactive Tregs (arTregs) are more effective at preventing graft rejection than polyclonally expanded Tregs (PolyTregs) in murine models. We have developed a manufacturing process to expand human arTregs in short-term cultures using good manufacturing practice-compliant reagents. The donor-specific-expanded Tregs have a diverse TCR repertoire and are more potent than PolyTregs in vitro and more effective at controlling allograft injuries in vivo in a humanized mouse model. These cells have the potential to be used to control ES cell or iPS cell-derived tissue in humans.

Scientific Abstract: Regulatory T cell (Treg) therapy has the potential to induce transplantation tolerance so that immunosuppression and associated morbidity can be minimized. Alloantigen-reactive Tregs (arTregs) are more effective at preventing graft rejection than polyclonally expanded Tregs (PolyTregs) in murine models. We have developed a manufacturing process to expand human arTregs in short-term cultures using good manufacturing practice-compliant reagents. The donor-specific-expanded Tregs have a diverse TCR repertoire. They were more potent than PolyTregs in vitro and more effective at controlling allograft injuries in vivo in a humanized mouse model.

Source URL: https://www.cirm.ca.gov/about-cirm/publications/clinical-grade-manufacturing-human-alloantigen-reactive-regulatory-t-cells