Wu

Techniques for tracking stem cells necessary for possible therapies

Last week The Scientist carried a story addressing a topic near and dear to the heart of anyone trying to develop a therapy based on transplanting stem cells, whether they are embryonic, adult, or iPS cells: Where do the cells go once they are transplanted?

Virus-free Technique Yields Pluripotent Stem Cells

Stem cells in fat hold intrigue for scientists because most of us have excess to spare, and the cells seem to be quite versatile. Now a team at Stanford has found a way to transform them into induced pluripotent stem (iPS) cells without using potentially dangerous viruses to carry the reprogramming genes into the cells.

Embryonic stem cells repair heart damage in mice

Researchers at the Stanford University School of Medicine found that cells derived from human embryonic stem cells could repair damage in a mouse model of heart attack. The researchers first looked at which genes were active at every stage between the human embryonic stem cells and early heart muscle cells. The cells they implanted mirrored the genes that are active in the hearts of 20 week old fetal mice.

Human Embryonic Stem Cells Trigger Immune Reaction in Mice

Researchers at the Stanford University School of Medicine have found that human embryonic stem cells trigger an immune response much like organ rejection when transplanted into mice. In the past, researchers had thought that transplanted embryonic stem cells might not be rejected the way transplanted organs are. Testing this theory, the team found that after transplanting human embryonic stem cells into normal mice, those cells disappeared within seven to ten days. In mice without an immune system the cells survived and even multiplied.

Subscribe to RSS - Wu

© 2013 California Institute for Regenerative Medicine