Plath

Protein required to maintain full potential of stem cells

Researchers at the University of California, San Francisco have pinpointed a protein that is critical for maintaining a stem cell's full potential to self-renew and to differentiate. Stem cells lacking the protein were impaired in their ability to divide and make identical copies of themselves, called self-renewal. These cells also lost their capacity to differentiate into key cell types, such as cardiac muscle. The protein, Chd1, acts to keep chromosome strands loosely wound, which permits widespread gene activation in the cell's nucleus.

Genetic differences found between adult cell and embryonic-derived stem cells

Researchers at the University of California, Los Angeles have found genetic differences that distinguish induced pluripotent stem (iPS) cells from embryonic stem cells. These differences diminish over time, but never disappear entirely. iPS cells are created when adult cells, such as those from the skin, are reprogrammed to look and behave like embryonic stem cells. But until now, scientists didn't know if the two types of stem cells were actually identical at a molecular level. This latest research shows that iPS and embryonic stem cells differ in which genes they have turned on or off.

Subscribe to RSS - Plath

© 2013 California Institute for Regenerative Medicine