tengion

Scaffolding in Regenerative Medicine

- an industrial viewpoint

CIRM / RMC Webinar September 12, 2011

Deepak Jain, PhD SVP, Bioprocess Research & Development Tengion Inc.

Scaffolding in Regenerative Medicine

- an industrial viewpoint

Synopsis

- Overview on Scaffolds in Regenerative Medicine
- Designing Scaffolds
- Scaffolds Applications to Neo Organs
 - Urinary system organs
 - GI organs
- Issues and Challenges
 - Product development
 - Regulatory

Scaffolding in Regenerative Medicine Overview

Regenerative medicine is a rapidly evolving interdisciplinary field in health care that translates fundamental knowledge in biology, chemistry and physics into materials, devices, systems and therapeutic strategies, including cell-based therapies, which augment, repair, replace or regenerate organs and tissues.*

Regenerative medicine is the "process of replacing or regenerating human cells, tissues or organs to restore or establish normal function"**.

Regenerative medicine products typically are composed of cells and/or biomaterials. Cells provide biological cues in cell therapy products. Biomaterials (scaffolding) are used to provide structural and functional cues in tissue engineering applications. Cells and biomaterials provide a combination of biology and structure in the regeneration of tissues or organs.

Scaffolding in Regenerative Medicine Current Paradigm

Types of Biomaterials

- Natural
- Synthetic
- Biodegradable
- Permanent
- Implantable solid, shape and structure
- Injectable fluid, gel

Scaffolding in Regenerative Medicine *Natural Scaffolds*

Natural Materials

- Proteins such as collagen or fibrin
- Polysaccharides like chitosan, alginate
- Glycosaminoglycans like hyaluronic acid, possibly in combination with cross linking agents
- Decellularized tissue like SIS

Challenges:

- Availability
- Removing undesirable biological contaminants
- Lot-to lot variation Quality Control
- Decellularization, crosslinking alteration of native properties
- Immunogenicity

Scaffolding in Regenerative Medicine Natural Scaffolds

Table 1: Commercially available extracellular matrix (ECM) scaffolds

Product	Source	Tissue	Company Lifecell	
AlloDerm	human	skin		
AlloPatch	human	dermis	Musculoskeletal Transplant Foundation	
Avaulta®, CollaMend®	porcine	dermis	BARD	
Axis™ dermis	human	dermis	Mentor	
CuffPatch™	porcine	SIS	Athrotek	
Graft Jacket®	human	skin	Wright Medical Tech	
Oasis®	porcine	SIS	Healthpoint	
OrthADAPT™, DurADAPT™	equine	pericardium	Pegasus Biologicals	
Permacol™	porcine	skin	Tissue Science Laboratories	
Restore™	porcine	SIS	DePuy	
Surgisis®, Durasis®, Stratasis®	porcine	SIS	Cook SIS	
Suspend™	human	Fascia lata	Mentor	
TissueMend®, Durepair®, Xenform™, SurgiMend™, PriMatrix™	Fetal bovine	skin	TEI Biosciences	
Veritas®, Dura-Guard®, Vascu-Guard®, Peri-Guard®	bovine	dermis	Synovis Surgical	
Xelma™	porcine	Teeth enamel	Molnlycke	

Scaffolding in Regenerative Medicine *Synthetic Scaffolds*

Synthetic Degradable Materials

- Polylactic acid (PLA) degrades within the human body to form lactic acid
- Polyglycolic acid (PGA) degradation mechanism is similar to that of PLA, but a faster rate of degradation
- Polycaprolactone (PCL) degradation mechanism is similar to that of PLA, but a slower rate of degradation

Challenges:

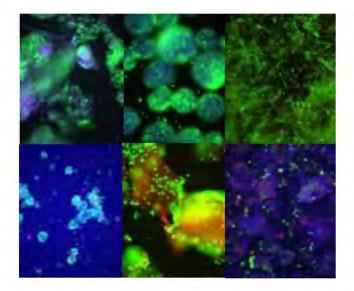
- Biocompatibility issues
- Immunogenicity
- Resorption rates
- Degradation issues toxic compounds, consistency,
- Manufacturing contaminants
- Environmental effects

Application in Regenerative Medicine *Current Marketed Products*

Product	Product Application Company		Approval	
Integra Template - silicone and bovine collagen + GAGs	Treatment of either a burn or scar contracture	Integra Life Sciences	1996	
Carticel - autologous cultured chondrocytes	Repair of clinically significant, symptomatic cartilaginous defects of the femoral condyle	Genzyme Tissue Repair	1997	(usual i
Transcyte - silicone with killed fibroblast	Temporary wound covering for full and partial thickness burns wounds	ATS/S&N	1997	
Apligraf - bio-engineered cell based product	Treatment of venous leg ulcers and diabetic foot ulcers	Organogenesis	1998	do
Dermagraft - fibroblasts, placed on a dissolvable mesh	Wound closure of diabetic foot ulcers	ATS/S&N Now: Advanced BioHealing	2001	E.
Infuse - rhBMP-2 along with a carrier/ scaffold	Bone growth in specific, targeted areas of the spine	Medtronic Sofamor Danek	2002	18
GEM 21S - growth factor enhanced matrix	Treatment of patients who have bone defects due to periodontal disease	Biomimetics Pharmaceuticals Incorporated	2006	

tengion

Scaffolding in Regenerative Medicine Biomaterial Requirements

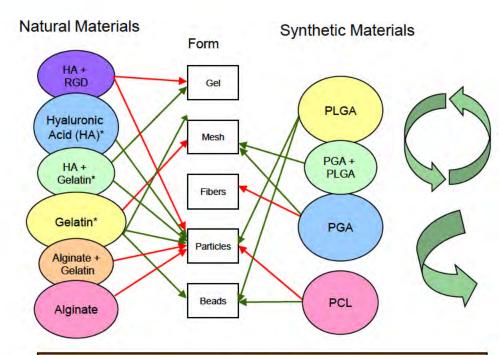

Role of Biomaterials

- Shelf Life extended shelf life for ABI
- Stability durability during transport
- Safety predictable and persistent targeted delivery of cells
- Support material for cell attachment
- Structure architecture for cell interactions
- Space displacement of tissue

Challenges:

- Targeting delivery without compromising distribution of active ingredients (cells)
- Providing structure without compromising compatibility

tengion


Scaffolding in Regenerative Medicine Biomaterials: design criteria and selection

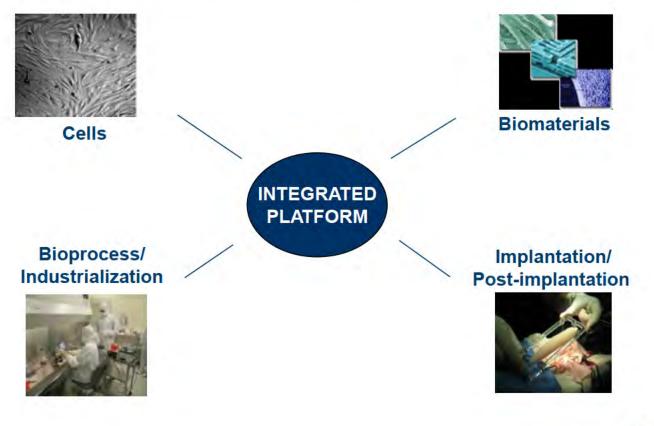
Key Criteria for Biomaterial Selection:

- Biocompatible
 - Minimal Inflammatory response
 - Minimal fibrotic response
 - Facilitate neo-vascularization
- Bioresorbable

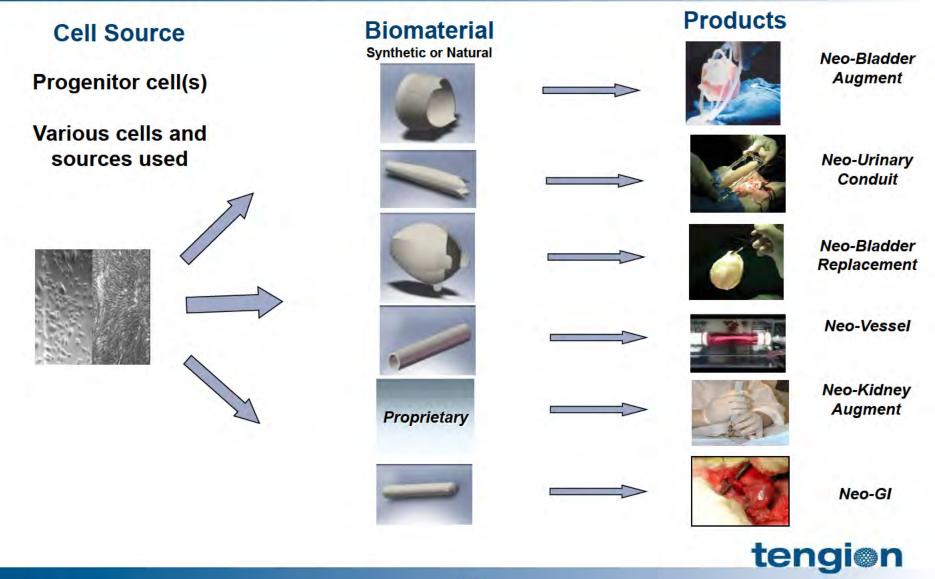
Screen formulated candidates:

- In vitro
- In vivo

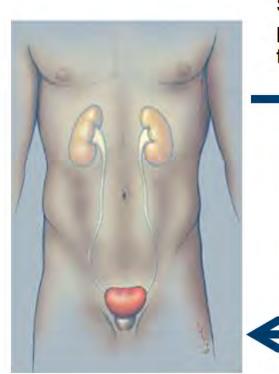
Cell-biomaterial formulations optimized in combinatorial screening platform


Challenges:

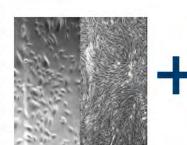
- Finding approved biomaterials that meet design criteria
- Regulatory hurdles in using new biomaterials


Building Neo-Organs and Neo-Tissues Key Components

A platform that catalyzes human tissue and organ regeneration



Technology Platform Yields Unique Products *Neo-Organs*


Regenerating Urinary System Organs Neo-Bladder Augment (NBA)

Surgeon sends patient's biopsy to Tengion.

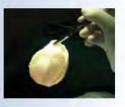
Surgeon implants the neoorgan which regenerates and becomes functional.

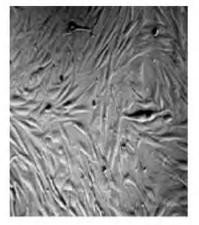
Neo-Bladder Augment Biomaterials: scaffolds

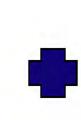
- The NBA scaffold is made up of the following:
- Polyglycolic acid (PGA) polymer mesh fashioned into a bladder shape
- Formed scaffold coated with 50:50 poly-DLlactide-co-glycolide (PLGA) copolymer

The NBA scaffold is seeded with autologous smooth muscle cells and urothelial cells to form the NBA construct for implantation

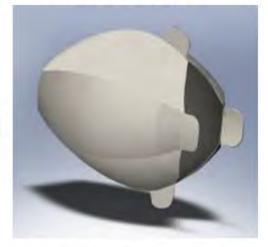
Challenges:


- Preventing hydrolytic degradation of PGA during manufacturing
- Matching degradation rate of PGA scaffolds with tissue regeneration in vivo
- Localized toxicity of degradation product (lactic acid)

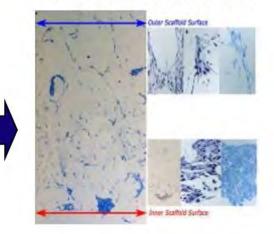

teng



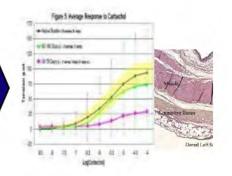
Augmentation to Organ Replacement Neo-Bladder Replacement (NBR)



Precursor Cells

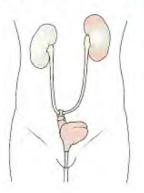


PGA Scaffold

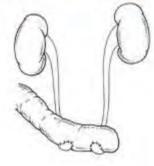

Seeded Construct

Surgical Implantation

In-situ "neo-bladder" Regeneration


Neo-Bladder

Bladder Cancer Management Urinary diversion procedures


When bladder removal is needed, a urinary diversion procedure is performed...

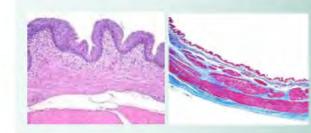
Orthotopic Neo-bladder (1,600 annually in the US & EU)

- Native bladder removed
- Section of bowel isolated, with blood supply maintained
- Bowel continuity re-established without the removed segment
- Isolated bowel segment fashioned into a pouch
- Ureters connected to the bowel segment, which is connected to urethra

Non-continent Urinary Diversion Conduit (20,000 annually in the US & EU)

- Native bladder removed
- Section of bowel isolated, with blood supply maintained
- Bowel continuity re-established without the removed segment
- Ureters connected to the bowel segment, which is connected to abdominal wall for ostomy bag drainage

Neo-Urinary Conduit Bladder Cancer Management - without Bowel Resection



Implantation

Functional Regeneration

- Cells and construct catalyze new tissue growth
- Blood vessels and nerves grow into the neo-organ
- Scaffold is absorbed

tengion

18

Neo-Urinary Conduit *Biomaterials: scaffolds*

The NUC scaffold is made up of the following:

- Polyglycolic acid (PGA) polymer mesh fashioned into a tubular shape
- Formed PGA tube coated with 50:50 poly-DL-lactide-co-glycolide (PLGA) copolymer

The NUC scaffold is seeded with autologous smooth muscle cells sourced from adipose tissue to form the NUC construct for implantation

Challenges:

- Preventing hydrolytic degradation of PGA during manufacturing
- Maintaining compressive strength PGA tubular scaffolds with tissue regeneration in vivo
- Surgical technique

tena

Neo-Urinary Conduit *Bioreactor/Construct Manufacturing*

Bioreactor:

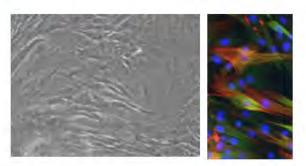
- Design input from clinical and regulatory
- Biocompatible product contact materials
 - USP Class VI grade polycarbonate
- Provide an environment for cell seeding, SMC growth and construct maturation
- Closed system for aseptic manufacturing
- Maintain integrity during transport (air and ground)
- User-friendly handling of the NUC at the surgical site

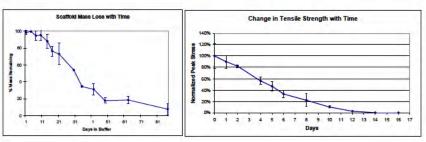
Construct:

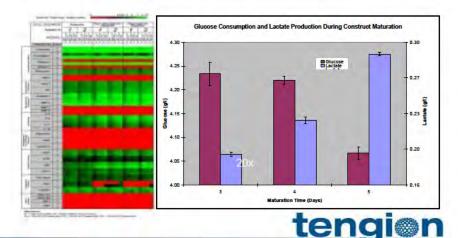
- Cells are harvested and seeded on scaffold in bioreactor
- Cell-seeded scaffold is matured into a NUC construct in the bioreactor

Challenges:

- Biocompatible clinical-grade materials
- Designing a aseptically sealed bioreactor that can be easily opened in the OR
- Maintaining multiple quality systems for devices and biologics




Neo-Urinary Conduit *Product Characterization*


- Cells
 - Morphology
 - Phenotype
 - Gene expression
 - Ability to contract
- Biomaterial/Scaffold
 - Physical dimensions
 - Pore size
 - Degradation rate
 - Tensile strength/compressive strength
 - Biocompatibility
- Construct
 - Cell Phenotype
 - Metabolic Activity
 - Cell Function
 - Secretome Profile
 - ECM Production

Challenge:

Characterization vs Release testing

Regulatory Pathway - Combination Product *NUC*

Neo-Urinary Conduit: Bladder cancer patients requiring bladder removal

- BLA with CBER in the lead and CDRH collaborating
- Pre-IND discussions in advance of GLP studies
- IND accepted in 30 days
- Neo-Bladder Augment experience in US and Europe was instructive for conduit

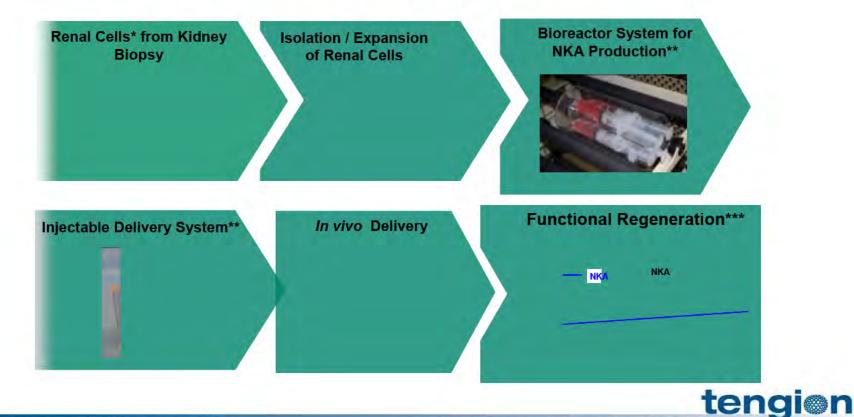
Key Steps in IND Development of NUC:

CMC

CIVIO					
>	Cells				
	 Isolation, Characterization and Expansion (ICE) process 				
×	Biomaterials				
10	 Formation, Strength and Integrity of tubular structure 				
×	Bioreactor				
10.5	 Closed system bioreactor and user friendly design 				
*	Construct				
1	 Closed seeding, cell attachment and environment 				
×	Transport and Delivery System				
	Construct integrity during transport				
	 Surgeon-friendly at clinical site 				
>	Stability				
1.0	 Optimum shelf life and stability of product 				
>	Characterization & Release Criteria				
	 Cell, biomaterial and construct characterization assays and validated methods 				
1.0	 Defined release criteria 				
Pre	clinical				
>	Pre-GLP studies				
>	GLP studies				

Challenges:

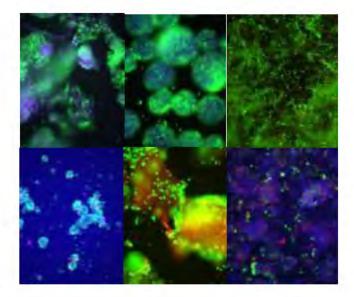
- Release testing of lot of one (autologous)
- Defining potency of regenerative medicine products
- Non-diseased animal models

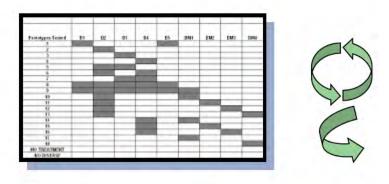

tengion

Neo-Kidney Augment (NKA) - to delay the need for dialysis or transplantation

100,000 new dialysis patients each year in the US

- 350,000 currently on dialysis
- 20% annual mortality
- \$60,000 1st year cost per patient
- \$22 billion in direct US costs annually for end stage kidney disease




*Selected Regenerative Cells used in the NKA ** In development

Neo-Kidney Augment *Biomaterials: product formulations*

Renal Cell - Biomaterial Formulations

Cell-biomaterial formulations optimized in combinatorial screening platform

Challenges:

- Targeting delivery without compromising distribution of active ingredient (cells)
- Providing formulations without compromising compatibility

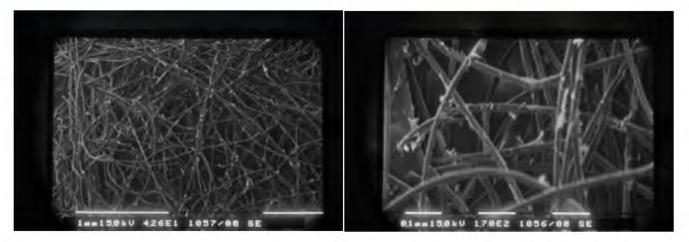
tengion

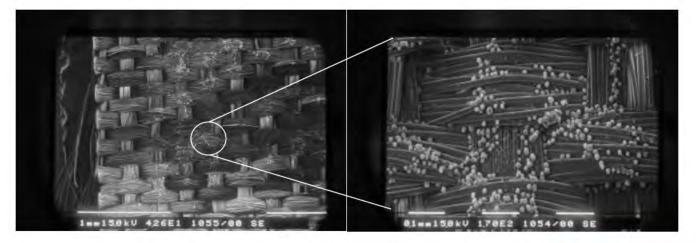
Regulatory Pathway - Combination Product *NKA*

Neo-Kidney Augment: Chronic kidney disease

- Early FDA interactions
- Combination product development pathway
- Discussions in advance of Pre-IND submission
- Use previous development experience

Challenges:


- Release testing of lot of one (autologous)
- Defining potency of NKA
- Non-diseased large animal models


Regenerating GI System Organs *Neo-GI Esophagus*

Esophageal patch: Coated PLGA mesh seeded with Ad-SMC

SI patch: Woven PLGA mesh seeded with Ad-SMC

Neo-GI : Small Intestine - *Tubular Scaffolds*

SI Tube: Coated PLGA mesh

SI Tube: PCL Foam-Mesh

SI Tube: PCL Electrospun

Scaffolding in Regenerative Medicine *- Summary*

Scaffolding in Regenerative Medicine

- Biomaterials are a key element in the development of Regenerative Medicine Products
- Scaffolds have been shown to be effective in creating Neoorgans and Neo-tissues

Key Issues and Challenges

- Biomaterials/Scaffold Selection
- Manufacturing Scaffolds
- Regulatory issues

tengicon Regenerative medicine brought to life.