

CAR-T Cell Immunotherapy: Opportunities and Challenges For Memory T Cells

Christine E. Brown, Ph.D.

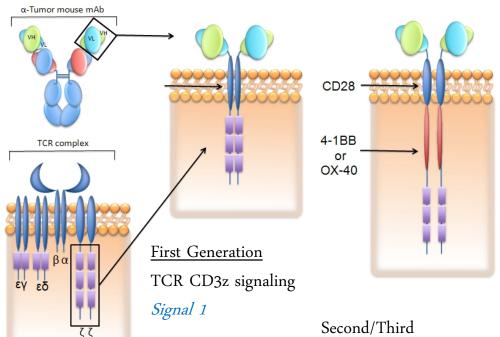
Associate Research Professor Associate Director, T Cell Therapeutics Research Laboratory City of Hope National Medical Center/Beckman Research Institute

Memory T Cells Officially Join the Stem Cell Club

Luca Gattinoni^{1,*}

¹Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA *Correspondence: gattinol@mail.nih.gov http://dx.doi.org/10.1016/j.immuni.2014.07.003

Immunity. 2014. 41:7-9


Harnessing the Potency & Specific of T cells for Cancer Therapy

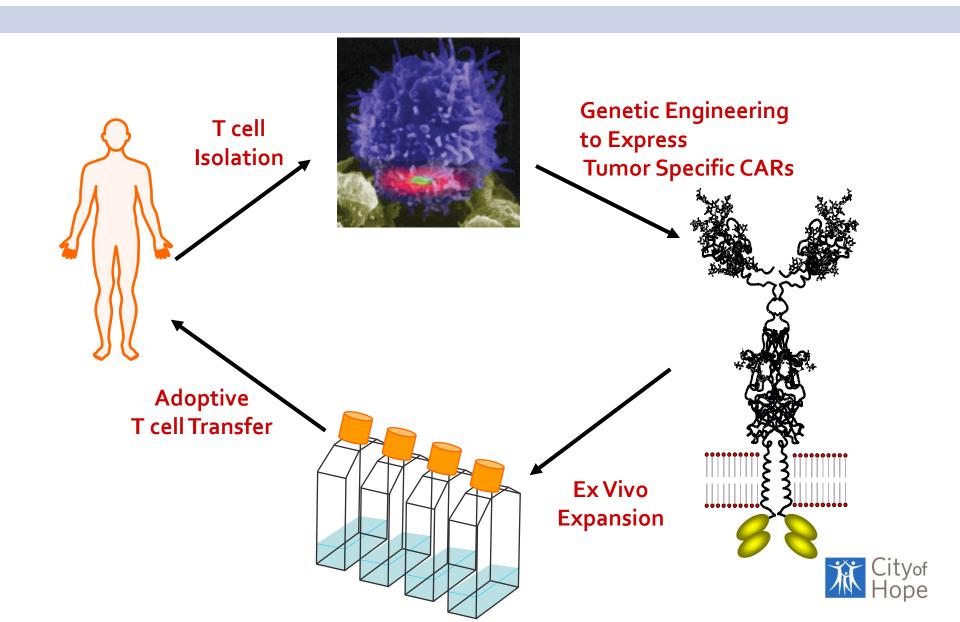
CYTOTOXIC T-LYMPHOCYTE

A specialized white blood cell responsible for eliminating unwanted body cells (e.g. cancer) kills a cell infected with the influenza virus

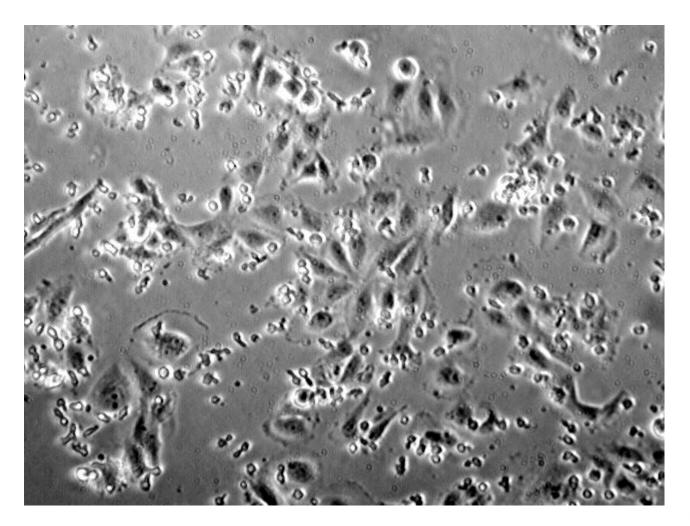
Chimeric Antigen Receptor (CAR) T Cell Therapy

Second/Third <u>Generation</u> Costimulatory signaling CD28, 41BB, OX40 <u>Signal 2</u>

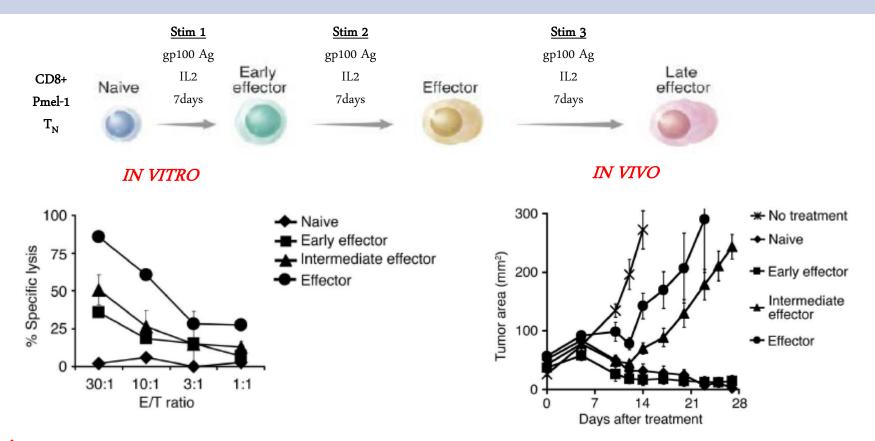
Advantages of CARs


- •Modular design
- •HLA-independent antigen recognition
- •Functional in both CD4 and CD8 T cells
- •Significant numbers of tumor specific T cells can be rapidly generated
- •The potential to generate long-term antitumor immunity

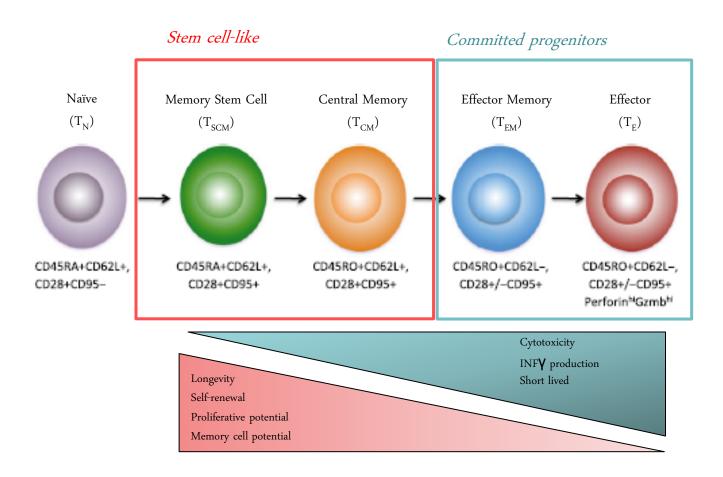
Challenges


- •Single antigen specificity
- •Primarily restricted to extracellular antigens
- •On-target and off-target toxicities

Adoptive Therapy using CAR-engineered T cells

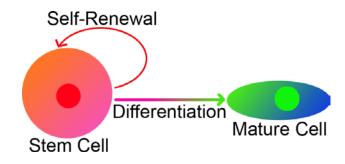


CARs Efficiently Redirect T cell Killing in an HLA-Independent Manner


In Vitro Killing Does Not Predict *In Vivo* Antitumor Potency

Less differentiated T cells are more therapeutically effective

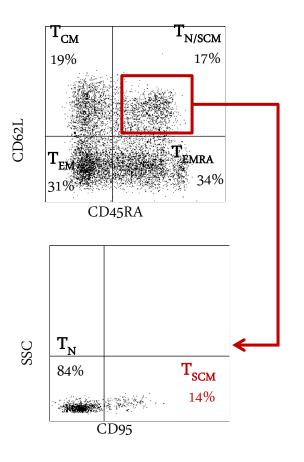
- (1) Higher proliferative potential and survival capabilities
- (2) Differentiate into short-lived effectors with potent effector function


The T Cell Compartment Consists of T cell Subsets At Different Stages of Differentiation

Memory T cells as Stem Cells

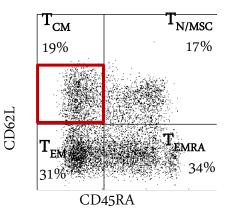
Definition of a Stem Cell:

- (1) Cells that are able to self-renew (can create more stem cells indefinitely); and
- (2) Differentiate into specialized, mature cell types.



Memory T cells as Stem Cells:

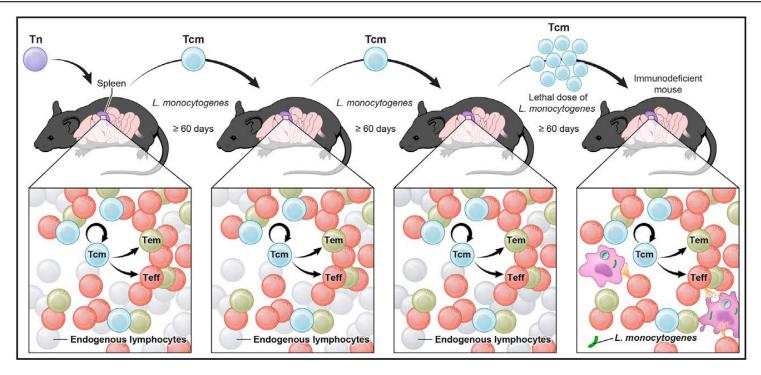
- •Recombination of T cell receptor and thymic selection requires that T cell immunologic memory be generated from T cells with stem cell properties and not hematopoietic stem cells (HSCs)
- •Memory T cells display functional attributes of "stem cells"
 - (1) <u>Self-renew</u> to maintain immunological life-long memory
 - (2) <u>Differentiate</u> into effector memory (T_{EM}) and effector T cells (T_{E}) to reconstitute immune competence


Memory Stem T Cells – T_{SCM}

- T_{SCM} are the least differentiated memory T cell subset with the greatest self-renewal and proliferative potential.
- T_{SCM} resemble naïve T cells (T_N), expressing CD45RA+, CD62L+, and can be can be differentiated from T_N by expression of CD95.
- Whether T_{SCM} represent a "stable" T cell subset is still a point of discussion.
- T_{SCM} are in relatively low abundance, and therefore their isolation and expansion can be challenging.
- T_{SCM} can be generated from T_N by stimulation with CD3/CD28 beads in the presence of IL-7 and IL-15, or also can be expanded in the presence of Wnt/β-catenin pathway activation (Cieri et al. Blood. 2013. 121:573; Gattinoni et al. Nat Med. 2011. 17:1290).

Central Memory T Cells – T_{CM}

- T_{CM} are a well-defined memory T cell subset with high selfrenewal and proliferative potential.
- T_{CM} are identified by expression of CD45RO+ CD45RA-CD62L+ and CD95+.
- T_{CM} are more frequent in PBMC compared to T_{SCM} .
- T_{CM} persist following adoptive transfer better than T_{EM}
 - Effector T cells (T_E) derived from T_{CM} persisted long-term (>1 yr), and were capable of responding to viral antigen in non-human primates. By contrast, T_{EM} derived effectors persisted for less than 7 days. (Berger. JCI. 2008. 118:4817)
 - Similarly, human T_{CM} demonstrate greater persistence and antitumor activity than T_{EM} in NSG mouse models. (Wang et al. Blood. 2011. 117:1888)
- T_{CM} can be efficiently enriched from PBMC for T cell therapy manufacturing based on their CD45RA- CD45RO+ CD62L+ phenotype. (Wang et al. J Immunother. 2012. 35:689)

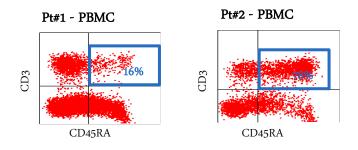


Central Memory T cells as Stem Cells

Immunity. 2014. 41:116

Serial Transfer of Single-Cell-Derived Immunocompetence Reveals Stemness of CD8⁺ Central Memory T Cells

Patricia Graef,^{1,10} Veit R. Buchholz,^{1,10} Christian Stemberger,^{1,2} Michael Flossdorf,^{3,4} Lynette Henkel,¹ Matthias Schiemann,^{1,5} Ingo Drexler,⁶ Thomas Höfer,^{3,4} Stanley R. Riddell,^{2,7,8} and Dirk H. Busch^{1,2,5,9,*}



Gattinoni. Immunity. 2014. 41:7

Opportunities and Challenges for Memory T cell Populations For CAR T cell Therapy

Potential Benefits

- Pre-selecting or expanding T_{MEM} for CAR-engineering may provide products capable of the greatest *in vivo* proliferation and persistence. *Higher Potency per CAR T Cell Dose*
- Frequency of naïve and memory T cells vary significantly from patient-to-patient. Enriching specific subsets may reduce product variability.

Challenges

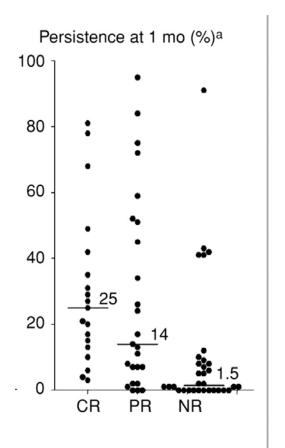
- More complex manufacturing processes may be more difficult to transfer the technology for broader patient availability.
- More complex manufacturing processes will be more costly.
- Less abundant memory subsets (i.e., T_{SCM}) may require extended *ex vivo* expansion which could limit their utility.

Targeting CD19 with CAR T cells

Maus et al. Blood (2014)

Antigen	Cancers	Gene transfer	CAR signaling domain	Phase/ID	Sponsor	Cell type/selection/drug con	nbination	Reference
CD19	Pediatric B-cell leukemia and lymphoma	Lentivirus	4-1BB–CD3ζ	1/NCT01626495	CHOP/University of Pennsylvania			37
CD19	CD19 ⁺ malignancies	Lentivirus	4-1BB–CD3ζ	1/NCT01029366	University of Pennsylvania			34
CD19	ALL (post-allo-HSCT)	Lentivirus	4-1BB–CD3ζ	1/NCT 01551043	University of Pennsylvania	T cells from donor		
CD19	CLL (randomized to 1 of 2 doses)	Lentivirus	4-1BB–CD3ζ	II/NCT01747486	University of Pennsylvania			
CD19	CLL	Retrovirus/ Ientivirus	CD28-CD3ζ; 4-1BB–CD3ζ	1/2/ NCT00466531	MSKCC/University of Pennsylvania			
CD19	ALL		CD28-CD3ζ	1/NCT01044069	MSKCC			32
CD19	Auto-HSCT for NHL followed by T-cell infusion	Retrovirus	CD28-CD3ζ	1/NCT01840566	MSKCC			
CD19	Relapsed ALL post-allo-HSCT	Retrovirus	CD28-CD3ζ	1/NCT01430390	MSKCC	CD19 CAR-transduced EBV-spo from donor	ecific CTLs	
CD19	CLL (residual disease following unfront	Potrovirus	CD30 CD37	1/NCT1/1607/	Mekoo			30
	pentostatir	CD19 i	s an ideal taro	et for CA	<u>R T cell therapy</u>			
CD19	Pedi				at i cen incrapy			
CD19				vion on R	all malianancias		9	
CD19		Ineal	universal expres	SION ON D-0	cen mangnancies		2 wk after	
CD19	ALL, CLL, N	•Limite	d normal tissue e	expression r	restricted to B cells		ecific CTLs m donor	23
CD19				0 - 11				
	Leukemia/ly	•Off	-tumor targeting	of B cells i	s well tolerated			
CD19	B-cell m		00					
CD19	B-cell Margnanolos post auto noon	папарозоп	0020 0005	1/140100000700	WE Andron Gancer Genter	Low and high dose conorts with IL-2	and without	
CD19	Pediatric leukemia and lymphoma	Retrovirus	CD28-CD3ζ	1/NCT01593696	National Cancer Institute			
CD19	CLL, small lymphocytic lymphoma; MCL, follicular lymphoma, large-cell lymphoma	Retrovirus	CD28-CD3ζ	1/2/ NCT00924326	National Cancer Institute	IL-2		
CD19	B-cell malignancies relapsed post-allo-HSCT	Retrovirus	CD28-CD3ζ	1/NCT01087294	National Cancer Institute	T cells from donor		29
CD19	Auto-HSCT for NHL followed by T-cell infusion (day 2 or 3)	Lentivirus	CD3ζ	1/2/ NCT01318317	City of Hope	T_{CM} -enriched CD8 $^+$ T c	ells	
CD19/EGFRt	Auto-HSCT for NHL followed by T-cell infusion (day 2 or 3)	Lentivirus	CD28-CD3ζ	1/NCT01815749	City of Hope	T _{CM} -enriched T cells (cetuximab suicide system)	as possible	
CD19/EGFRt	Pediatric ALL	Lentivirus	CD28-CD3ζ	1/NCT01683279	Seattle Children's Hospital	- /		
CD19	Relapse/refractory CLL, NHL, or ALL	Lentivirus	CD3ζ	1/2/ NCT01865617	Fred Hutchinson Cancer Research Center			
CD19/EGFRt	ALL, DLBCL, MCL, NHL, CLL relapsed post–allo-HSCT	Lentivirus	CD28-CD3ζ	1/2/ NCT01475058	Fred Hutchinson Cancer Research Center	Donor-derived, CMV- or EBV CD62L ⁺ T _{CM}	-specific	
CD19	Pediatric ALL post-allo-HSCT	Retrovirus	CD3ζ	1/2/ NCT01195480	University College, London	CD19 CAR-transduced EBV-sp from donor; 2nd cohort adds vaca irradiated EBV-LCL		
CD19	ALL, CLL, NHL	Retrovirus	CD137-CD3ζ and CD3ζ	1/2/ NCT01864889	Chinese PLA General Hospital			

Clinical Potential of CD19-CAR T cell Therapy


CD19-CAR T cells mediate impressive clinical efficacy against CD19-malignancies across institutions, CAR designs, manufacturing platforms and trial designs.

- More than 100 patients have been treated on clinical trials with CD19-CAR T cells for the treatment of B-cell maligancies.
- Complete response rates are reported for 70-90% of patients with ALL.
- In July 2014, FDA granted 'breakthrough therapy' designation to CTL019 Novartis/UPenn. CD19CAR-T are also being commercially developed by Kite Pharma/NCI and Juno Therapeutics/MSKCC&FHCC.
- However, not all patients respond to therapy.
- The long-term durability is not yet established.
- Successfully extending this therapeutic approach to solid tumors is an immediate goal.

How can we further refine this promising therapy?

Limited T cell Persistence is a Barrier to Robust Clinical Efficacy

T cell Persistence Correlates With Cancer Regression

Strategies to Improve T cell Persistence

■ Incorporate lymphodepletion regimens prior to ACT (Dudley et al. JCO. 2005. 23: 2346; Dudley et al. JCO. 2008. 26: 5233; Brentjens et al. Blood. 2011. 118:4817)

• Optimize CAR design for improved co-stimulatory signaling (Brentjens et al. Clin Cancer Res. 2007. 13:5426; Savoldo et al. JCI. 2011. 121:1822)

Reduce transgene immunogenicity (Jensen et al. Biol Blood Marrow Transplant. 2010. 16:1245. Maus et al. Cancer Immunol Res. 2013. 1:26)

• Engineer and expand T cell subsets with enhanced long-term

persistence (i.e. T memory cells)

Rosenberg S A et al. Clin Cancer Res 2011;17:4550-4557

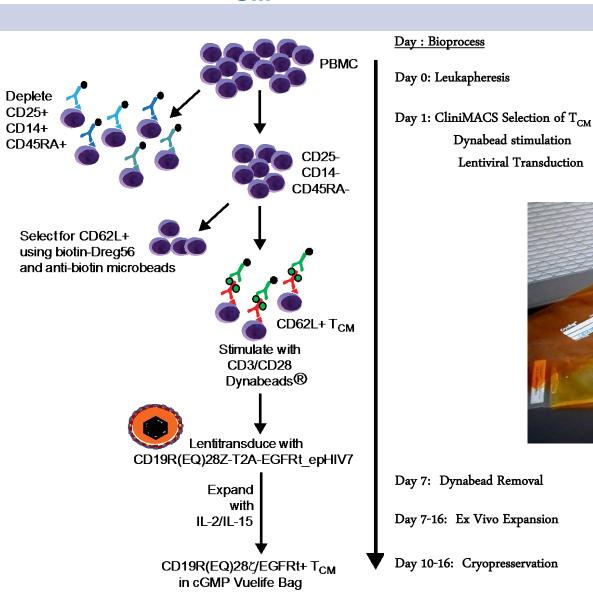
CD19-CAR T cell Antitumor Responses Correlate with A Memory Phenotype

T Cells with Chimeric Antigen Receptors Have Potent Antitumor Effects and Can Establish Memory in Patients with Advanced Leukemia

Michael Kalos,^{1,2}* Bruce L. Levine,^{1,2}* David L. Porter,^{1,3} Sharyn Katz,⁴ Stephan A. Grupp,^{5,6} Adam Bagg,^{1,2} Carl H. June^{1,2†} 2011. STM.

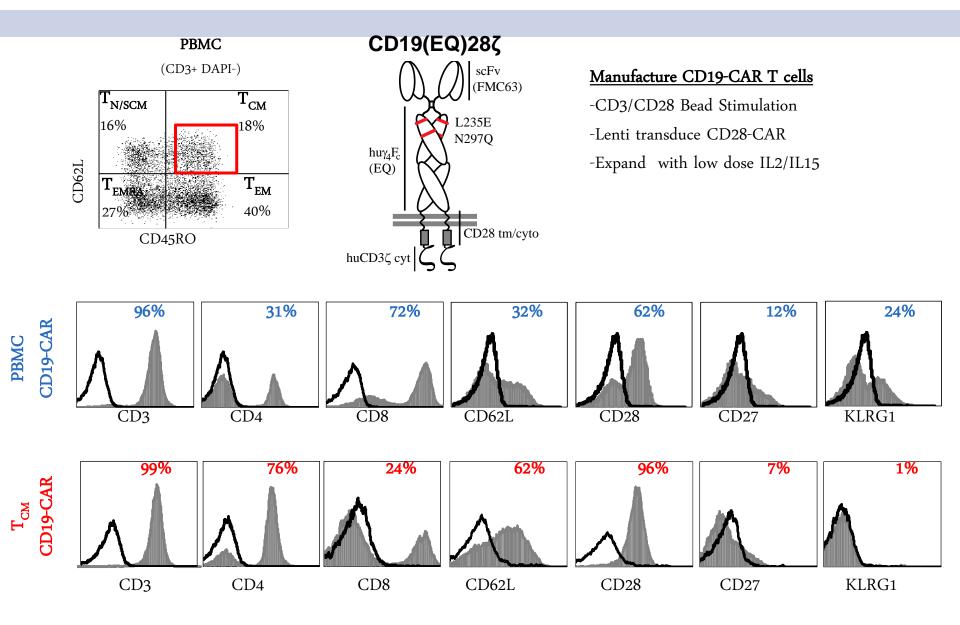
Persistent CAR T cells reacquired a central memory phenotype in patients

Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15

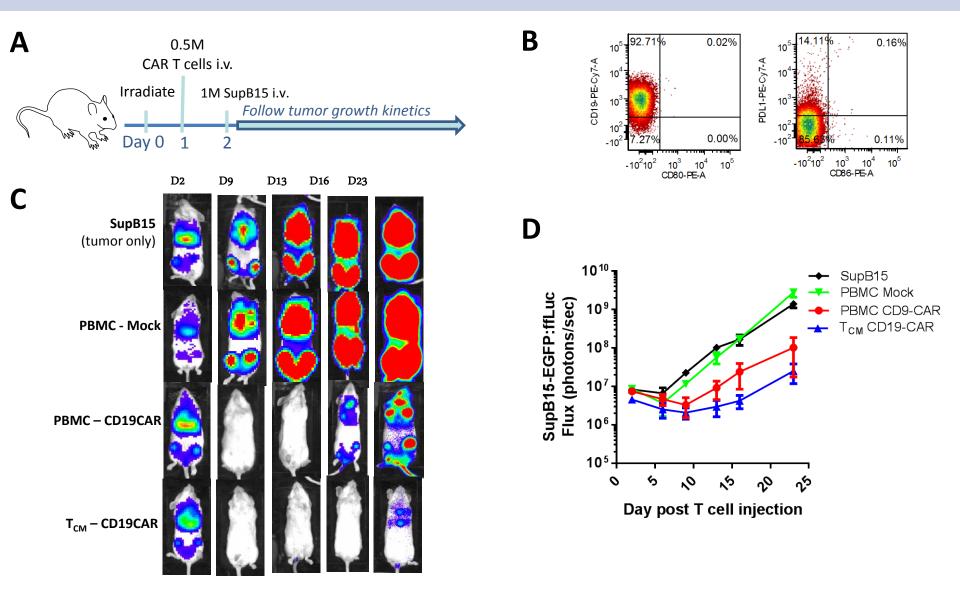

Yang Xu,^{1,2} Ming Zhang,¹ Carlos A. Ramos,^{1,3,4} April Durett,¹ Enli Liu,¹ Olga Dakhova,¹ Hao Liu,⁵ Chad J. Creighton,⁵ Adrian P. Gee,^{1,6} Helen E. Heslop,^{1,3,4,6,7} Cliona M. Rooney,^{1,2,6,7} Barbara Savoldo,^{1,6,7} and Gianpietro Dotti^{1,2,4,7}

2014. Blood.

Frequency of CD8+ CD45RA+ CCR7+ a subset closest to T_{SCM} correlates with CAR-T cell engraftment and expansion in lymphoma patients.

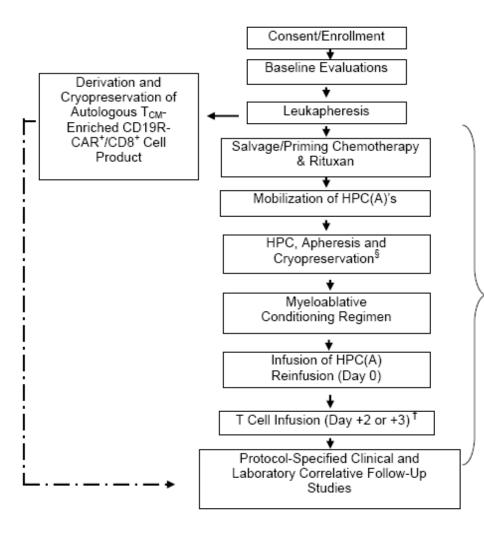


GMP Manufacturing Platform for T_{CM}-Enriched CAR+ T cells

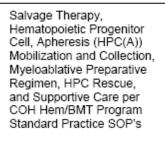


Wang et al. 2012. J Immunother. 35:689

PBMC versus T_{CM}-Enriched CAR T cell Products

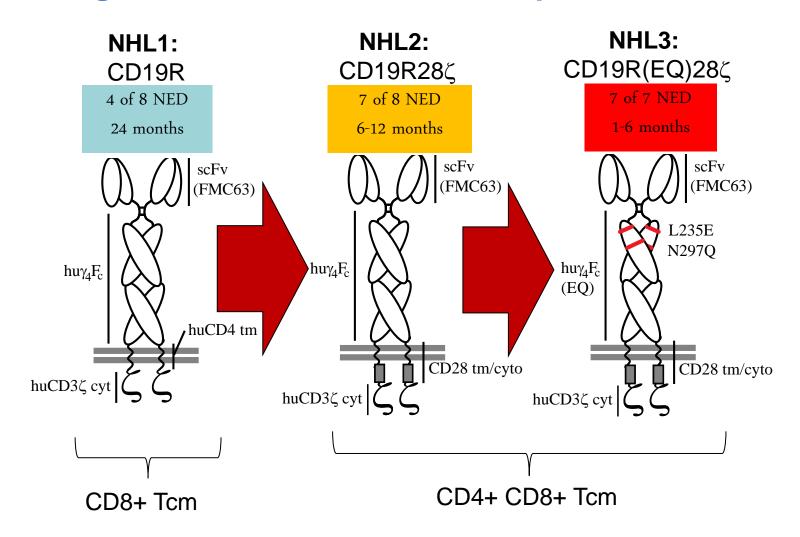


Comparison of PBMC versus T_{CM}-derived CD19-CAR T cells for Antitumor Efficacy


Phase I Clinical Trial Using Central Memory Enriched CD19-CAR T cells

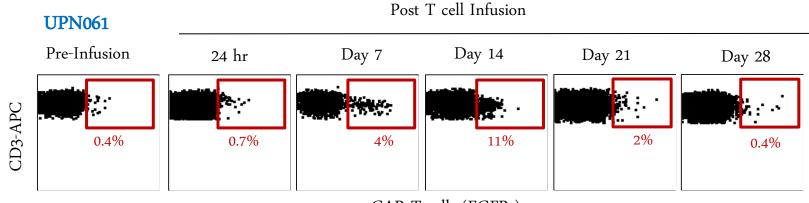
Leslie Popplewell, M.D.; Clinical PI

Enrollment:

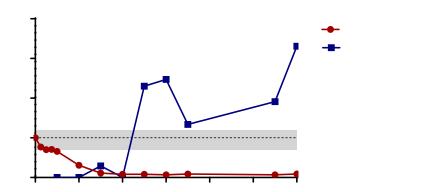

- Relapsed B Cell Lymphoma (recurrent large cell & mantle cell lymphoma)
- High risk patient population for relapse with poor prognosis with auto-transplant

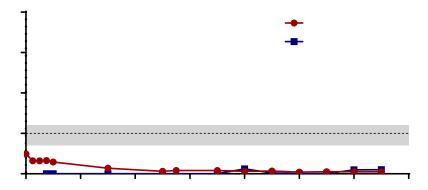
Clinical Design:

- Infuse cells on day +2/+3 after HSCT
- Lymphopenic environment to support homeostatic expansion
- Engraft cells as a component of the reconstituted immune system


Optimizing CAR Design for Costimulation and Reduced Off-Target Interactions with Fc Receptors

Jonnalagadda et al. Mol Ther. 2014

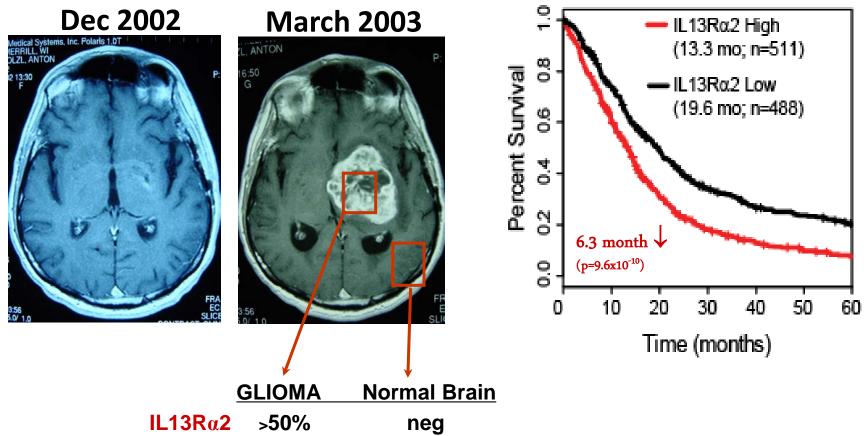

T cell Persistence and B Cell Aplasia Following CD19-CAR T_{CM} Therapy


CD19-CAR T_{CM} Persistence in Peripheral Blood is Transient

CAR T cells (EGFRt)

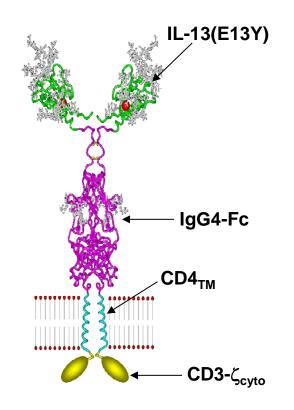
B Cell Aplasia Following CD19-CAR T_{CM} Therapy

NHL1/2/3 Lessons Learned To Date.....

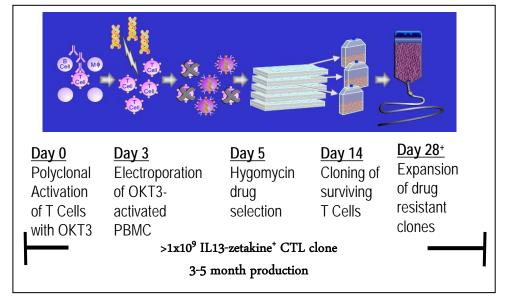

- Feasibility of engineering and expanding CD19-CAR+ T_{CM}, even post salvage chemotherapy.
- Safety of CD19-specific CAR T cells when administered in conjunction with allo HSCT, with no delay in hematopoietic reconstitution and limited cytokine release syndrome in this MRD setting.
- Low levels of CAR T cells persist in peripheral blood for a subset of patients (peak at ~14day).
- Subset of patients display long-term **B** cell aplasia.

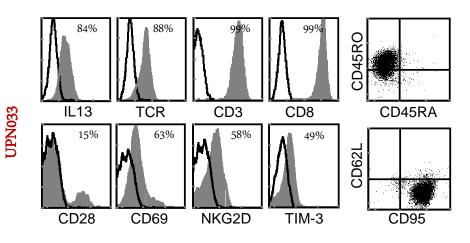
Understanding Limited CAR T cell Persistence in the Auto Transplant Setting

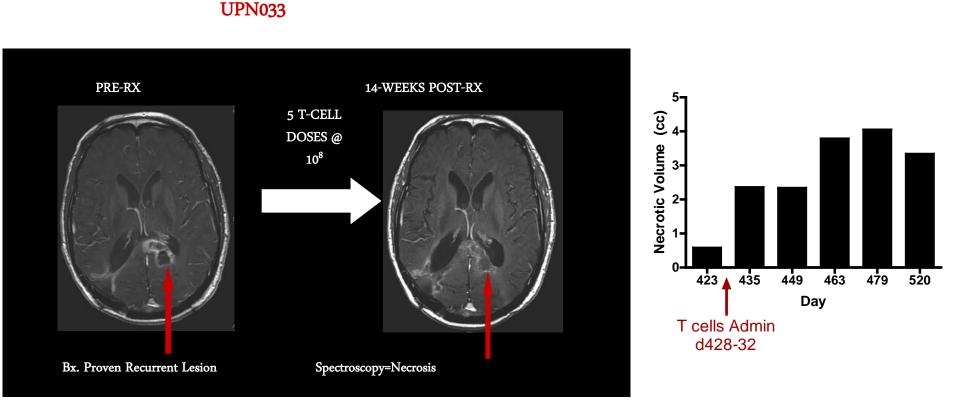
- Do CD62L+ T_{MEM} take up residence in secondary lymphoid tissue?
- Does the lack of antigen drive in this minimal disease setting affect persistence?
- Could inclusion of T_{SCM} subsets in the enriched memory pool increase persistence?
- Do CD28-CAR designs support long-term CAR T cell persistence?


Adoptive T cell Therapy for Recurrent Glioblastoma

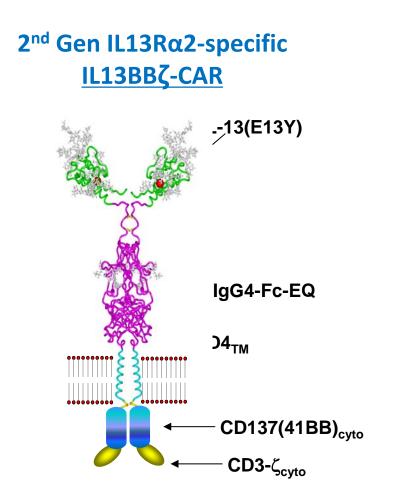
Glioblastoma is the most common and most aggressive type of primary brain tumor, and one of the least curable of all human cancers.


First Generation CD8⁺ IL13-zetakine⁺ Effector T Cells for the Treatment of Glioblastoma


1st Gen IL13Rα2-specific IL13ζ CAR

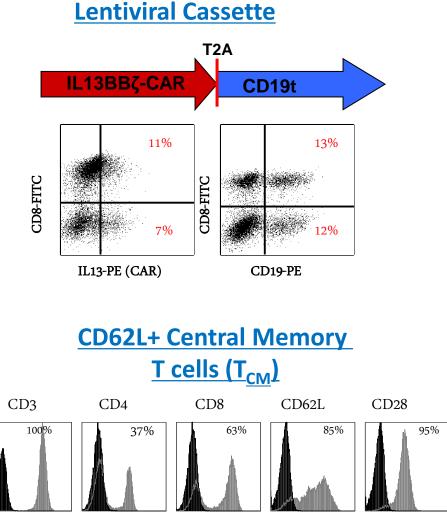

Kahlon et al.; Cancer Res; 2004 Brown et al; Cancer Res; 2012

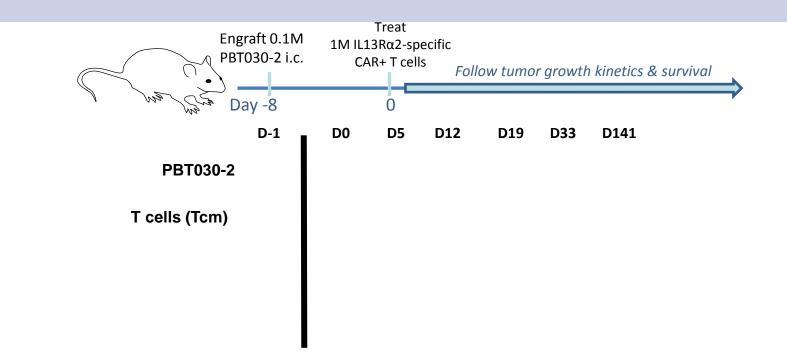
Effector CD8+ T cell Manufacturing Platform


Transient Regression of a GBM Lesion Following <u>First</u> <u>Generation</u> Autologous CD8⁺ IL13-zetakine⁺ T cell Therapy

Clinical Development of a Central Memory, Second-Generation CAR T Cell Therapy for the Treatment of GBM

Optimize for T_{MEM}

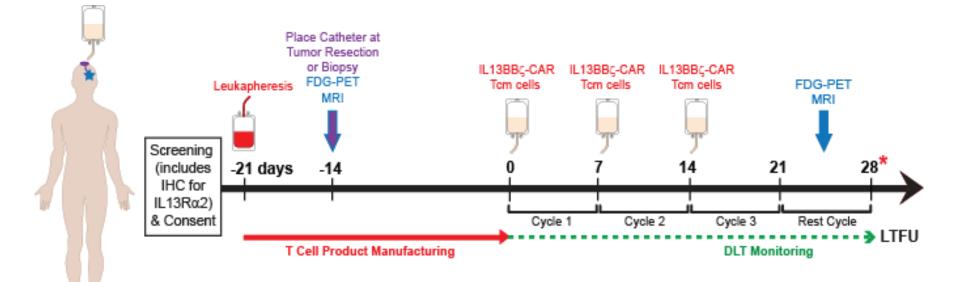

- Optimize CAR design for costimulation.
- Engineer central memory T cells for improved persistence and self-renewal potential.
- Incorporate CD4 help.
- Limit ex vivo expansion to reduce T cell exhaustion and maintain a T_{MEM} phenotype.


Clinical Development of a Central Memory, Second-Generation CAR T Cell Therapy for the Treatment of GBM

Optimize for T_{MEM}

- Optimize CAR design for costimulation.
- Engineer central memory T cells for improved persistence and self-renewal potential.
- Incorporate CD4 help.
- Limit ex vivo expansion to reduce T cell exhaustion and maintain a T_{MEM} phenotype.

<u>Next Generation</u> IL13BBζ CAR Tcm Mediate Robust Antitumor Activity Against Tumor Sphere Initiated GBM



Phase I Clinical Trial with Optimized IL13Rα2-specific CAR T_{CM}

IND Activated March 2015

NCT	Patient Population	Agent	T cells Dose	Planned Enrollment
NCT02208362	Relapsed/Refractory GBM Arm 1: resectable Arm 2: Non-resectable	Autologous IL13(EQ)BBζ/CD19t + T _{CM}	2 to 50x10 ⁶ CAR T cells	12/arm

Additional Approaches for Expanding CAR T cells with Stem Cell/Memory Phenotypes

• Alternative cytokine cocktails

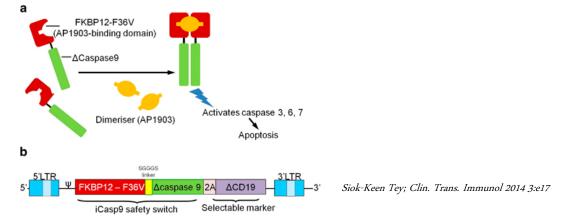
- IL-2 promotes T cell differentiation
- IL-7 & IL-15 promote homeostatic expansion of T_{N} and T_{MEM} subsets.
- IL-21 inhibits differentiation of CD8 T cells

Inhibition of glycolysis

 High levels of glycolysis drive T cells towards a terminally differentiated effector state. Inhibiting glycolysis with 2-deoxyglucose (2-DG) favors longlived memory T cells that mediate enhanced antitumor responses following adoptive transfer. (Sukumar et al. 2013. JCI. 123:4479; 2014. Oncolmmunology. 3:e27573)

Induction of Wnt/β-catenin signaling

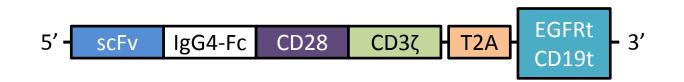
- WNT3A or inhibitors of GSK3β inhibit differentiation of T_N into T_E , while promoting generation of self-renewing T_{MEM} . (Gattinoni et al. Nature Med. 2009 15:808)


• Inhibition of AKT signaling

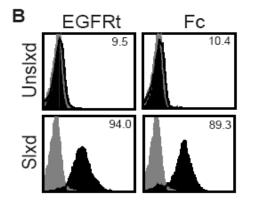
- Inhibition of Akt promotes generation of T_{SCM} (van der Waart et al. Blood. 2014 124:3490)

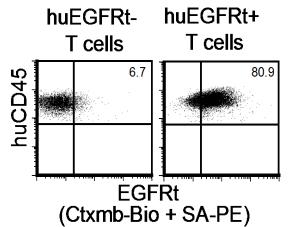
CAR T Cell Persistence May Increase Toxicities

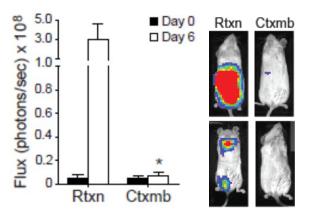
Strategies to Control CAR T cell Persistence


- **Transient expression** of CARs using RNA electroporation limits CAR expression and activity can be controlled by a repetitive dosing regimen. *Zhao et al. 2010. Cancer Res. 70:9053; Maus et al. 2013. Cancer Immunol Res. 1:26.*
- **Co-expression of suicide genes** to enable elimination of transferred cells.
 - For example, dimerization of <u>iCasp9</u> via small molecule induces apoptosis, thereby rapidly eliminating therapeutic CAR T cells. *Di Stasi et al. 2011. N Engl J Med. 365:1673*

• Tagging CAR T cells for immunologic depletion with therapeutic antibodies. *Wang et al. 2011. Blood. 118:1255*




Regulating CAR T cell Persistence with Combined Expression of Cell Surface Antigens


Selection

Detection

Ablation

Questions for Thought

• What is the best T cell population for CAR T Cell Therapy?

- CAR T cell products with less differentiated memory phenotypes correlate with improved clinical responses.
- CD4 & CD8 ratios may also impact T cell potency and persistence
- The optimal T cell product composition remains to be clinical defined.

• Is enrichment of defined memory T cell subsets necessary?

- Clinical products derived for unselected PBMC products have mediated remarkable clinical responses for a subset of patients.
- Preclinical data support the potential benefit of selecting/expanding specific T cell subsets for genetic modification
- Clinical validation of the benefits of starting with an enriched T_{MEM} population is forthcoming.
- How does CAR-signaling strength and costimulation influence memory maintenance?
- How long do CAR T cells need to persist for durable clinical responses ?

Acknowledgments

Forman Lab

Stephen Forman, MD **Christine Brown, PhD** Xiuli Wang, MD PhD

- **Brenda** Aguilar
- Alfonso Brito
- Brenda Chang
- Wen-Chung Chang
- Mo Dao, PhD
- Ethan Gerdts
- Anita Kurien
- Araceli Naranjo
- Alina Oancea
- Julie Ostberg, PhD
- Anthony Park
- Saul Priceman, PhD
- Lauren Quezada
- Aniee Sarkissian
- Renate Starr
- Ellie Taus
- Sandra Thomas, PhD
- Ryan Urak
- Jamie Wagner
- Lihong Weng, MD
- Laurelin Wolfenden
- Winnie Wong
- Sarah Wright
- Jingying Xu
- Yubo Zhai

City of Hope Collaborators

Research Collaborators

- Michael Barish, PhD ٠
- Ravi Bhatia, PhD ٠
- David Colcher. PhD ٠
- Don Diamond, PhD ٠
- Marcin Kortylewski, PhD ٠
- Mark Sherman, PhD ٠
- Jack Shively, PhD ٠
- Hua Yu. PhD ٠
- COH Bioinformatics ٠

Clinical Team

- Behnam Badie, MD ٠
- Leslie Popplewell, MD ٠
- Elizabeth Budde, MD ٠
- Samer Khaled, MD ٠
- Tanya Siddigi, MD ٠
- Mihaela Cristea, MD ٠
- Myo Htut, MD •
- Sumantra Pal, MD ٠
- Michelle Mott, RN ٠
- Neena Kennedy, RN •
- Adam Norris •

Michael Jensen, MD Seattle Children's Research Institute

CATD

- Larry Couture, PhD ٠
- Catherine Matsumoto •
- Yasmine Shad, MS ٠
- Misty Shakeley •
- David Hsu, PhD •

CICSL

- Tim Synold, PhD
- Su Mi
- Vivi Tran •

Biostatistics

- Suzette Blanchard, PhD ٠
- Joycelynne Palmer, PhD •

Funding:

- •CIRM Early Translational Award
- •Leukemia Lymphoma Society
- •Lymphoma Research Foundation
- •Lymphoma SPORE (P50CA107399)
- •Prostate Cancer Foundation
- •Tim Nesvig Lymphoma Research Fund
- •Leslie Frankenheimer Leukemia Research
- •The Marcus Foundation