Neurological Disorders

Coding Dimension ID: 
303
Coding Dimension path name: 
Neurological Disorders

Genetic Encoding Novel Amino Acids in Embryonic Stem Cells for Molecular Understanding of Differentiation to Dopamine Neurons

Funding Type: 
New Faculty I
Grant Number: 
RN1-00577
ICOC Funds Committed: 
$2 626 937
Disease Focus: 
Parkinson's Disease
Neurological Disorders
oldStatus: 
Closed
Public Abstract: 
Embryonic stem cells have the capacity to self-renew and differentiate into other cell types. Understanding how this is regulated on the molecular level would enable us to manipulate the process and guide stem cells to generate specific types of cells for safe transplantation. However, complex networks of intracellular cofactors and external signals from the environment all affect the fate of stem cells. Dissecting these molecular interactions in stem cells is a very challenging task and calls for innovative new strategies. We propose to genetically incorporate novel amino acids into proteins directly in stem cells. Through these amino acids we will be able to introduce new chemical or physical properties selectively into target proteins for precise biological study in stem cells. Nurr1 is a nuclear hormone receptor that has been associated with Parkinson’s disease (PD), which occurs when dopamine (DA) neurons begin to malfunction and die. Overexpression of Nurr1 and other proteins can induce the differentiation of neural stem cells and embryonic stem cells to dopamine (DA) neurons. However, these DA neurons did not survive well in a PD mouse model after transplantation. In addition, it is unclear how Nurr1 regulates the differentiation process and what other cofactors are involved. We propose to genetically introduce a novel amino acid that carries a photocrosslinking group into Nurr1 in stem cells. Upon illumination, molecules interacting with Nurr1 will be permanently linked for identification by mass spectrometry. Using this approach, we aim to identify unknown cofactors that regulate Nurr1 function or are controlled by Nurr1, and to map sites on Nurr1 that can bind agonists. The function of identified cofactors in DA neuron specification and maturation will be tested in mouse and human embryonic stem cells. These cofactors will be varied in combination to search for more efficient ways to induce embryonic stem cells to generate a pure population of DA neurons. The generated DA neurons will be evaluated in a mouse model of PD. Additionally, the identification of the agonist binding site on Nurr1 will facilitate future design and optimization of potent drugs.
Statement of Benefit to California: 
Parkinson’s disease (PD) is the second most common human neurodegenerative disorder, and primarily results from the selective and progressive degeneration of ventral midbrain dopamine (DA) neurons. Cell transplantation of DA neurons differentiated from neural stem cells or embryonic stem cells raised great hope for an improved treatment for PD patients. However, DA neurons derived using current protocols do not survive well in mouse PD models, and the details of DA neuron development from stem cells are unclear. Our proposed research will identify unknown cofactors that regulate the differentiation of embryonic stem cells to DA neurons, and determine how agonists activate Nurr1, an essential nuclear hormone receptor for DA neuron specification and maturation. This study may yield new drug targets and inspire novel preventive or therapeutic strategies for PD. These discoveries may be exploited by California’s biotech industry and benefit Californians economically. In addition, we will search for more efficient methods to differentiate human embryonic stem cells into DA neurons, and evaluate their therapeutic effects in PD mouse models. Therefore, the proposed research will also directly benefit California residents suffering from PD.
Progress Report: 
  • Patients with Parkinson’s disease have malfunctioning or dying dopaminergic (DA) neurons. Human embryonic stem cells can be differentiated into DA neurons for transplantation with the potential to cure this disease, yet the differentiation mechanism is not very clear. A nuclear hormone receptor named Nurr1 is found to regulate the differentiation process. To study the regulation mechanism, we proposed to genetically incorporate nonnatural amino acids into Nurr1 in stem cells, and use the novel properties of these amino acids to identify the interacting protein partners of Nurr1. Once these partners are discovered, effective protocols can be developed to generate high purity DA neurons for therapeutic purposes. In the past year, we made significant progress in genetically inserting nonnatural amino acids in stem cells. We are in the process of making stem cell lines that have this capacity. We also set up functional assays for studying Nurr1 and its mutants containing nonnatural amino acids. These results paved the way for our future identification of Nurr1 interacting networks in stem cells.
  • Patients with Parkinson’s disease have malfunctioning or dying dopaminergic (DA) neurons. Human embryonic stem cells can be differentiated into DA neurons for transplantation with the potential to cure this disease, yet the differentiation mechanism is not very clear. A nuclear hormone receptor named Nurr1 is found to regulate the differentiation process. To study the regulation mechanism, we proposed to genetically incorporate nonnatural amino acids into Nurr1 in stem cells, and use the novel properties of these amino acids to identify the interacting protein partners of Nurr1. Once these partners are discovered, effective protocols can be developed to generate high purity DA neurons for therapeutic purposes. In the past year, we figured out several mechanisms that prevent the efficient incorporation of nonnatural amino acids into proteins in stem cells. We now have developed new strategies to overcome these difficulties. In the meantime, we developed another complementary approach in order to detect unknown proteins that interact with Nurr1 during the differentiation process of stem cells. We are employing these new methods to identify Nurr1 interacting networks in stem cells.
  • Patients with Parkinson’s disease have malfunctioning or dying dopaminergic (DA) neurons. Human embryonic stem cells can be differentiated into DA neurons for transplantation with the potential to cure this disease, yet the differentiation mechanism is not very clear. The differentiation of embryonic stem cells to DA neurons has been found to be regulated by a nuclear hormone receptor Nurr1, but how Nurr1 involves in this complicated process remains unclear - no ligands or protein partners have been uncovered for Nurr1. To understand the regulation mechanism in molecular details, we proposed to incorporate non-natural amino acids into Nurr1 directly in stem cells, and use the novel properties of these amino acids to identify the protein partners of Nurr1. Once these partners are discovered, effective protocols can be developed to generate high purity DA neurons for therapeutic purposes. In the past year, we figured out a right solution for generating stem cell lines capable of incorporating non-natural amino acids. We also created a novel bacterial strain for efficient producing Nurr1 proteins with the non-natural amino acids inserted. With these progresses we are now probing proteins that interact with Nurr1 during the differentiation of stem cells, which should eventually enable us to come up with new strategies for making DA neurons from embryonic stem cells.
  • Patients with Parkinson’s disease have malfunctioning or dying dopaminergic (DA) neurons. Human embryonic stem cells can be differentiated into DA neurons for transplantation with the potential to cure this disease, yet the differentiation mechanism is not very clear. The differentiation of embryonic stem cells to DA neurons has been found to be regulated by a nuclear hormone receptor Nurr1, but how Nurr1 is involved in this complicated process remains unclear - no ligands or protein partners have been uncovered for Nurr1. To understand the regulation mechanism in molecular details, we proposed to incorporate non-natural amino acids into Nurr1 directly in stem cells, and use the novel properties of these amino acids to identify the protein partners of Nurr1. Once these partners are discovered, effective protocols can be developed to generate high purity DA neurons for therapeutic purposes. In the past year, after testing numerous conditions in various cell lines, we discovered that photo-crosslinking is inefficient in capturing proteins interacting with Nurr1, possibly because the affinity between the unknown target protein and Nurr1 is too low. To overcome this challenge, we developed a new strategy of capture interacting proteins based on a novel class of non-natural amino acids, which do not require additional reagents nor external stimuli to function. We demonstrated the ability of these amino acids to crosslink proteins in the process of interacting with other proteins in live cells. We have also generated stable cell lines that are able to incorporate such non-natural amino acids. Using these new methods, we have been probing proteins that interact with Nurr1 during the differentiation of stem cells, which should eventually enable us to come up with new strategies for making DA neurons from embryonic stem cells.

ES-Derived Cells for the Treatment of Alzheimer's Disease

Funding Type: 
New Faculty I
Grant Number: 
RN1-00538-A
ICOC Funds Committed: 
$2 120 833
Disease Focus: 
Aging
Alzheimer's Disease
Neurological Disorders
Stem Cell Use: 
Embryonic Stem Cell
Public Abstract: 
Alzheimer’s disease is the most common cause of dementia in the elderly, affecting over 5 million people in the US alone. Boosting immune responses to beta-Amyloid (Aβ) has proven beneficial in mouse models and Alzheimer’s disease (AD) patients. Vaccinating Alzheimer’s mice with Aβ improves cognitive performance and lessens pathological features within the brain, such as Aβ plaque loads. However, human trials with direct Aβ vaccination had to be halted to brain inflammation in some patients. We have demonstrated that T cell immunotherapy also provides cognitive benefits in a mouse model for Alzheimer’s disease, and without any detectable brain inflammation. Translating this approach into a clinical setting requires that we first develop a method to stimulate the proliferation of Aβ-specific T cells without triggering generalized inflammatory response, as happens with vaccinations. Adaptive immune responses are provided by T cells and B cells, which are regulated by the innate immune system through antigen presenting cells, such as mature dendritic cells. We propose to leverage the power of embryonic stem (ES) cells by engineering dendritic cells that express a recombinant transgene that will specifically activate Aβ-specific T cells. We will test the effectiveness of this targeted stimulation strategy using real human T cells. If successful, this approach could provide a direct method to activate beneficial immune responses that may improve cognitive decline in Alzheimer’s disease.
Statement of Benefit to California: 
Alzheimer’s disease is the most common cause of dementia in the elderly, affecting more than 5 million people in the US. In addition to being home to more than 1 in 8 Americans, California is a retirement destination so a proportionately higher percentage of our residents are afflicted with Alzheimer’s disease. It has been estimated that the number of Alzheimer’s patients in the US will grow to 13 million by 2050, so Alzheimer’s disease is a pending health care crisis. Greater still is the emotional toll that Alzheimer’s disease takes on it’s patients, their families and loved one. Currently, there is no effective treatment or cure for Alzheimer’s disease. The research proposed here builds on more than 7 years of work showing that the body’s own immune responses keep Alzheimer’s in check in young and unaffected individuals, but deficiencies in T cell responses to beta-amyloid peptide facilitate disease progression. We have shown that boosting a very specific T cell immune response can provide cognitive and other benefits in mouse models for Alzheimer’s disease. Here we propose to use stem cell research to propel these findings into the clinical domain. This research may provide an effective therapeutic approach to treating and/or preventing Alzheimer’s disease, which will alleviate some of the financial burden caused by this disease and free those health care dollars to be spent for the well-being of all Californians.
Progress Report: 
  • We have developed new proteins that will stimulate immune responses to a major factor in Alzheimer's disease. Previous studies from our lab and others indicate that those responses can be improve memory deficits and brain pathology that occurs in Alzheimer's patients, and in Alzheimer's mice. To stimulate these immune responses the new proteins must be expressed by specific immune cells called, dendritic cells. Viruses have been made that carry the codes for these new proteins and we have confirmed that those viruses can deliver them into dendritic cells. To optimize these procedures we have made dendritic cells from human embryonic stem cells, and we developed methods to accomplish that step in our laboratory. At the end of year 2 we are nearing the completion of our preclinical studies and are poised to begin introducing the new proteins into immune cells that are derived from human blood, within the next year. The over-arching goal of this project is to develop method to trigger Alzheimer's-specific immune responses in a safe and reliable manner that could provide beneficial effects with minimal side-effects. This CIRM-funded project is on track to be completed within the 5 year time-frame.

ES-Derived Cells for the Treatment of Alzheimer's Disease

Funding Type: 
New Faculty I
Grant Number: 
RN1-00538-B
ICOC Funds Committed: 
$2 120 833
Disease Focus: 
Aging
Alzheimer's Disease
Neurological Disorders
Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Closed
Public Abstract: 
Alzheimer’s disease is the most common cause of dementia in the elderly, affecting over 5 million people in the US alone. Boosting immune responses to beta-Amyloid (Aβ) has proven beneficial in mouse models and Alzheimer’s disease (AD) patients. Vaccinating Alzheimer’s mice with Aβ improves cognitive performance and lessens pathological features within the brain, such as Aβ plaque loads. However, human trials with direct Aβ vaccination had to be halted to brain inflammation in some patients. We have demonstrated that T cell immunotherapy also provides cognitive benefits in a mouse model for Alzheimer’s disease, and without any detectable brain inflammation. Translating this approach into a clinical setting requires that we first develop a method to stimulate the proliferation of Aβ-specific T cells without triggering generalized inflammatory response, as happens with vaccinations. Adaptive immune responses are provided by T cells and B cells, which are regulated by the innate immune system through antigen presenting cells, such as mature dendritic cells. We propose to leverage the power of embryonic stem (ES) cells by engineering dendritic cells that express a recombinant transgene that will specifically activate Aβ-specific T cells. We will test the effectiveness of this targeted stimulation strategy using real human T cells. If successful, this approach could provide a direct method to activate beneficial immune responses that may improve cognitive decline in Alzheimer’s disease.
Statement of Benefit to California: 
Alzheimer’s disease is the most common cause of dementia in the elderly, affecting more than 5 million people in the US. In addition to being home to more than 1 in 8 Americans, California is a retirement destination so a proportionately higher percentage of our residents are afflicted with Alzheimer’s disease. It has been estimated that the number of Alzheimer’s patients in the US will grow to 13 million by 2050, so Alzheimer’s disease is a pending health care crisis. Greater still is the emotional toll that Alzheimer’s disease takes on it’s patients, their families and loved one. Currently, there is no effective treatment or cure for Alzheimer’s disease. The research proposed here builds on more than 7 years of work showing that the body’s own immune responses keep Alzheimer’s in check in young and unaffected individuals, but deficiencies in T cell responses to beta-amyloid peptide facilitate disease progression. We have shown that boosting a very specific T cell immune response can provide cognitive and other benefits in mouse models for Alzheimer’s disease. Here we propose to use stem cell research to propel these findings into the clinical domain. This research may provide an effective therapeutic approach to treating and/or preventing Alzheimer’s disease, which will alleviate some of the financial burden caused by this disease and free those health care dollars to be spent for the well-being of all Californians.
Progress Report: 
  • Alzheimer’s disease remains the most common cause of dementia in California and the US with more than 5 million cases nationwide, a number that is expected to exceed 13 million by 2050 if treatments are not developed. We, and others, showed that T cells responses to beta-amyloid can provide beneficial effects in mouse models of this disease. However, a clinical trial of Abeta vaccination was halted due to immune cell infiltration of the meninges and consequent brain swelling. Most of the other patients seemed to benefit from the vaccination, but the uncontrolled robustness of the immune response to vaccination makes those trials unfeasible. This project aims to refine and control Abeta-specific T cell responses using antigen presenting cells derived from human embryonic stem cells (hESC). If we are successful, then we would be able to deliver only the beneficial cells responsible for the beneficial effects, and do so in a controlled manner so as to avoid encephalitogenic complications.
  • During the first 4 years of this CIRM grant, my lab developed novel methods to assess adaptive immune responses to the Alzheimer’s-linked peptide, amyloid-beta/Abeta, in human blood samples. This technique relies on the use of pluripotent stem cells to produce specific immune-modulating cells in a complicated differentiation process that takes ~50 days. Over the past year we have found that this technology can employ both human embryonic stem cells and induced-pluripotent stem cells (iPSC), the latter of which were developed in my lab through other funding sources. We have now confirmed that this method provides consistent and robust readouts. Over the past year we have moved into the clinical phase of this project and assessed these responses in over 60 human subjects. Control subjects (not affected by Alzheimer’s disease) were recruited from the university community. Initially, we looked for age-dependent changes in these responses with a cohort of >50 research subjects who ranged in age from 20-88 years. Interesting patterns emerged from that study, which are currently being prepared for publication, and will remain confidential until publication; further details are not provided in this report as it will become public record. Several Alzheimer’s patients have also been assessed. We recently entered into an agreement with a local Alzheimer’s assessment center that will allow us to expand our study by including subjects with a presumptive diagnosis of Alzheimer’s disease, as well as individuals with mild cognitive impairment (MCI) and other causes of dementia such as Fronto-temporal Dementia, Dementia with Lewy bodies and Vascular Dementia. It will be interesting to determine if the assay we have developed will be able to distinguish subjects with developing Alzheimer's pathology from those with other causes of dementia, using a small blood sample. Overall, our progress is on-track for this project to be completed at the end of year 5, with many more subject samples analyzed than were originally proposed. In the approved grant it was proposed that spleen samples from 6-8 organ donors would be assessed, but as we developed this technology it became clear that we can detect these responses using 20 mL whole blood samples from living human subjects. At present, we have used our assay to assess more than 60 human subjects – 10 times what was proposed - and by this time next year we estimate that number will double. Information gained from this research is providing exciting new insights into immune changes associated with Alzheimer’s disease. The Western University of Health Sciences is engaged in patent processes to secure intellectual property and commercialize this technology.
  • Alzheimer’s disease affects more than 5.5 million people in the USA. Problems with memory correspond with the appearance of insoluble plaques in certain brain regions, and these plaques large consist of a peptide called, amyloid-beta. For more than a decade it has known that certain immune responses to amyloid-beta improve memory in mouse models of Alzheimer’s disease, yet in humans little is known about how those responses normally occur or if they may a beneficial therapeutic strategy. In this grant we have used stem cell technology to pioneer a new method to isolate and characterize those cells using only 20 cc of whole blood from a variety of human subjects. We have found that these immune responses increase dramatically in when high-risk people are in their late 40’s and early 50’s. Those responses may provide protection against Alzheimer’s disease progression as they diminish as memory problems begin to develop. This technology will be developed as an early diagnostic test for Alzheimer's disease with private equity partners. A patent application covering this technology was submitted by the Western University of Health Sciences.
  • This CIRM grant allowed my group to translate findings from our Alzheimer’s research from mouse to man. Over several years my group, an others, showed that boosting T cell responses to a peptide found in the plaques of Alzheimer’s patients could reduce disease pathology and memory problems in mouse models of this disease. Interestingly, at least some people carry T cells in their immune system, but it was unknown who has them or if they are lost over the course of Alzheimer’s disease. In this CIRM-funded project we used stem cells to develop a new technology, called CD4see, to identify and quantify those T cells using a small sample of human blood, roughly the same amount taken for a standard blood panel. After years of development and testing of CD4see, we used it to look for and quantify those plaque-specific T cells in over 70 human subjects. We found an age-dependent decline of Aβ-specific CD4+ T cells that occurred earlier in women than in men. Men showed a 50% decline around the age of 70, but women reached the same level before the age of 60. Notably, women who carried the AD risk marker apolipoproteinE-ε4 (ApoE4) showed the earliest decline, with a precipitous drop that coincided with an age when menopause usually begins. This assay requires a sample of whole blood that is similar to standard blood panels, making it suitable as a routine test to evaluate adaptive immunity to Aβ in at-risk individuals as an early diagnostic test for Alzheimer’s disease. In future applications CD4see can be used to isolate those cells in the lab, expand them to millions of cells, and then return them back to the same person--our earlier mouse studies showed those T cells counter Alzheimer’s pathology and memory impairment, so this technology may lead to a new therapeutic approach. I am grateful to CIRM and California taxpayers for supporting young scientists and funding innovative research.

Molecular mechanisms of neural stem cell differentiation in the developing brain

Funding Type: 
New Faculty I
Grant Number: 
RN1-00530
ICOC Funds Committed: 
$2 200 715
Disease Focus: 
Amyotrophic Lateral Sclerosis
Neurological Disorders
Stem Cell Use: 
Adult Stem Cell
Cell Line Generation: 
Adult Stem Cell
oldStatus: 
Active
Public Abstract: 
One of the most exciting possibilities in stem cell biology is the potential to replace damaged or diseased neural tissues affected by neurodegenerative disorders. Stem-cell-derived neurons provide a potentially limitless supply of replacement cells to repair damaged or diseased neurons. Typically, only one or a very few types of neurons are affected in most neurodegenerative diseases, and simply transplanting stem cells directly into a degenerating or damaged brain will not guarantee that the stem cells will differentiate into the specific neurons types needed. In fact, they may instead cause tumor formation. Thus, we must learn how to guide stem cells, cultured in a laboratory, toward a specific differentiation pathway that will produce neurons of the specified type. These cells would then provide a safe, effective way to treat neurodegenerative diseases and central nervous system injuries. Since there are hundreds or thousands of types of neurons in the cerebral cortex, functionally repairing damaged neurons in the cortex will require a detailed understanding of the mechanisms controlling differentiation, survival, and connectivity of specific neuronal subtypes. In this proposal, I propose to investigate the molecular mechanisms that guide the neural stem cells in developing embryonic brains to generate two specific types of neurons – corticospinal motor neurons (CSMNs) and corticothalamic projection neurons (CTNs). Our first goal is to understand what regulates the development of CSMNs. CSMNs are clinically important neurons that degenerate in Amyotrophic Lateral Sclerosis (ALS), and are damaged in spinal cord injuries. With our current technology, replacing damaged CSMNs has been impossible, due largely to a lack of understanding of what signals regulate their development. Our second goal is to identify genes that direct the neural stem cells to generate the CTNs. Despite their essential importance in sensory processing and involvement in epilepsy, mechanisms governing the development of CTNs have not yet been revealed. CSMNs and CTNs express many identical genes, and are generated from common neural stem cells in the embryonic brains. Yet it is unclear how they are specified from common stem cells. Our third goal is to identify transcription factor codes that neural stem cells employ to specifically generate either CSMNs or CTNs. Currently, there is no cure for neurodegenerative diseases. Understanding how CSMNs and CTNs are generated during development provides the opportunity to design procedures to direct the stem cells cultured in a laboratory to specifically produce CSMNs or CTNs, which can then be used to replaced damaged or diseased neurons, such as those affected by ALS, or spinal cord injuries.
Statement of Benefit to California: 
Neurodegenerative diseases, including Amyotrophic Lateral Sclerosis (ALS), affect tens of thousands of Californians. There are no cures for these devastating diseases, nor effective treatments that consistently slow or stop them. The research proposed in this application may provide the basis for a novel, cost-effective, cell replacement therapy for ALS, thereby benefiting the State of California and its citizens. Stem cells offer a potential renewable source of a wide range of cell types that could be used to replace damaged cells involved in neurodegenerative diseases or in spinal cord injuries. At present, transplanting stem cells directly into patients is problematic, because this approach may instead cause tumor growth. To support safe and effective cell transplants, it is important to differentiate stem cells prior to the therapy into the specific cell types affected by the diseases. Understanding how different types of neurons are generated during development provides an opportunity to develop new methods to guide the differentiation of stem cells into the proper neuron types. In this application, we propose to uncover the mechanisms that regulate the neural stem cells in developing mouse brains to generate different neuronal types in the cerebral cortex, including the corticospinal motor neurons (CSMNs) and the corticothalamic neurons (CTNs). CSMNs are the neurons that degenerate in ALS and are affected in spinal cord injuries. Dysfunction of CTNs has been implicated in epilepsy. Understanding the mechanisms regulating neural stem cells to generate CSMNs and CTNs in vivo will help scientists and physicians to direct stems cells to produce CSMNs or CTNs to replace damaged neurons in patients with neurodegenerative conditions.
Progress Report: 
  • In this reporting period, we have been continuing our work to identify genes that regulate neural stem cells to produce different types of neurons in the brain.
  • In the past grant period, we have identified Tbr1 as the major cell fate-determing gene for the corticothalamic neurons.
  • In year 4 of the grant period, we continue to explore the molecular mechanisms that regulate neural stem cells to generate various types of cortical projection neurons, in particular the corticospinal motor neurons and the corticothalamic neurons. We have identified a novel transcription factor that regulates neural stem cell differentiation.
  • During the last grant period, we continue to explore the molecular mechanisms that regulate neural stem cells to generate different types of neurons in the mammalian brains. We have identified a transcription factor that is essential for neural stem cell differentiation, neuronal migration and axon projection.
  • We have continued our study to identify the molecular mechanisms that regulate cortical neuron fate specification. We have discovered/confirmed that (1) Early cortical progenitors are multipotent, and they give rise to different types of cortical project neurons and glia based on birthdates. There is no evidence of intrinsically lineage-restricted early neural stem cells; (2) expression of Fezf2, a major cell fate determining gene for cortical neurons, is regulated by multiple enhancers and promoters. These enhancers and promotor region have distinct and sometimes overlapping activity; (3) transcription factor Nfib is essential for the differentiation of neural stem cells and required for the cortical neurons to extend corticofugal axons; and (4) splicing factor Tra2b is essential for the survival and differentiation of cortical neural progenitor cells. These results provide novel insights into the development of cortical neurons.

Molecular mechanisms involved in adult neural stem cell maintenance

Funding Type: 
New Faculty I
Grant Number: 
RN1-00527
ICOC Funds Committed: 
$2 348 520
Disease Focus: 
Aging
Neurological Disorders
Stem Cell Use: 
Adult Stem Cell
Embryonic Stem Cell
Cell Line Generation: 
Adult Stem Cell
oldStatus: 
Active
Public Abstract: 
The adult brain contains a pool of stem cells, termed adult neural stem cells, that could be used for regenerative purposes in diseases that affect the nervous system. The goal of this proposal is to understand the mechanisms that promote the maintenance of adult neural stem cells as an organism ages. Understanding the factors that maintain the pool of adult neural stem cells should open new avenues to prevent age-dependent decline in brain functions and to use these cells for therapeutic purposes in neurological and neurodegenerative diseases, such as Alzheimer’s or Parkinson’s diseases. Our general strategy is to use genes that play a central role in organismal aging as we have recently discovered that two of these genes, Foxo and Sirt1, have profound effects on the maintenance and self-renewal of adult neural stem cells. We propose to use these genes as a molecular handle to understand the mechanisms of maintenance of neural stem cells. Harnessing the regenerative power of stem cells by acting on genes that govern aging will provide a novel angle to identify stem cell therapeutics for neurological and neurodegenerative diseases, most of which are age-dependent.
Statement of Benefit to California: 
As the population of the State of California ages, neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease affect increasing numbers of patients. There are no efficient treatments of cures for these diseases. In addition to the devastating effects of neurodegenerative diseases on the patients and their relatives, the cost of caring for California’s Alzheimer patients—about $22.4 billion in 2000—has been estimated to triple by 2040 due to the aging of the baby-boomer’s generation. Stem cells from the brain, or neural stem cells, hold the promise of treatments and cures for these neurodegenerative diseases. One therapeutic strategy will be to replace degenerating cells in patients with stem cells. Another approach would be to identify strategy to better maintain the pool of neural stem cell with age. Both approaches will only be possible when the mechanisms controlling the maintenance of these stem cells and their capacity to produce their functional progeny are better understood in young and old individuals. We propose to study the mode of action in neural stem cells of two genes, Foxo and Sirt, that are known to play major roles to extend lifespan in a variety of species. These genes are major targets for the development of stem cell therapeutic strategies that will benefit a wide range of patients suffering from age-dependent neurodegenerative disorders. The development of effective replacement therapies in neurodegenerative diseases will be a benefit for the rapidly aging population of California; it will also alleviate the financial burden that these age-related disorders create for the State of California.
Progress Report: 
  • Aging is accompanied by a decline in the number and the function of adult stem cells in several tissues. In the brain, the depletion of adult neural stem cells (NSC) may underlie impaired cognitive performance associated with aging. Discovering the factors that govern the maintenance of adult NSC during aging should allow us to harness their regenerative potential for therapeutic purposes during normal aging and age-related neurodegenerative disorders. We have recently found that two 'longevity genes', Foxo3 and Sirt1, are critical for adult NSC function. In the past year, we have published a manuscript showing that Foxo3 is necessary for the maintenance of NSC in the adult brain. We have also started to explore the critical mechanisms by which Foxo3 maintains adult neural stem cells in the brain. We have used ultra-high throughput sequencing approach to reveal that Foxo3 is recruited to the regulatory regions of 3,000 genes in the adult neural stem cells, thereby triggering a gene expression network that regulates both the ability of neural stem cells to divide and their ability to give rise to progeny. Finally, we have obtained new results in the past year, showing that Sirt1, another 'longevity gene' is critical for the proper function of neural stem cells in the adult brain, and their ability to give rise to differentiated cells. Together, our results will help understand the regulation of neural stem cell maintenance in aging individuals and will provide new avenues to preserve the pool of these cells in the brain. Modulating longevity genes to harness the regenerative power of stem cells will provide new avenues for stem cell therapeutics for neurological and neurodegenerative diseases, most of which are age-dependent.
  • The adult brain contains pools of stem cells called neural stem cells that are critical for
  • the formation of new neurons in the adult brain. During aging, the number of neural stem
  • cells and their ability to give rise to new neurons strikingly decline. This decline could
  • underlie at least in part memory deterioration that occurs during aging and age-related
  • neurodegenerative disease such as Alzheimer’s disease. We have been interested over
  • the years in the importance of genes that regulate overall longevity in the control of the
  • pool of neural stem cells. We made the important discovery that Foxo3, a gene that has
  • been implicated in human exceptional longevity, is necessary for preserving the neural
  • stem cell pool. In the past year, we have made extensive progress in characterizing the
  • ensemble of genes regulated by Foxo3 in adult neural stem cells, a key step in
  • unraveling the mechanisms by which neural stem cells are maintained intact. In the past
  • year, we have observed that in the absence of another gene important for longevity
  • Sirt1, there is an unexpected increase in oligodendrocyte progenitors, which are cells
  • that are important for myelination of neurons, which is important for the proper
  • propagation of the neuronal information. Defects in myelination, which happen for
  • example in multiple sclerosis, have devastating consequences on the neurological
  • function. In the past year, we have made progress to understand the cellular and
  • molecular mechanism of action that enhances the production of oligodendrocytes in the
  • absence of Sirt1. Finally, we have made progress in initiating a project in human stem
  • cells that can be reprogrammed from adult cells, to extend our findings from mice to
  • humans, in particular as it relates to human diseases that have an age-dependent
  • component.
  • The number and function of adult stem cells decrease with age in a number of tissues. In the nervous system, the depletion of functional adult neural stem cells (NSC) may be responsible for impaired cognitive performance associated with normal or pathological aging. Understanding the factors that govern the maintenance of adult NSC should provide insights into their regenerative potential and open new avenues to use these cells for therapeutic purposes during normal aging and age-related neurodegenerative disorders.
  • Clues to key regulators of stem cell functions may come from studies of the genetics of aging, as genes that regulate longevity may do so by maintaining stem cells. To date, the most compelling examples for genes that control aging in a variety of organisms include the insulin-Akt-Foxo transcription factor pathway and the Sirt deacetylases. We have recently found that Foxo3 regulates a network of genes in adult NSC and interact with another transcription factor, called Ascl1, to preserve the integrity of the NSC pool and prevent the premature exhaustion of this important pool of cells. In the past year, we have also made the surprising discovery that inactivating Sirt1 in adult neural stem cells leads to the increased production of oligodendrocyte progenitors, which are cells that are crucial for myelination and could help demyelinating diseases, such as multiple sclerosis, or demyeliating injuries such as spinal cord injuries. Importantly, the enzymatic activity of Sirt1 can be targeted by small molecules, underscoring the potential for Sirt1 as a therapeutic target in stem cell and oligodendrocyte production. In the last year, we have also made significant progress in using cellular reprogramming to investigate the role of longevity genes in human cells. Our work examines the mechanisms by which ‘longevity genes’ regulate stem cell function and maintenance. Harnessing the regenerative power of stem cells by acting on longevity genes will provide a novel angle to identify stem cell therapeutics for regenerative medicine.
  • The adult brain contains reservoirs of neural stem cells that are critical for the formation of new neurons, oligodendrocytes, and astrocytes in the adult brain. During aging, the number of neural stem cells and their ability to give rise to new neurons strikingly decline. This decline could underlie at least in part the decline in memory that occurs during aging. We are interested in the importance of genes that regulate organismal longevity in the control of the reservoir of neural stem cells. We discovered that Foxo3, a transcription factor that has been implicated in human exceptional longevity, is important for regulating the neural stem cell pool pool. In the past year, we have made extensive progress in characterizing the interaction between Foxo3 and specific chromatin states at target genes in adult neural stem cells, which provides us with a mechanistic view onto how longevity genes can affect specific networks of target genes in neural stem cells in adult organisms. In the past year, we have made significant progress in testing the role of a gene involved in healthspan and longevity in a number of organisms, the deacetylase Sirt1, in adult neural stem cell function. We have observed that Sirt1 inactivation, whether genetic or pharmacological, leads to an increase in oligodendrocyte progenitors, which are cells that are important for myelination of axons. We have found that Sirt1 inactivation is beneficial for models of demyelinating injuries and diseases, which has important consequences for multiple sclerosis. Finally, we are making progress in reprogramming adult human fibroblasts into induced pluripotent stem cells and induced NSCs, with the aim to test the importance of longevity genes in this process.

Developmental Candidates for Cell-Based Therapies for Parkinson's Disease (PD)

Funding Type: 
Early Translational I
Grant Number: 
TR1-01267
ICOC Funds Committed: 
$5 416 003
Disease Focus: 
Parkinson's Disease
Neurological Disorders
Collaborative Funder: 
Victoria, Australia
Stem Cell Use: 
Adult Stem Cell
Embryonic Stem Cell
iPS Cell
oldStatus: 
Active
Public Abstract: 
Parkinson's Disease (PD) is a devastating disorder, stealing vitality from vibrant, productive adults & draining our health care dollars. It is also an excellent model for studying other neurodegenerative conditions. We have discovered that human neural stem cells (hNSCs) may exert a significant beneficial impact in the most authentic, representative, & predictive animal model of actual human PD. Interestingly, we have learned that, while some of the hNSCs differentiate into replacement dopamine (DA) neurons, much of the therapeutic benefit derived from a stem cell action we discovered a called the “Chaperone Effect” – even hNSC-derived cells that do not become DA neurons contributed to the reversal of severe Parkinsonian symptoms by protecting endangered host DA neurons & their connections, restoring equipoise to the host nigrostriatal system, and reducing pathological hallmark of PD. While the ultimate goal may someday be to replace dead DA neurons, the Chaperone Effect represents a more tractable near-term method of using cells to address this serious condition. However, many questions remain in the process of developing these cellular therapeutic candidates. A major question is what is the best (safest, most efficacious) way to generate hNSCs? Directly from the fetal brain? From human embryonic stem cells? From skin cells reprogrammed to act like stem cells? Also, would benefits be even greater if, in addition to harnessing the Chaperone Effect, the number of stem cell-derived DA neurons was also increased? And could choosing the right stem cell type &/or providing the right supportive molecules help achieve this? This study seeks to answer these questions. Importantly, we will do so using the most representative model of human PD, a model that not only mimics all of the human symptomatology but also all the side-effects of treatment; inattention to this latter aspect plagued earlier clinical trials in PD. A successful therapy for PD would not only be of great benefit for the many patients who now suffer from the disease, or who are likely to develop it as they age, but the results will help with other potential disease applications due to greater understanding of stem cell biology (particularly the Chaperone Effect, which represents “low hanging fruit”) as well as their potential complications and side effects.
Statement of Benefit to California: 
Not only is Parkinson's Disease (PD) a devastating disease in its own right-- impairing typically vibrant productive adults & draining our health care dollars -- but it is also an excellent model for studying other neurodegenerative diseases. We have discovered that stem cells may actually exert a beneficial impact independent of dopamine neuron replacement. As a result of a multiyear study performed by our team, implanting human neural stem cells (hNSCs) into the most authentic, representative, and predictive animal model of actual human PD, we learned that the cells could reverse severe Parkinsonian symptoms by protecting endangered host dopaminergic (DA) neurons, restoring equipoise to the cytoarchitecture, preserving the host nigrostriatal pathway, and reducing alpha-synuclein aggregations (a pathological hallmark of PD). This action, called the "Chaperone Effect" represents a more tractible near-term method of using cells to address an unmet medical need. However, many questions remain in the process of developing these cellular therapeutic candidates. A major question is what is the best (safest & most efficacious way) to generate hNSCs? Directly from the fetal brain? From human embryonic stem cells? From human induced pluripotent cells? Also, would benefits be even greater if, in addition to harnessing the Chaperone Effect, the number of donor-derived DA neurons was also increased? And could choosing the right stem cell type &/or providing the right supportive molecules help achieve this? This study seeks to answer these questions. Importantly, we will continue to use the most representative model of human PD to do so, a model that not only mimics all of the human symptomatology but also all the side-effects of treatment; inattention to this latter aspect plagued earlier clinical trials in PD. Because of the unique team enlisted, these studies can be done at a fraction of the normal cost, allowing for parsimony in the use of research dollars, clearly a benefit to California taxpayers. Not only might California patients benefit in terms of their well-being, and the economy benefit from productive adults re-entering the work force & aging adults remaining in the work force, but it is likely that new intellectual property will emerge that will provide additional financial benefit to California stakeholders, both citizens & companies.
Progress Report: 
  • Parkinson's Disease (PD) is a devastating disorder, stealing vitality from vibrant, productive adults & draining our health care dollars. It is also an excellent model for studying other neurodegenerative conditions. We have discovered that human neural stem cells (hNSCs) may exert a significant beneficial impact in the most authentic, representative, & predictive animal model of actual human PD (the adult African/St. Kitts Green Monkeys exposed systemically to the neurotoxin MPTP). Interestingly, we have learned that, while some of the hNSCs differentiate into replacement dopamine (DA) neurons, much of the therapeutic benefit derived from a stem cell action we discovered called the “Chaperone Effect” – even hNSC-derived cells that do not become DA neurons contributed to the reversal of severe Parkinsonian symptoms by protecting endangered host DA neurons & their connections, restoring equipoise to the host nigrostriatal system, and reducing pathological hallmark of PD. While the ultimate goal may someday be to replace dead DA neurons, the Chaperone Effect represents a more tractable near-term method of using cells to address this serious condition. However, many questions remain in the process of developing these cellular therapeutic candidates. A major question is what is the best (safest, most efficacious) way to generate hNSCs? Directly from the fetal brain? From human embryonic stem cells? From skin cells reprogrammed to act like stem cells? Also, would benefits be even greater if, in addition to harnessing the Chaperone Effect, the number of stem cell-derived DA neurons was also increased? And could choosing the right stem cell type &/or providing the right supportive molecules help achieve this? This international study – which involves scientists from California, Madrid, Melbourne -- has been seeking to answer these questions. Importantly, we have been doing so using the most representative model of human PD, a model that not only mimics all of the human symptomatology but also all the side-effects of treatment; inattention to this latter aspect plagued earlier clinical trials in PD. A successful therapy for PD would not only be of great benefit for the many patients who now suffer from the disease, or who are likely to develop it as they age, but the results will help with other potential disease applications due to greater understanding of stem cell biology (particularly the Chaperone Effect, which represents “low hanging fruit”) as well as their potential complications and side effects.
  • To date, we have transplanted nearly 40 Parkinsonian non-human primates (NHPs) with a range of the different stem cell types described above. We have been able to generate neurons from some of these stem cells that appear to have the characteristics of the desired A9-type midbrain dopaminergic neuron lost in PD. Following transplantation, some of these stem cell derivatives appear to survive, integrate, & behave like dopaminergic neurons. Preliminary behavioral analysis of some engrafted NHPs offers encouraging results, suggesting an improvement in the Parkinsonism score in some of the animals. These NHPs will need to be followed for 1 year to insure that improvement continues & that no adverse events intervene. Over the next year, more stem cell candidates will be tested as we further optimize their preparation & differentiation.
  • We have made substantial progress in what will amount to the largest and most comprehensive head-to-head behavioral analysis of stem cell transplanted MPTP-NHPs to date and have identified cell types that show dramatic improvement in this model. Compared to the improvement observed with undifferentiated fetal CNS-derived hNSCs (the stem cell type in used Redmond et al, PNAS, 2007), 3 human stem cell candidates have shown a larger improvement in PS.
  • Summary of Achievements for this reporting period
  • • Comprehensive Behavioral data collection of 84 monkeys comprising over 10,000 observation data points
  • • Statistical analysis of Behavioral data collected to date identifies striking and statistically significant improvements in PS for several stem cell types. (Accordingly, NO-GO (or near NO-GO) cell types have been identified via comparison of levels of improvement or no improvement) [Figure 1]
  • • DNA samples collected in order to pursue the first ever complete genome sequencing of the Vervet in collaboration with the Washington University Genome Center
  • • Biochemistry sample processing and data collection of a 2nd large batch of samples completed.
  • The identification and development of an ideal cell-based therapy for a complex neurodegenerative disease requires the rigorous evaluation of both efficacy and safety of different sources and subtypes of hNSCs. The objective of this project has been to fully evaluate and identify the optimal stem cell type for a cell based therapy for refractory Parkinson’s Disease (PD) using the systemically MPTP-lesioned Old World non-human primate (NHP) (the St. Kitts Green Monkey) the most authentic animal model of the actual human disease. Among a list of plausible potentially therapeutic stem cell sources, 7 candidates have been evaluated head-to-head. The intent has been that the stem cell type (and its derivatives) safely producing the largest improvement in behavioral scores (based on a well-established NHP PD score – the Parkinson’s Factor Score [PFS] or ParkScore (which closely parallels the Hoehn–Yahr scale used in human patients, and is an accurate functional read-out of nigrostriatal dopamine [DA] activity) -- as well as a Healthy Behaviors Score [HBS] (similar to the activities-of-daily-living [ADL] on the major Parkinson’s rating scale and allows quantification of adverse events) -- will be advanced towards IND-enabling studies, to an actual IND filing, and ultimately a clinical trial.
  • Candidate cells have been transplanted into specific sub-regions of the nigrostriatal pathway of MPTP-lesioned NHPs. Animals undergo behavioral scoring for analysis of severity of Parkinsonian behavior at multiple time points pre- and post-cell transplantation. At sacrifice, biochemical measurements of DA content are made. Tissue is also analyzed to determine the fate of donor cells; the status of the host nigrostriatal pathway; the number of alpha-synuclein aggregates; degree of inflammation; any evidence of adverse events (e.g., tumor formation, cell overgrowth, emergence of cells inappropriate to the CNS).
  • We have made substantial progress in what will amount to the largest and most comprehensive head-to-head analysis of stem cell transplanted into any disease model to date, let alone behavioral analysis into a primate model of PD. Behavioral data have been collected on ~100 monkeys comprising >10,000 observation data points. We have identified a single Developmental Candidate (DC) that shows consistent and dramatic improvement in severely Parkinsonian NHPs (i.e., a significant decrease in Parkinsonian symptoms over the entire evaluation period), reflecting a restitution of DA function – human embryonic stem cell (hESC-derived) ventral mesencephalic (VM) precursors. We also suggest adding a mechanism to these cells for insuring unambiguous safety and invariant lineage commitment (a construct already generated and inserted into this DC, and recently engrafted into some initial monkeys).
  • We believe are ready for IND-enabling studies, including additional long-term pre-clinical behavioral studies of hESC-derived hVM cells that bear the above-mentioned “safety construct” – combined with additional biochemical assays of DA metabolism, histological assessments, serial profiling to insure genomic stability. Scale-up conditions for this DC are defined and reproducible and a working cell bank has been established.
  • Parkinson's Disease (PD) is a devastating disorder that is caused by the loss of a particular type of neuron in the brain. PD patients show movement abnormalities which worsen over time and significantly reduce the quality of life. Current treatments reduce the severity of these problems but very often the efficacy of these treatments gradually weakens over time leaving patients with few therapeutic options, some of which carry significant unwanted side effects. Since the development of growing undifferentiated human stem cells in the late 1990’s, much has been learned in regards to how to make these cells develop into neuronal cells, in particular the same type of neuron that is lost in a PD patient. Therefore, a cellular therapy has been envisioned for the treatment of PD, however, the complex nature of this disease requires higher level models in which potential therapies can be accurately evaluated before moving a therapy to clinical trials.
  • Previous work using human fetal tissue showed improvement of PD symptoms in an animal model and human clinical trials, however, distinctive movement abnormalities arose from the use of this treatment and combined with the ethical issues, it is not a viable therapeutic strategy. Recent work suggests that the use of embryonic stem cells for the treatment of PD may be possible but a direct comparison of the different types of cells derived from these was lacking. Additionally, tumors caused by these cells have been reported.
  • Our research efforts funded by this CIRM award allowed us to complete the largest stem cell therapy comparison for PD using the most accurate disease model available. Over the last 3 years we have evaluated the efficacy of 8 potential therapeutic cell types and 2 control cell types (in addition to various other control groups to rule out any possibility that the observations may have resulted from something other than cells). From these efforts we have confidently identified a strategy for producing cells that show a dramatic reduction in the PD symptoms in this model and these cells will be developed for clinical trials. Furthermore, we have incorporated a critical step for ensuring the safety of this cell therapy by including a purification technique that removes cells that may give rise to tumors or produce unknown or unwanted effects.

Sustained siRNA production from human MSC to treat Huntingtons Disease and other neurodegenerative disorders

Funding Type: 
Early Translational I
Grant Number: 
TR1-01257
ICOC Funds Committed: 
$2 753 559
Disease Focus: 
Huntington's Disease
Neurological Disorders
Stem Cell Use: 
Adult Stem Cell
Embryonic Stem Cell
Cell Line Generation: 
Adult Stem Cell
oldStatus: 
Closed
Public Abstract: 
One in every ten thousand people in the USA have Huntington's Disease, and it impacts many more. Multiple generations within a family can inherit the disease, resulting in escalating health care costs and draining family resources. This highly devastating and fatal disease touches all races and socioeconomic levels, and there are currently no cures. Screening for the mutant HD gene is available, but the at-risk children of an affected parent often do not wish to be tested since there are currently no early prevention strategies or effective treatments. HD is a challenging disease to treat. Not only do the affected, dying neurons need to be salvaged or replaced, but also the levels of the toxic mutant protein must be diminished to prevent further neural damage and to halt progression of the movement disorders and physical and mental decline that is associated with HD. Our application is focused on developing a safe and effective therapeutic strategy to reduce levels of the harmful mutant protein in damaged or at-risk neurons. We are using an RNA interference strategy – “small interfering RNA (siRNA)” to prevent the mutant protein from being produced in the cell. This strategy has been shown to be highly effective in animal models of HD. However, the inability to deliver the therapeutic molecules into the human brain in a robust and durable manner has thwarted scale-up of this potentially curative therapy into human trials. We are using mesenchymal stem cells, the “paramedics of the body”, to deliver the therapeutic siRNA directly into damaged cells. We have discovered that these stem cells are remarkably effective delivery vehicles, moving robustly through the tissue and infusing therapeutic molecules into each damaged cell that they contact. Thus we are utilizing nature's own paramedic system, but we are arming them with a new tool to also reduce mutant protein levels. Our novel system will allow the therapy to be carefully tested in preparation for future human cellular therapy trials for HD. The significance of our studies is very high because there are currently no treatments to diminish the amount of toxic mutant htt protein in the neurons of patients affected by Huntington’s Disease. There are no cures or successful clinical trials for HD. Our therapeutic strategy is initially examining models to treat HD, since the need is so acute. But this biological delivery system could also be used, in the future, for other neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS), spinocerebellar ataxia (SCA1), Alzheimer's Disease, and some forms of Parkinson's Disease, where reduction of the levels of a mutant or disease-activating protein could be curative. Development of this novel stem cell therapeutic and effective siRNA delivery system is extremely important for the community of HD and neurodegenerative disease researchers, patients, and families.
Statement of Benefit to California: 
It is estimated that one in 10,000 CA residents have Huntington’s Disease (HD). While the financial burden of Huntington’s Disease is estimated to be in the billions, the emotional burden on the friends and families of HD patients is immeasurable. Health care costs are extremely high for HD patients due to the decline in both body and mind. The lost ability of HD patients to remain in the CA workforce and to support their families causes additional financial strain on the state’s economy. HD is inherited as an autosomal dominant trait, which means that 50% of the children of an HD patient will inherit the disease and will in turn pass it on to 50% of their children. Individuals diagnosed through genetic testing are at risk of losing insurance coverage. Since there are currently no cures or successful clinical trials for HD, many are reluctant to be tested. The proposed project is designed in an effort to reach out to these individuals who, given that HD is given an orphan disease designation, may feel that they are completely forgotten and thus have little or no hope for their future or that of their families. To combat this devastating disease, we are using an RNA interference strategy, “small interfering RNA (siRNA),” to prevent the mutant htt protein from being produced in the cell. This strategy has been shown to be highly effective in animal models of HD. However the siRNA needs to be delivered to the brain or central nervous system in a continual manner, to destroy the toxic gene products as they are produced. There are currently no methods to infuse or produce siRNA in the brain, in a safe and sustained manner. Therefore the practical clinical use of this dramatically effective potential therapeutic application is currently thwarted. Here we propose a solution, using adult mesenchymal stem cells (MSC) modified to infuse siRNA directly into diseased or at-risk neurons in the striata of HD patients, to decrease the levels of the toxic mutant htt protein. MSC are known as the “paramedics of the body" and have been demonstrated through clinical trials to be safe and to have curative effects on damaged tissue. Even without the modification to reduce the mutant protein levels, the infused MSC will help repair the damaged brain tissue by promoting endogenous neuronal growth through secreted growth factors, secreting anti-apoptotic factors, and regulating inflammation. Our therapeutic strategy will initially examine models to treat HD, since the need is so acute. But our biological delivery system could also be applied to other neurodegenerative disorders such as ALS, some forms of Parkinson’s Disease, and Alzheimer’s Disease, by using siRNA to interfere with key pathways in development of the pathology. This would be the first cellular therapy for HD patients and would have a major impact on those affected in California. In addition, the methods that we are developing will have far-reaching effects for other neurodegenerative disorders.
Progress Report: 
  • During the first year of funding we have made significant progress toward the goals of the funded CIRM grant TR1-01257: Sustained siRNA production from human MSC to treat Huntington’s disease and other neurodegenerative disorders.
  • The overall goal of the grant is to use human mesenchymal stem cells (MSC) as safe delivery vehicles to knock down levels of the mutant Huntingtin (htt) RNA and protein in the brain. There is mounting evidence in trinucleotide repeat disorders that the RNA, as well as the protein, is toxic and thus we will need to significantly reduce levels of both in order to have a durable impact on this devastating disease.
  • This year we have shown that human MSC engineered to produce anti-htt siRNA can directly transfer enough RNA interfering molecules into neurons in vitro to achieve significant reduction in levels of the htt protein. This is a significant achievement and a primary goal of our proposed studies, and demonstrates that the hypothesis for our proposed studies is valid. The transfer occurs through direct cell-to-cell transfer of siRNA, and we have filed an international patent for this process, working closely with our Innovation Access Program at UC Davis. A manuscript documenting the results of these studies is in preparation.
  • We continue to explore the precise methods by which the cell-to-cell transfer of small RNA molecules occurs, working in close collaboration with the national Center for Biophotonics Science and Technology at UC Davis. This Center is located across the street from our CIRM-funded Institute for Regenerative Cures (IRC) where our laboratory is located, and has equipment that allows visualization of protein-protein interactions in high clarity and detail. The proximity of our HD team researchers in the IRC to the Center for Biophotonics has been an important asset to our project and a collaborative manuscript is in preparation.
  • During year two of the proposed studies we will continue to document levels of reduction of the toxic htt protein in different types of neurons, including medium spiny neurons (MSN) derived from HD patient induced pluripotent stem cells (iPSC). We have made significant advances in developing the tools for these studies, including HD iPSC line generation and MSN maturation from human pluripotent cells in culture. A manuscript on improved techniques for generating MSN from pluripotent cells is in preparation. We have also worked closely with our colleagues at the UC Davis MIND Institute to achieve improved maturation and electrical activity in neurons derived from human pluripotent stem cells in vitro, and we are examining the impact of human MSC on enhancing survival of damaged human neurons.
  • In the second year of funding we will test efficacy of the siRNA-mediated knockdown of the mutant human htt RNA and protein in the brains of our newly developed strain of immune deficient Huntington's disease mice. This strain was developed by our teams at UC Davis to allow testing of human cells in the mice, since the current strains of HD mice will reject human stem cells. A manuscript describing generation of this novel HD mouse strain is in preparation, in collaboration with our nationally prominent Center for Mouse Biology.
  • Behavioral studies will be conducted in this strain with and without the MSC/siRNA-mediated knockdown of the mutant protein, through years 2-3, in collaboration with our well established mouse neurobehavioral core at the UC Davis Center for Neurosciences. We have documented the safety of intrastriatal injection of human MSC in immune deficient mice and will next test the efficacy of human MSC engineered to continually produce the siRNA to knock down the mutant htt protein in vivo.
  • As added leverage for this grant program, and supported entirely by philanthropic donations from the community committed to curing HD, we have performed IND-enabling studies in support of an initial planned clinical trial that will use normal donor MSC (non-engineered) to validate their significant neurotrophic effects in the brain. These trophic effects have been documented in animal models. The planned study will be a phase 1 safety trial. We have completed the clinical protocol design and have received feedback from the Food and Drug Administration. We will be conducting additional studies in response to their queries, over the next 6-10 months, through a pilot grant obtained from our Clinical Translational Science Center (CTSC), which is located in the same building as our Institute. Upon completion of these additional studies we will submit the updated IND application to the FDA. MSCs for this project have been expanded and banked using standard operating procedures in place in the Good Manufacturing Practice Facility in the CIRM/UC Davis Institute for Regenerative Cures.
  • From the funded studies 4 manuscripts are now in preparation, a chapter is in press and a review paper on MSC to treat neurodegenerative diseases is in press.
  • During the second year of funding we have made significant progress toward the goals of the funded CIRM grant TR1-01257: Sustained siRNA production from human MSC to treat Huntington’s disease and other neurodegenerative disorders.
  • The overall goal of the grant is to use human mesenchymal stem cells (MSC) as safe delivery vehicles to knock down levels of the mutant Huntingtin (htt) RNA and protein in the brain. During the second year we have more fully characterized our development candidate; MSC/anti-htt. We have documented that normal human donor MSC engineered to produce anti-htt siRNA can directly transfer enough RNA interfering molecules into neurons in vitro to achieve significant reduction in levels of the htt protein. We reported this work at the Annual meeting of the American Academy of Neurology (G Mitchell, S Olson, K Pollock, A Kambal, W Cary, K Pepper, S Kalomoiris, and J Nolta. Mesenchymal Stem Cells as a Delivery Vehicle for Intercellular Delivery of RNAi to Treat Huntington's disease. AAN IN10-1.010, 2011) and have recently completed and submitted a manuscript describing these results (S Olson, A Kambal, K Pollock, G Mitchell, H Stewart, S Kalomoiris, W Cary, C Nacey, K Pepper, J Nolta. Mesenchymal stem cell-mediated RNAi transfer to Huntington's disease affected neuronal cells for reduction of huntingtin. Submitted, In Review, July 2011).
  • We have explored the molecular methods by which the cell-to-cell transfer of small RNA molecules occurs, working in close collaboration with the national Center for Biophotonics Science and Technology at UC Davis. This Center is located across the street from our CIRM-funded Institute for Regenerative Cures (IRC) where our laboratory is located, and has equipment that allows visualization of protein-siRNA interactions in high clarity and detail. The proximity of our HD team researchers in the IRC to the Center for Biophotonics has been an important asset to our project. This work was also presented at AAN 2011, and a collaborative manuscript is in preparation for submission (S Olson, G McNerny, K Pollock, F Chuang, T Huser and J Nolta, Visualization of siRNA Complexed to RISC Machinery: Demonstrating Intercellular siRNA Transfer by Imaging Activity. MS in preparation, Presented at AAN 2011: IN4-1.014).
  • In the second year of funding we developed the models for in vivo efficacy testing of the siRNA-mediated knockdown of the mutant human htt RNA and protein in the brains of established and new strains of Huntington's disease mice. Behavioral studies were conducted in two strains, the R6/2 immune competent mice and our new immune deficient strain, the NSG/HD, in comparison to normal littermate controls that are not affected by HD. We established the batteries of behavioral tests that are now needed to test efficacy of our development candidate in the brain, in year three. Established tests include rotarod, treadscan, pawgrip, spontaneous activity, nesting, locomotor activity, and the characteristic HD mouse hindlimb clasping phenotype. In addition we monitor the status of weight and tremor, grooming, eyes, hair, body position, and tail position, which all change over time in HD mice. These tests are conducted at 48 hour intervals by two highly trained technicians who are blinded to the treatment that the mouse had received. These behavioral and phenotypic tests have been established at the level of Good laboratory practices in our new Institute for Regenerative Cures shower-in barrier facility vivarium. We have documented the biosafety of intrastriatal injection of human MSC in immune deficient mice and are now examining the in vivo efficacy of the development candidate: human MSC engineered to continually produce the siRNA to knock down the mutant htt protein in vivo, which will be completed in year three.
  • As added leverage for this funded grant program, and supported entirely by philanthropic donations from the community committed to curing HD, we have performed IND-enabling studies in support of an initial planned clinical trial that will use normal donor MSC (non-engineered) to validate their significant neurotrophic effects in the brain. These trophic effects have been documented in animal models. The planned study will be a phase 1 safety trial. We have completed the clinical protocol design and have received feedback from the Food and Drug Administration. We will be conducting additional studies in response to their queries, over the next 6-10 months, through a pilot grant obtained from our Clinical Translational Science Center (CTSC), which is located in the same building as our Institute. Upon completion of these additional studies we will submit the updated IND application to the FDA. MSCs for this project have been expanded and banked using standard operating procedures in place in the Good Manufacturing Practice Facility in the CIRM/UC Davis Institute for Regenerative Cures.
  • During the three years of funding we made significant progress toward the goals of the funded CIRM grant TR1-01257: Sustained siRNA production from human MSC to treat Huntington’s disease and other neurodegenerative disorders.
  • The overall goal of the grant is to use human mesenchymal stem cells (MSC) as safe delivery vehicles to knock down levels of the mutant Huntingtin (htt) RNA and protein in the brain. There is mounting evidence in trinucleotide repeat disorders that the RNA, as well as the protein, is toxic and thus we will need to significantly reduce levels of both in order to have a durable impact on this devastating disease.
  • We initially demonstrated that human MSC engineered to produce anti-htt siRNA can directly transfer enough RNA interfering molecules into neuronal cells in vitro to achieve significant reduction in levels of the htt protein. This is a significant achievement and a primary goal of our proposed studies, and demonstrates that the hypothesis for our proposed studies is valid. The transfer occurs either through direct cell-to-cell transfer of siRNA or through exosome transfer, and we filed an international patent for this process, working closely with our Innovation Access Program at UC Davis. This patent has IP sharing with CIRM.
  • An NIH transformative grant was awarded to Dr. Nolta to further explore these exciting findings. This provides funding for five years to further define and optimize the siRNA transfer mechanism.
  • A manuscript documenting the results of these studies was published:
  • S Olson, A Kambal, K Pollock, G Mitchell, H Stewart, S Kalomoiris, W Cary, C Nacey, K Pepper, J Nolta. Examination of mesenchymal stem cell-mediated RNAi transfer to Huntington's disease affected neuronal cells for reduction of huntingtin. Molecular and Cellular Neuroscience; 49(3):271-81, 2012.
  • Also a review was published with our collaborator Dr. Gary Dunbar:
  • S Olson, K Pollock, A Kambal, W Cary, G Mitchell, J Tempkin, H Stewart, J McGee, G Bauer, T Tempkin, V Wheelock, G Annett, G Dunbar and J Nolta, Genetically Engineered Mesenchymal Stem Cells as a Proposed Therapeutic for Huntington’s disease. Molecular Neurobiology; 45(1):87-98, 2012.
  • We examined the potential efficacy of injecting relatively small numbers of MSCs engineered to produce ant-htt siRNA into the striata of the HD mouse strain R6/2, in three series of experiments. Results of these experiments did not reach significance for the test agent as compared to controls. The slope of the decline in rotarod performance was less with the test agent, and development of clasping behavior was slightly delayed after injection of MSC/aHtt, but this caught up to the controls and was not significant after day 60.
  • Our conclusions are that the R6/2 strain is too rapidly progressing to see efficacy with the test agent, and also that improved methods of siRNA transfer from cell to cell are needed. We are currently working on this problem through the NIH transformative award, and will use the YAC 128 strain, which has a more slowly progressing phenotype, for all future studies. These mice are now bred and in use in our vivarium, for the MSC/BDNF studies funded through our disease team grant.
  • Through this translational grant funding we have also developed in vitro potency assays, using human embryonic stem cell-derived neurons and medium spiny neurons, as we have described in prior reports. The differentiation techniques (funded through other grants to our group) have now been published:1-3
  • 1. Liu J, Githinji J, McLaughlin B, Wilczek K, Nolta J. Role of miRNAs in Neuronal Differentiation from Human Embryonic Stem Cell-Derived Neural Stem Cells. Stem Cell Rev;8(4):1129-37, 2012.
  • 2. Jun-feng Feng, Jing Liu, Xiu-zhen Zhang, Lei Zhang, Ji-yao Jiang, Nolta J, Min Zhao. Guided Migration of Neural Stem Cells Derived from Human Embryonic Stem Cells by an Electric Field. Stem Cells. Feb; 30(2):349-55, 2012.
  • 3. Liu J, Koscielska KA, Cao Z, Hulsizer S, Grace N, Mitchell G, Nacey C, Githinji J, McGee J, Garcia-Arocena D, Hagerman RJ, Nolta J, Pessah I, Hagerman PJ. Signaling defects in iPSC-derived fragile X premutation neurons. Hum Mol Genet. 21(17):3795-805. 2012.

Using patient-specific iPSC derived dopaminergic neurons to overcome a major bottleneck in Parkinson's disease research and drug discovery

Funding Type: 
Early Translational I
Grant Number: 
TR1-01246
ICOC Funds Committed: 
$3 701 766
Disease Focus: 
Parkinson's Disease
Neurological Disorders
Collaborative Funder: 
Germany
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Closed
Public Abstract: 
The goals of this study are to develop patient-specific induced pluripotent cell lines (iPSCs) from patients with Parkinson’s disease (PD) with defined mutations and sporadic forms of the disease. Recent groundbreaking discoveries allow us now to use adult human skin cells, transduce them with specific genes, and generate cells that exhibit characteristics of embryonic stem cells, termed induced pluripotent stem cells (iPSCs). These lines will be used as an experimental pre-clinical model to study disease mechanisms unique to PD. We predict that these cells will not only serve an ‘authentic’ model for PD when further differentiated into the specific dopaminergic neurons, but that these cells are pathologically affected with PD. The specific objectives of these studies are to (1) establish a bank of iPSCs from patients with idiopathic PD and patients with defined mutations in genes associated with PD, (2) differentiate iPSCs into dopaminergic neurons and assess neurochemical and neuropathological characteristics of PD of these cells in vitro, and (3) test the hypothesis that specific pharmacologic agents can be used to block or reverse pathological phenotypes. The absence of cellular models of Parkinson’s disease represents a major bottleneck in the scientific field of PD, which, if solved in this collaborative effort, would be instantly translated into a wide range of clinical applications, including drug discovery. This research is highly translational, as the final component is aimed at testing lead compounds that could be neuroprotective, and ultimately at developing a high-throughput drug screening program to discover new disease modifying compounds. This is an essential avenue if we want to offer our patients a new therapeutic approach that can give them a near normal life after being diagnosed with this progressively disabling disease.
Statement of Benefit to California: 
Approx. 36,000-60,000 people in the State of California are affected with Parkinson’s disease (PD), a common neurodegenerative disease that causes a high degree of disability and financial burden for our health care system. It is estimated that the number of PD cases will double by the year 2030. We have a critical need for novel therapies that will prevent or even reverse neuronal cell loss of specific neurons in the brain of patients. This collaborative proposal will provide real benefits and values to the state of California and its citizens in providing new approaches for understanding disease mechanisms, diagnostic tools and drug discovery of novel treatment for PD. Reprogramming of adult skin cells to a pluripotent state is the underlying mechanism upon which this application is built upon and offers an attractive avenue of research in this case to develop an ‘authentic’ pre-clinical model of PD. The rationale for the proposed research is that differentiated pluripotent stem cells from patients with known genetic forms of PD will recapitulate in vitro one or more of the key molecular aspects of neural degeneration associated with PD and thus provide an entirely novel human cellular system for investigation PD-related disease pathways and for drug discovery. The impact of this collaborative research project, if successful, is difficult to over-estimate. The scientific field has been struggling with the inability to directly access cells that are affected by the disease process that underlies PD and therefore all research and drug discovery has relied on ”best guess” models of the disease. Thus, the absence of cellular models of Parkinson’s disease represents a huge bottleneck in the field.
Progress Report: 
  • In the first year of the CIRM Early translational research award, we established a bank of 51 cell lines derived from skin cells of patients with Parkinson’s disease that carry specific mutations in known genes that cause PD as well as sporadic PD patients. We also recruited matched healthy individuals that serve as controls.
  • In a next step, we reprogrammed (‘rejunivated’) 17 samples of skin cells to derive pluripotent stem cells (iPSC) that closely resemble human embryonic stem cells characterized by biochemical and molecular techniques. We also optimize this process by introducing factors the will be removed after successful reprogramming.
  • We have now built a foundation for the next milestones and made already progress on the differentiation into authentic dopamine producing cells, and we have developed assays to assess the Parkinson’s disease-specific pathological phenotype of the dopamine neurons.
  • The goal of this CIRM early translational grant is to develop a model for “Parkinson’s disease (PD) in a culture dish” using patient-specific induced pluripotent stem cell lines (iPS). The underlying idea is to utilize these lines as an experimental pre-clinical model to study disease mechanisms unique to PD that could lay the foundation for drug discovery.
  • Over the last year, we have expanded our patient skin cell bank to 57 cell lines and the iPS cell bank to 39 well-characterized pluripotent stem cell lines from PD patients and healthy controls individuals. We have improved current protocols of neuronal differentiation from patient-derived iPS lines into dopamine producing neurons and can show consistency and reproducibility of making midbrain dopamine expressing nerve cells.
  • In our first publication (Nguyen et al. 2011), we describe for the first time differences in iPS-derived neurons from a PD patient with a common causative mutation in the LRRK2 gene. These patient cells are more susceptible for cellular toxins leading ultimately to more cell degeneration and cell death.
  • We are also investigating a common disease mechanism implicated in PD, which is mitochondrial dysfunction. In skin cells of a patient we were able to find profound deficits of mitochondrial function compared to control lines and we are now in the process of confirming these results in neural precursors and mature dopamine neurons.
  • Overall, we have made substantial progress towards the goal of this grant which is the a new cell culture model of PD which can replicate PD-related cellular pathology.
  • The goal of this CIRM early translational grant is to develop a model for “Parkinson’s disease (PD) in a culture dish” using patient-specific induced pluripotent stem cell lines (iPS). The underlying idea is to utilize these lines as an experimental pre-clinical model to study disease mechanisms unique to PD that could lay the foundation for drug discovery.
  • Over the last year, we have expanded our patient skin cell bank to 61 cell lines and the iPS cell bank to 51 well-characterized pluripotent stem cell lines from PD patients and healthy controls individuals. We have improved current protocols of neuronal differentiation from patient-derived iPS lines into dopamine producing neurons and can show consistency and reproducibility of making midbrain dopamine expressing nerve cells. This has been now published in Mak et al. 2012. Furthermore, we also develop new protocols to also derive other neuronal subtypes and glia, which are the support cells in the brain, to build co-culture systems. These co-cultures might represent closer the physiological conditions in the brain.
  • In our first publication (Nguyen et al. 2011), we describe for the first time differences in iPS-derived neurons from a PD patient with a common causative mutation in the LRRK2 gene. These patient cells are more susceptible for cellular toxins leading ultimately to more cell degeneration and cell death. In a second publication Byers et al. 2011, we describe similar findings for a different mutation in the alpha-synuclein gene where the normal protein is overexpressed due to a triplication of the gene locus.
  • We are also investigating a common disease mechanism implicated in PD, which is mitochondrial dysfunction. In skin cells of a patient we were able to find profound deficits of mitochondrial function compared to control lines and we are now in the process of confirming these results in neural precursors and mature dopamine neurons.
  • We are expanding the assay development to other disease-related mechanisms such as deficits in outgrowth of neuronal projections and protein aggregation.
  • Overall, through this program we have developed an invaluable resource of patient-derived cell lines that will be crucial for understanding disease mechanisms and drug discovery. We also showed proof that these cell lines can indeed recapitulates important aspects of disease and are therefore valuable assets as research tools.

Neural Stem Cells as a Developmental Candidate to Treat Alzheimer Disease

Funding Type: 
Early Translational I
Grant Number: 
TR1-01245
ICOC Funds Committed: 
$3 599 997
Disease Focus: 
Aging
Alzheimer's Disease
Neurological Disorders
Collaborative Funder: 
Victoria, Australia
Stem Cell Use: 
Adult Stem Cell
Embryonic Stem Cell
oldStatus: 
Closed
Public Abstract: 
Alzheimer disease (AD), the most common cause of dementia among the elderly and the third leading cause of death, presently afflicts over 5 million people in the USA, including over 500,000 in California. Age is the major risk factor, with 5% of the population over age 65 affected, with the incidence doubling every 5 years thereafter, such that 40-50% of those over age 85 are afflicted. Being told that one suffers from AD is one of the most devastating diagnoses a patient (and their family/caregivers) can ever receive, dooming the patient to a decade or more of progressive cognitive decline and eventual loss of all memory. At the terminal stages, the patients have lost all reasoning ability and are usually bed-ridden and unable to care for themselves. As the elderly represent the fastest growing segment of our society, there is an urgent need to develop therapies to delay, prevent or treat AD. If the present trend continues and no therapy is developed, over 16 million Americans will suffer from AD by 2050, placing staggering demands on our healthcare and economic systems. Thus, supporting AD research is a wise and prudent investment, particularly focusing on the power that stem cell biology offers. Currently, there is no cure or means of preventing AD. Existing treatments provide minor symptomatic relief– often associated with severe side effects. Multiple strategies are likely needed to prevent or treat AD, including the utilization of cell based approaches. In fact, our preliminary studies indicate that focusing on the promise of human stem cell biology could provide a meaningful therapy for a disease for which more traditional pharmaceutical approaches have failed. We aim to test the hypothesis that neural stem cells represent a novel therapeutic strategy for the treatment of AD. Our broad goal is to determine whether neural stem cells can be translated from the bench to the clinic as a therapy for AD. This proposal builds on extensive preliminary data that support the feasibility of neural stem cell-based therapies for the treatment of AD. Thus, this proposal focuses on a development candidate for treating Alzheimer disease. To translate our initial stem cell findings into a future clinical application for treating AD, we assembled a world class multi-disciplinary team of scientific leaders from the fields of stem cell biology, animal modeling, neurodegeneration, immunology, genomics, and AD clinical trials to collaborate in this early translational study aimed at developing a novel treatment for AD. Our broad goal is to examine the efficacy of human neural stem cells to rescue the cognitive phenotype in animal models of AD. Our studies aim to identify a clear developmental candidate and generate sufficient data to warrant Investigational New Drug (IND) enabling activity. The proposed studies represent a novel and promising strategy for treating AD, a major human disorder for which there is currently no effective therapy.
Statement of Benefit to California: 
Neurological disorders have devastating consequences for the quality of life, and among these, perhaps none is as dire as Alzheimer disease. Alzheimer disease robs individuals of their memory and cognitive abilities, such that they are no longer able to function in society or even interact with their family. Alzheimer disease is the most common cause of dementia among the elderly and the most significant and costly neurological disorder. Currently, 5.2 million individuals are afflicted with this insidious disorder, including over 588,000 in the State of California. Hence, over 10% of the nation's Alzheimer patients reside in California. Moreover, California has the dubious distinction of ranking first in terms of states with the largest number of deaths due to this disorder. Age is the major risk factor for Alzheimer disease, with 5% of the population over age 65 afflicted, with the incidence doubling every 5 years such that 40-50% of the population over age 85 is afflicted. As the elderly represent the fastest growing segment of our society, there is an urgent need to develop therapies to prevent or treat Alzheimer disease. By 2030, the number of Alzheimer patients living in California will double to over 1.1 million. All ethnic groups will be affected, although the number of Latinos and Asians living with Alzheimer will triple by 2030, and it will double among African-Americans within this timeframe. To further highlight the direness, at present, one person develops Alzheimer disease every 72 seconds, and it is estimated that by 2050, one person will develop the disease every 33 seconds! Clearly, the sheer volume of new cases will create unprecedented burdens on our healthcare system and have a major impact on our economic system. As the most populous state, California will be disproportionately affected, stretching our public finances to their limits. To illustrate the economic impact of Alzheimer disease, studies show that an estimated $8.5 billion of care were provided in one year in the state of California alone (this value does not include other economic aspects of Alzheimer disease). Therefore, it is prudent and necessary to invest resources to try and develop strategies to delay, prevent, or treat Alzheimer disease now. California has taken the national lead in conducting stem cell research. Despite this, there has not been a significant effort to utilize the power of stem cell biology for Alzheimer disease. This proposal seeks to reverse this trend, as we have assembled a world class group of investigators throughout the State of California and in [REDACTED] to tackle the most significant and critical questions that arise in translating basic research on human stem cells into a clinical application for the treatment of Alzheimer disease. This proposal is based on an extensive body of preliminary data that attest to the feasibility of further exploring human stem cells as a treatment for Alzheimer disease.
Progress Report: 
  • Over the past decade, the potential for using stem cell transplantation as a therapy to treat neurological disorders and injury has been increasingly explored in animal models. Studies from our lab have shown that neural stem cell transplantation can improve cognitive deficits in mice resulting from extensive neuronal loss and protein aggregation, both hallmarks of Alzheimer’s Disease pathology. Our results support the justification for exploring the use of human derived stem cells for the treatment of Alzheimer’s patients.
  • During the past few months, we have begun studies aimed at taking human derived stem cells from the bench top to the bed side. To identify the best possible human stem cells to use in our future studies, we have conducted comparisons between a wide array of human stem cells and a mouse neural stem cell line (the same mouse stem cells used in the studies mentioned above). Using these results, we have selected a cohort of human stem cell candidates to which we will continue to study in upcoming experiments involving our AD model mice.
  • In addition to identifying the best human stem cells to conduct further studies, we have also performed experiments to determine the optimal immune suppression regimen to use in our human stem cell engraftment studies. Similar to organ transplants in humans, we will need to administer immune suppressants to mice which receive our candidate human stem cells. Our group has identified a potential suppressant, also found to work in humans, which we will use in future studies.
  • Over the past decade, the potential for using stem cell transplantation as a therapy to treat neurological disorders and injury has been increasingly explored in animal models. Studies from our lab have shown that neural stem cell transplantation can improve cognitive deficits in mice resulting from extensive neuronal loss and protein aggregation, both hallmarks of Alzheimer’s Disease pathology. Our results support the justification for exploring the use of human derived stem cells for the treatment of Alzheimer’s patients.
  • During the past few months, we have begun studies aimed at taking human derived stem cells from the bench top to the bed side. To identify the best possible human stem cells to use in our future studies, we have conducted comparisons between a wide array of human stem cells and a mouse neural stem cell line (the same mouse stem cells used in the studies mentioned above). Using these results, we have selected a cohort of human stem cell candidates to which we will continue to study in upcoming experiments involving our AD model mice.
  • In addition to identifying the best human stem cells to conduct further studies, we have also performed experiments to determine the optimal immune suppression regimen to use in our human stem cell engraftment studies. Similar to organ transplants in humans, we will need to administer immune suppressants to mice which receive our candidate human stem cells. Our group has identified a potential suppressant, also found to work in humans, which we will use in future studies.
  • During the last reporting period the lab has made substantial advancements in determining the effects of long term human neural stem cells engraftment on pathologies associated with the advancement of Alzheimer's disease. In addition, data obtained by our lab has may provide additional insight on ways to target the immune system as a means of prolonging neural stem cell survival and effectiveness.

Induction of immune tolerance after spinal grafting of human ES-derived neural precursors

Funding Type: 
Transplantation Immunology
Grant Number: 
RM1-01720
ICOC Funds Committed: 
$1 387 800
Disease Focus: 
Spinal Cord Injury
Neurological Disorders
Stem Cell Use: 
Embryonic Stem Cell
iPS Cell
oldStatus: 
Closed
Public Abstract: 
Previous clinical studies have shown that grafting of human fetal brain tissue into the CNS of adult recipients can be associated with long-term (more then 10 years) graft survival even after immunosuppression is terminated. These clinical data represent in part the scientific base for the CNS to be designated as an immune privilege site, i.e., immune response toward grafted cells is much less pronounced. With rapidly advancing cell sorting technologies which permit effective isolation and expansion of neuronal precursors from human embryonic stem cells, these cells are becoming an attractive source for cell replacement therapies. Accordingly, there is great need to develop drug therapies or other therapeutic manipulations which would permit an effective engraftment of such derived cells with only transient or no immunosuppression. Accordingly, the primary goal in our studies is to test engraftment of 3 different neuronal precursors cell lines of human origin once grafted into spinal cord in transiently immunosuppressed minipigs. In addition, because the degree of cell engraftment can differ if cells are grafted into injured CNS tissue, the survival of cells once grafted into previously injured spinal cord will also be tested. Second, we will test the engraftment of neuronal cells generated from pig skin cells (fibroblasts) after genetic reprogramming (i.e., inducible pluripotent stem cells, iPS). Because these cells will be transplanted back to the fibroblast donor, we expect stable and effective engraftment in the absence of immunosuppression. Jointly by testing the above technologies (transient immunosuppression and iPS-derived neural precursors), our goal is to define the optimal neuronal precursor cell line(s) as well as immunosuppressive (or no) treatment which will lead to stable and permanent engraftment of spinally transplanted cells.
Statement of Benefit to California: 
Brain or spinal cord neurodegenerative disorders, including stroke, amyotrophic lateral sclerosis, multiple sclerosis or spinal trauma, affect many Californians. In the absence of a functionally effective cure, the cost of caring for patients with such diseases is high, in addition to a major personal and family impact. Our major goal is to develop therapeutic manipulations which are well tolerated by patients and which will lead to stable survival of previously spinal cord-grafted cells generated from human embryonic stem cells. If successful, this advance can serve as a guidance tool for CNS cell replacement therapies in general as it will define the optimal immune tolerance-inducing protocols. In addition, the development of this type of therapeutic approach (pharmacological or cell-replacement based) in California will serve as an important proof of principle and stimulate the formation of businesses that seek to develop these types of therapies (providing banks of inducible pluripotent stem cells) in California with consequent economic benefit.
Progress Report: 
  • The use of autologous, induced pluripotent stem cell-derived cell lines in replacement therapies holds great promise in future clinical use. No need for immunosuppression, otherwise required to prevent transplanted cell rejection, would represent a substantial advance in the current clinical utilization of cell replacement therapies. In our recently completed studies we have found that autologous porcine iPSC-derived neural precursors (NPCs) grafted back to the donor animal spinal cord in the absence of immunosuppression was associated with a poor cell survival and extensive inflammation at cell-grafted sites. Our data raises immunological concerns on the use of autologous iPS-cell derivatives for future regenerative medicine in humans.
  • The use of autologous, induced pluripotent stem cell-derived cell lines in replacement therapies holds great promise in future clinical use. No need for immunosuppression, otherwise required to prevent transplanted cell rejection, would represent a substantial advance in the current clinical utilization of cell replacement therapies. In our recently completed studies we have found that autologous porcine iPSC-derived neural precursors (NPCs) grafted back to the donor animal spinal cord in the absence of immunosuppression was associated with a poor cell survival and extensive inflammation at cell-grafted sites. In more recent study we have determined that the same cell population of iPS-NPCs survive and mature once grafted spinally in immunosupressed pigs.The mechanism of the immunogenicity of iPS-NPCs is being currently determined.
  • The use of autologous, induced pluripotent stem cell-derived cell lines in replacement therapies holds great promise in future clinical use. No need for immunosuppression, otherwise required to prevent transplanted cell rejection, would represent a substantial advance in the current clinical utilization of cell replacement therapies. In our recently completed studies, we have found that autologous porcine iPSC-derived neural precursors (NPCs) trigger a positive T-cell mediated reaction in vitro and that this response is not present if autologous T-cells are co-cultured with autologous fibroblasts. These data show that the reprogramming step induces a potent immunogenicity and that extensive screening of clonally-derived iPS-NPCs will be needed to identify clones of autologous NPCs with acceptable immunogenicity profile. Identification of differences in gene activity in differentially derived iPS-NPCs is currently in progress.

Pages

Subscribe to RSS - Neurological Disorders

© 2013 California Institute for Regenerative Medicine