Neurological Disorders

Coding Dimension ID: 
303
Coding Dimension path name: 
Neurological Disorders

Targeting Stem Cells to Enhance Remyelination in the Treatment of Multiple Sclerosis

Funding Type: 
Early Translational III
Grant Number: 
TR3-05617
ICOC Funds Committed: 
$4 327 175
Disease Focus: 
Multiple Sclerosis
Neurological Disorders
Stem Cell Use: 
Adult Stem Cell
Cell Line Generation: 
Adult Stem Cell
oldStatus: 
Active
Public Abstract: 
Multiple sclerosis (MS) is an autoimmune disease in which the myelin sheath that insulates neurons is destroyed, resulting in loss of proper neuronal function. Existing treatments for MS are based on strategies that suppress the immune response. While these drugs do provide benefit by reducing relapses and delaying progression (but have significant side effects), the disease invariably progresses. We are pursuing an alternative therapy aimed at regeneration of the myelin sheath through drugs that act on an endogenous stem cell population in the central nervous system termed oligodendrocyte precursor cells (OPCs). Remission in MS is largely dependent upon OPCs migrating to sites of injury and subsequently differentiating into oligodendrocytes – the cells that synthesize myelin and are capable of neuronal repair. Previous studies indicate that in progressive MS, OPCs are abundantly present at sites of damage but fail to differentiate to oligodendrocytes. As such, drug-like molecules capable of inducing OPC differentiation should have significant potential, used alone or in combination with existing immunomodulatory agents, for the treatment of MS. The objective of this project is to identify a development candidate (DC) for the treatment of multiple sclerosis (MS) that functions by directly stimulating the differentiation of the adult stem cells required for remyelination.
Statement of Benefit to California: 
Multiple Sclerosis (MS) is a painful, neurodegenerative disease that leads to an impairment of physical and cognitive abilities. Patients with MS are often forced to stop working because their condition becomes so limiting. MS can interfere with a patient's ability to even perform simple routine daily activities, resulting in a decreased quality of life. Existing treatments for MS delay disease progression and minimize symptoms, however, the disease invariably progresses to a state of chronic demyelination. The goal of this project is to identify novel promyelinating drugs, based on differentiation of an endogenous stem cell population. Such drugs would be used in combination with existing immunosuppressive drugs to prevent disease progression and restore proper neuronal activity. More effective MS treatment strategies represent a major unmet medical need that could impact the roughly 50,000 Californians suffering from this disease. Clearly the development of a promyelinating therapeutic would have a significant impact on the well-being of Californians and reduce the negative economic impact on the state resulting from this degenerative disease.
Progress Report: 
  • Multiple sclerosis (MS) is an autoimmune disease characterized by the destruction of the myelin sheath that insulates neurons, resulting in loss of proper neuronal function. Existing treatments for MS are based exclusively on strategies that suppress the immune response. We are pursuing an alternative stem cell-based therapeutic approach aimed at enhancing regeneration of the myelin sheath. Specifically, we are focused on the identification of drug-like molecules capable of inducing oligodendrocyte precursor cell (OPC) differentiation. To date, we have identified a series approved drugs that effectively induce OPC differentiation under tissue culture conditions. Additionally, we have demonstrated that several of these drug candidates reduce MS-like symptoms in relevant rodent models of the disease. We are currently conducting detailed pharmacology experiments to determine which of the identified molecules will serve as the best candidate for future clinical development.

Immune-Matched Neural Stem Cell Transplantation for Pediatric Neurodegenerative Disease

Funding Type: 
Early Translational III
Grant Number: 
TR3-05476
ICOC Funds Committed: 
$5 509 978
Disease Focus: 
Neurological Disorders
Pediatrics
Stem Cell Use: 
Adult Stem Cell
Cell Line Generation: 
Adult Stem Cell
oldStatus: 
Active
Public Abstract: 
Children with inherited degenerative diseases of the brain will be among the first to benefit from novel approaches based on stem cell therapy (SCT). This assertion is based on a number of medical and experimental observations and precedents including: 1) These diseases currently lack effective therapies and can cause profound mental retardation or lead to death; 2) SCT has already been shown to work in the milder forms of similar diseases that do not affect the brain; 3) Experimental work and early clinical studies have clearly shown that stem cells delivered directly into the brain can be used to treat diseases affecting the brain; and 4) The clinical safety of stem cells delivered directly into the brain has already been established during recent Phase 1 clinical trials. Our approach is designed to lead to a therapeutic development candidate, based on stem cells, by addressing two critical issues: (i) that early intervention is not only required but is indeed possible in this patient population and that, (ii) induction of immune tolerance is also required. We not only address these two important issues but also set the stage for efficient translation of our approach into clinical practice, by adapting transplant techniques that are standard in clinical practice or in clinical trials and using laboratory cell biology methods that are easily transferrable to the scale and processes of clinical cell manufacturing.
Statement of Benefit to California: 
We are focusing on a class of childhood brain diseases that causes a child's brain to degenerate and results in severe mental retardation or death, in addition to damage to many other organ systems. These diseases are not yet represented in CIRM’s portfolio. Recently blood stem cell transplantation has been applied to these diseases, showing that some of the organ systems can be rescued by stem cell therapy. Unfortunately, the brain component of the disease is not impacted by blood stem cell therapy. Our team proposes to take these important lessons to develop a therapy that treats all organ dysfunction, including brain. Because of the established stem cell success in the clinical treatment of non-brain organs and the experimental treatment of the brain, we propose a novel, combined stem cell therapy. Based on our own work and recent clinical experience, this dual stem cell therapy has a high probability of success for slowing or reversing disease, and importantly, will not require children to be treated with toxic immunosuppressive drugs. This therapy will thus benefit California by: 1) reducing disease burden in individuals and the State's burden for caring for these children; 2) providing a successful model of stem cell therapy of the brain that will both bolster public confidence in CIRM's mission to move complex stem cell therapies into the clinic; and 3) laying the groundwork for using this type of therapy with other brain diseases of children.
Progress Report: 
  • The purpose of the ET3RA is to establish an experimental model of stem cell transplantation that accomplishes two equally important goals: 1) to devise a strategy of protection of the child's brain from the ravages of certain genetic diseases and 2) to devise a simultaneous strategy of transplantation that avoids immune system rejection. In our first year of work, we have shown that we can reliably produce the stem cells that we want to transplant into the brains of experimental animals (mice). We have also bred sufficient numbers of mice for the transplant experiments and have started the immune system-based strategy of transplantation. This puts us in the proper position to begin the brain stem cell transplantation in year 2. Thus, we are on course to accomplishing our goals for this ET3RA and for eventual development of this strategy for the initiation of clinical trials.

Identifying Drugs for Alzheimer's Disease with Human Neurons Made From Human IPS cells

Funding Type: 
Early Translational III
Grant Number: 
TR3-05577
ICOC Funds Committed: 
$1 857 600
Disease Focus: 
Alzheimer's Disease
Neurological Disorders
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
We propose to discover new drug candidates for Alzheimer’s Disease (AD), which is common, fatal, and for which no effective disease-modifying drugs are available. Because no effective AD treatment is available or imminent, we propose to discover novel candidates by screening purified human brain cells made from human reprogrammed stem cells (human IPS cells or hIPSC) from patients that have rare and aggressive hereditary forms of AD. We have already discovered that such human brain cells exhibit an unique biochemical behavior that indicates early development of AD in a dish. Thus, we hope to find new drugs by using the new tools of human stem cells that were previously unavailable. We think that human brain cells in a dish will succeed where animal models and other types of cells have thus far failed.
Statement of Benefit to California: 
Alzheimer’s Disease (AD) is a fatal neurodegenerative disease that afflicts millions of Californians. The emotional and financial impact on families and on the state healthcare budget is enormous. This project seeks to find new drugs to treat this terrible disease. If we are successful our work in the long-term may help diminish the social and familial cost of AD, and lead to establishment of new businesses in California using our approaches to drug discovery for AD.
Progress Report: 
  • We have made steady and significant progress in developing a way to use human reprogrammed stem cells to develop drugs for Alzheimer's disease. In the more recent project term we have further refined our key assay, and generated sufficient cells to enable screening of 50,000 different chemical candidates that might reveal potential drugs for this terrible disease. With a little bit of additional refinement, we will be able to begin our search in earnest in collaboration with the Sanford-Burnham Prebys Screening Center.

Multiple Sclerosis therapy: Human Pluripotent Stem Cell-Derived Neural Progenitor Cells

Funding Type: 
Early Translational III
Grant Number: 
TR3-05603
ICOC Funds Committed: 
$4 799 814
Disease Focus: 
Multiple Sclerosis
Neurological Disorders
Stem Cell Use: 
Embryonic Stem Cell
iPS Cell
oldStatus: 
Active
Public Abstract: 
Multiple Sclerosis (MS) is a disease of the central nervous system (CNS) caused by inflammation and loss of cells that produce myelin, which normally insulates and protects nerve cells. MS is a leading cause of neurological disability among young adults in North America. Current treatments for MS include drugs such as interferons and corticosteroids that modulate the ability of immune system cells to invade the CNS. These therapies often have unsatisfactory outcomes, with continued progression of neurologic disability over time. This is most likely due to irreversible tissue injury resulting from permanent loss of myelin and nerve destruction. The limited ability of the body to repair damaged nerve tissue highlights a critically important and unmet need for MS patients. The long-term goal of our research is to develop a stem cell-based therapy that will not only halt ongoing loss of myelin but also lead to remyelination and repair of damaged nerve tissue. Our preliminary data in animal models of human MS are very promising and suggest that this goal is possible. Research efforts will concentrate on refining techniques for production and rigorous quality control of clinically-compatible transplantable cells generated from high-quality human pluripotent stem cell lines, and to verify the therapeutic activity of these cells. We will emphasize safety and development of the most therapeutically beneficial cell type for eventual use in patients with MS.
Statement of Benefit to California: 
One in seven Americans lives in California, and these people make up the single largest health care market in the United States. The diseases and injuries that affect Californians affect the rest of the US and the world. Many of these diseases involve degeneration of healthy cells and tissues, including neuronal tissue in diseases such as Multiple Sclerosis (MS). The best estimates indicate that there are 400,000 people diagnosed with MS in the USA and 2.2 million worldwide. In California, there are approximately 160,000 people with MS – roughly half of MS patients in the US live in California. MS is a life-long, chronic disease diagnosed primarily in young adults who have a virtually normal life expectancy but suffer from progressive loss of motor and cognitive function. Consequently, the economic, social and medical costs associated with the disease are significant. Estimates place the annual cost of MS in the United States in the billions of dollars. The development of a stem cell therapy for treatment of MS patients will not only alleviate ongoing suffering but also allow people afflicted with this disease to return to work and contribute to the economic stabilization of California. Moreover, a stem cell-based therapy that will provide sustained recovery will reduce recurrence and the ever-growing cost burden to the California medical community.
Progress Report: 
  • The team has been highly productive during the first year of work on this award. A major goal of the project is to evaluate the efficacy of neural progenitor cell transplantation to promote remyelination following virus induced central nervous system damage. With intracranial infection by the virus mouse hepatitis virus (MHV), mice develop paralysis due to immune mediated destruction of cells that generate myelin. Using protocols developed in the Loring laboratory, neural precursor cells (NPC) were derived from the human embryonic stem cell line H9. Mice developing paralysis due to intracranial infection with MHV were subject to intraspinal transplantation of these NPC, resulting in significant clinical recovery beginning at 2-3 weeks following transplant. This clinical effect of NPC transplantation remained out to six months, suggesting that these NPC are effective for long-term repair following demyelination. Despite this striking recovery, these human ES cell derived NPC were rapidly rejected. Several protocols for the generation of NPC for transplantation have been characterized, with the greatest clinical impact observed for NPC cultures bearing a high level of expression of TGF beta I and TGF beta II. These findings support the hypothesis that transplanted NPC reprogram the immune system within the central nervous system (CNS), leading to the activation of endogenous NPC and other repair mechanisms. Thus, it may not be necessary to induce complete immune suppression in order to promote remyelination and CNS repair following NPC transplantation for demyelinating diseases such as multiple sclerosis.

Investigation of synaptic defects in autism using patient-derived induced pluripotent stem cells

Funding Type: 
Basic Biology III
Grant Number: 
RB3-05229
ICOC Funds Committed: 
$1 391 400
Disease Focus: 
Autism
Neurological Disorders
Pediatrics
Stem Cell Use: 
iPS Cell
oldStatus: 
Closed
Public Abstract: 
Autism spectrum disorders (ASD) are a group of neurodevelopmental diseases that occur in as many as 1 in 150 children in the United States. Three hallmarks of autism are dysfunctional communication, impaired social interaction, and restricted and repetitive interests and activities. Even though no single genetic defect has been ascribed to having a causative role in the majority of ASD cases, twin concordance studies and rare familial forms of the disease strongly support a genetic malfunction and a combinatorial effect of genetic risk factors may contribute to the variability in the symptoms. One major obstacle to ASD research is the difficulty in obtaining human neural tissue to model the disease in vitro. Mouse models of ASD are limited since only rare genetic mutations have been identified so far, and single mutations in those genes cannot fully reproduce the range of critical behaviors characteristic of ASD. Direct reprogramming of patient tissues to induced pluripotent stem (iPS) cells and derivation of forebrain neurons from them will provide much needed insight into the molecular mechanism of neuronal dysfunction in diverse individuals on the autism spectrum. The use of patient-derived stem cells to characterize cellular defects brings together two investigative approaches. One is the identification of common cellular and molecular mechanisms that are central to deficiencies across diverse populations of patients. The other is quantitative comparison of pathological features that address differences amongst diverse patients. Our major goal is to characterize the synaptic dysfunction using concrete, quantifiable parameters in human neurons that have specific mutations in key synaptic proteins. This approach will give us a handle into the molecular synaptic complexes that may also be altered in sporadic ASD cases and could help us develop drug strategies that can normalize synaptic function. Although several groups are interested in generating iPS cells from autistic patients, these efforts generally do not have genomic information on the patients, and the large diversity of mutations associated with autism could lead to large variation in synaptic phenotypes. By focusing on generating iPS cells from patients carrying mutations in a small number of critical synaptic proteins and characterizing the molecular components of this complex, we are likely to be in a strong position to identify novel molecular defects associated with autistic synapses. Relative biochemical comparisons of wildtype and mutant protein complexes could help us find ways to restore synaptic function in ASD.
Statement of Benefit to California: 
Many children in California are affected by autism spectrum disorders, which include monogenic syndromes such as Fragile X syndrome and Rett syndrome. However, the majority of cases are idiopathic and an interplay of multiple genetic risk factors is suspected. Since no current drug therapies exist for autism and an accurate diagnosis can only be made in early childhood by largely behavioral criteria, the cost of care and social burden for such a disorder is high, not to mention the devastation to the quality of life for the families of affected children. We would like to identify a core set of proteins found in synapses that are disrupted or dysregulated in autism by a biochemical approach. If we succeed in this effort, we may be able to identify novel biomarkers and molecular targets for specific patient profiles, and by cross-correlating the genetic background to specific behavioral traits in specific individuals, we may come up with molecular targets that are able to address particular symptoms, which should greatly aid in therapeutic regimens that complement existing behavioral therapies. Generating iPS neurons with known copy number variations associated with autism would be a major resource for other laboratories in California and in the field in general. The economic benefit to California is manifold, as many pharmaceutical and biotech companies in California will want to exploit these novel cell lines and the therapeutic targets identified through them in order to design better drugs for autism.
Progress Report: 
  • The main goal of this project is to establish a cell culture model human neuronal model of autism spectrum disorders (ASD) by generating induced pluripotent stem (iPS) cell lines from patients harboring mutations in genes associated with autism, differentiating them into forebrain neurons, and characterizing their synaptic defects at the cellular and molecular level. We have successfully obtained iPS cells from two autism spectrum disorders, tuberous sclerosis complex (TSC) and Rett syndrome (RTT). We obtained fibroblasts from patients with mutations in the TSC1 and TSC2 genes through the Coriell biorepository. We then reprogrammed them into several TSC patient-specific iPS cell lines. Furthermore, we have obtained male MECP2 mutant iPS cell lines from the lab of Dr. Alysson Muotri to study in parallel with the TSC lines.
  • We differentiated ASD iPS cell lines into neural progenitor cell (NPCs) and have been examining differences in protein levels and signaling pathways in these cells. Pathway analyses from MECP2 mutant NPCs suggest there may be a marked deficit in several major intracellular signaling pathways, and we are validating those deficits by biochemical analyses and genetic manipulations. Both TSC and RTT forebrain neurons show significant differences in synaptic regulation compared to their respective controls. Alterations in synaptic regulation are being assessed by gene expression analysis, staining for synaptic markers, and electrophysiology. We have made major progress toward realizing our goal of establishing novel iPS cell models for ASD. Furthermore, we obtained very interesting data that should help us elucidate the cell signaling deficits that lead to neuronal dysfunction.
  • We set out to establish an in vitro human neuronal model of autism spectrum disorders (ASD) by generating induced pluripotent stem (iPS) cell lines from patients harboring specific genetic mutations in syndromic forms of autism, such as Rett Syndrome (RTT) and Tuberous sclerosis (TS). We then differentiated them into neural progenitor cells (NPCs) and forebrain neurons, in order to compare their differentiation potential and to characterize mutation-associated deficits at the cellular and molecular level. Previously published data on cellular and animal models indicate that synaptic deficits are a major feature of the pathophysiology of RTT and TS.
  • We employed patient-derived induced pluripotent stem cells (iPSCs) from male RTT patients and gender-matched parental controls to probe for functional and molecular deficits in RTT. A similar approach was taken for TS.
  • As MECP2 is expressed in both the developing and mature central nervous system, we investigated deficits that may arise during early developmental stages (i.e. at the neural progenitor cell or NPC stage), which could then significantly affect neurodevelopmental processes such as neurogenesis and gliogenesis. By quantitative proteomics, we showed that the RTT cells have changes on the molecular level, at both the NPC and neuron stage, compared to their WT control, and that these changes may reflect some of the deficits in the developmental process. We report delays in maturation, such as misregulation of LIN28 at the NPC stage and subsequent deficits in glial differentiation.
  • Taken together, these results provide a framework for identifying novel early pathways that are perturbed in RTT, as well as potential therapeutics to minimize functional deficits. More generally, it will be of interest to see if these pathways and possible therapeutics may carry over to other related forms of neurodevelopmental disorders, in particular, idiopathic autism.

Editing of Parkinson’s disease mutation in patient-derived iPSCs by zinc-finger nucleases

Funding Type: 
Tools and Technologies II
Grant Number: 
RT2-01965
ICOC Funds Committed: 
$1 327 983
Disease Focus: 
Parkinson's Disease
Neurological Disorders
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
The goal of this proposal is to establish a novel research tool to explore the molecular basis of Parkinson’s disease (PD) - a critical step toward the development of new therapy. To date, a small handful of specific genes and associated mutations have been causally linked to the development of PD. However, how these mutations provoke the degeneration of specific neurons in the brain remains poorly understood. Moreover, conducting such genotype-phenotype studies has been hampered by two significant experimental problems. First, we have historically lacked the ability to model the relevant human cell types carrying the appropriate gene mutation. Second, the genetic variation between individuals means that the comparison of a cell from a disease-carrier to a cell derived from a normal subject is confounded by the many thousands of genetic changes that normally differentiate two individuals from one another. Here we propose to combine two powerful techniques – one genetic and one cellular – to overcome these barriers and drive a detailed understanding of the molecular basis of PD. Specifically, we propose to use zinc finger nucleases (ZFNs) in patient-derived induced pluripotent stem cells (iPSC) to accelerate the generation of a panel of genetically identical cell lines differing only in the presence or absence of a single disease-linked gene mutation. iPSCs have the potential to differentiate into many cell types – including dopaminergic neurons that become defective in PD. Merging these two technologies will thus allow us to study activity of either the wild-type or the mutant gene product in cells derived from the same individual, which is critical for elucidating the function of these disease-related genes and mutations. We anticipate that the generation of these isogenic cells will accelerate our understanding of the molecular causes of PD, and that such cellular models could become important tools for developing novel therapies.
Statement of Benefit to California: 
Approx. 36,000-60,000 people in the State of California are affected with Parkinson’s disease (PD) – a number that is estimated to double by the year 2030. This debilitating neurodegenerative disease causes a high degree of disability and financial burden for our health care system. Importantly, recent work has identified specific gene mutations that are directly linked to the development of PD. Here we propose to exploit the plasticity of human induced pluripotent stem cells (iPSC) to establish models of diseased and normal tissues relevant to PD. Specifically, we propose to take advantage of recent developments allowing the derivation of stem cells from PD patients carrying specific mutations. Our goal is to establish advanced stem cell models of the disease by literally “correcting” the mutated form of the gene in patient cells, therefore allowing for direct comparison of the mutant cells with its genetically “repaired” yet otherwise identical counterpart. These stem cells will be differentiated into dopaminergic neurons, the cells that degenerate in the brain of PD patients, permitting us to study the effect of correcting the genetic defect in the disease relevant cell type as well as provide a basis for the establishment of curative stem cells therapies. This collaborative project provides substantial benefit to the state of California and its citizens by pioneering a new stem cell based approach for understanding the role of disease causing mutations via “gene repair” technology, which could ultimately lead to advanced stem cell therapies for Parkinson’s disease – an unmet medical need without cure or adequate long-term therapy.
Progress Report: 
  • The goal of this proposal was to establish a novel research tool to explore the molecular basis of Parkinson’s disease (PD) - a critical step toward the development of new therapy. To date, a small handful of specific genes and associated mutations have been causally linked to the development of PD. However, how these mutations provoke the degeneration of specific neurons in the brain remains poorly understood.
  • In the first year of the grant, we have successfully modified the LRRK2 G2019S mutation in patient-derived induced pluripotent stem cells (iPSC) using zinc-finger technology. We created several clonal lines with the gene correction and also with a knockdown of the LRRK2 gene.
  • We characterized these lines for pluripotency, karyotype, and differentiation potential and currently, we are testing the lines for functional differences in the next reporting period and will generate iPSCs with specific LRRK2 mutations introduced using zinc-finger technology.
  • Despite the growing number of diseases linked to single gene mutations, determining the molecular mechanisms by which such errors result in disease pathology has proven surprisingly difficult. The ability to correlate disease phenotypes with a specific mutation can be confounded by background of genetic and epigenomic differences between patient and control cells. To address this problem, we employed zinc finger nucleases-based genome editing in combination with a newly developed high-efficiency editing protocol to generate isogenic patient-derived induced pluripotent stem cells (iPSC) differing only at the most common mutation for Parkinson's disease (PD), LRRK2 p.G2019S. We show that correction of the LRRK2 p.G2019S mutation rescues a panel of neuronal cell phenotypes including reduced dopaminergic cell number, impaired neurite outgrowth and mitochondrial dysfunction. These data reveal that PD-relevant cellular pathophysiology can be reversed by genetic repair, thus confirming the causative role of this prevalent mutation – a result with potential translational implications.
  • The goal of this proposal has been to establish a novel research tool to explore the molecular basis of Parkinson’s disease (PD) - a critical step toward the development of new therapies. To date, a small handful of specific genes and associated mutations have been causally linked to the development of PD. However, how these mutations provoke the degeneration of specific neurons in the brain remains poorly understood.
  • Moreover, conducting such genotype-phenotype studies has been hampered by two significant experimental problems. First, we have historically lacked the ability to model the relevant human cell types carrying the appropriate gene mutation. Second, the genetic variation between individuals means that the comparison of a cell from a disease-carrier to a cell derived from a normal subject is confounded by the many thousands of genetic changes that normally differentiate two individuals from one another.
  • We proposed to use zinc finger nucleases (ZFNs) in patient-derived induced pluripotent stem cells (iPSC) to accelerate the generation of a panel of genetically identical cell lines differing only in the presence or absence of a single disease-linked gene mutation.
  • To this end, we have successfully generated a panel of LRRK2 isogenic cell lines that differ only in "one building block" in the genomic DNA of a cell which can cause PD, therefore we genetically 'cured' the cells in the culture dish. These lines are invaluable because they are a set of tools that allow to study the effect of this mutation in the context of neurodegeneration and cell death. We received interest from many outside academic laboratories and industry to distribute these novel tools and these cell lines will hopefully lead to the discovery of new drugs that can halt or even reverse PD.

Developing a method for rapid identification of high-quality disease specific hIPSC lines

Funding Type: 
Tools and Technologies II
Grant Number: 
RT2-01927
ICOC Funds Committed: 
$1 816 157
Disease Focus: 
Alzheimer's Disease
Neurological Disorders
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
Elucidating how genetic variation contributes to disease susceptibility and drug response requires human Induced Pluripotent Stem Cell (hIPSC) lines from many human patients. Yet, current methods of hIPSC generation are labor-intensive and expensive. Thus, a cost-effective, non-labor intensive set of methods for hIPSC generation and characterization is essential to bring the translational potential of hIPSC to disease modeling, drug discovery, genomic analysis, etc. Our project combines technology development and scaling methods to increase throughput and reduce cost of hiPSC generation at least 10-fold, enabling the demonstration, and criterion for success, that we can generate 300 useful hiPSC lines (6 independent lines each for 50 individuals) by the end of this project. Thus, we propose to develop an efficient, cost effective, and minimally labor-intensive pipeline of methods for hIPSC identification and characterization that will enable routine generation of tens to hundreds of independent hIPSC lines from human patients. We will achieve this goal by adapting two simple and high throughput methods to enable analysis of many candidate hIPSC lines in large pools. These methods are already working in our labs and are called "fluorescence cell barcoding" (FCB) and expression cell barcoding (ECB). To reach a goal of generating 6 high quality hIPSC lines from one patient, as many as 60 candidate hIPSC colonies must be expanded and evaluated individually using labor and cost intensive methods. By improving culturing protocols, and implementing suitable pooled analysis strategies, we propose to increase throughput at least 10-fold with a substantial drop in cost. In outline, the pipeline we propose to develop will begin with the generation of 60 candidate hIPSC lines per patient directly in 96 well plates. All 60 will be analyzed for diagnostic hIPSC markers by FCB in 1 pooled sample. The 10 best candidates per patient will then be picked for expression and multilineage differentiation analyses with the goal of finding the best 6 from each patient for digital karyotype analyses. Success at 10-fold scaleup as proposed here may be the first step towards further scaleup once these methods are fully developed. Aim 1: To develop a cost-effective and minimally labor-intensive set of methods/pipeline for the generation and characterization high quality hIPSC lines from large numbers of human patients. We will test suitability/develop a set of methods that allow inexpensive and rapid characterization of 60 candidate hIPSC lines per patient at a time. Aim 2: To demonstrate/test/evaluate the success and cost-effectiveness of our pipeline by generating 6 high quality hIPSC lines from each of 50 human patients from [REDACTED]. We will obtain skin biopsies and expand fibroblasts from 50 patients, and generate and analyze a total of 6 independent hIPSC lines from each using the methods developed in Aim 1.
Statement of Benefit to California: 
Many Californians suffer from diseases whose origin is poorly understood, and which are not treatable in an effective or economically advantageous manner. Part of solving this problem relies upon elucidating how genetic variation contributes to disease susceptibility and drug response and better understanding disease mechanism. Achieving these goals can be accelerated through the use of human Induced Pluripotent Stem Cell (hIPSC) lines from many human patients. Yet, current methods of hIPSC generation are labor-intensive and expensive. Thus, a cost-effective, non-labor intensive set of methods for hIPSC generation and characterization is essential to bring the translational potential of hIPSC to disease modeling, drug discovery, genomic analysis, etc. If successful, our project will lead to breakthroughs in understanding of disease, development of better therapies, and economic development in California as businesses that use our methods are launched. In addition, new therapies will bring cost-savings in healthcare to Californians, stimulate employment since Californians will be employed in businesses that develop and sell these therapies, and relieve much suffering from the burdens of chronic disease.
Progress Report: 
  • An important problem in stem cell and regenerative medicine research has been the ability to quickly and cheaply generate and characterize reprogrammed stem cells from defined human patients. The primary goal of our project is to address this need by developing new technologies that allow stem cell lines to be characterized in large mixed pools as opposed to one by one. Our new methods use flow cytometry and highly sensitive methods for detecting the activity of genes in the cell lines. We made excellent progress in the first year and reduced flow cytometry methods to practice taking advantage of a method called fluorescence cell barcoding. Methods for analyzing activity of genes and chromosome number are in progress and being tested. Our ultimate goal is to reduce cost tenfold and increase speed by about tenfold and our methods development is on track to accomplish this aim.
  • A key bottleneck in reprogramming technology to make induced pluripotent stem (IPS) cell lines is the ability to make large numbers of lines from large numbers of patients in a way that is cost effective and minimizes labor. Our project has focused primarily on dropping the cost of characterization of candidate lines. We have made a number of discoveries about the behavior of candidate reprogrammed lines that allow us to drop cost and labor needed for candidate reprogrammed line characterization. We measured the frequency of candidate lines that were well-behaved in a large retroviral reprogramming experiment, which allows us to rigorously estimate how many candidate lines must be picked and analyzed if 4-6 high-quality lines are to be generated for every patient fibroblast sample subjected to typical retroviral reprogramming technology. We then continued our work on developing a combination of different array and microfluidic chip technologies to measure the chromosome number in each candidate line and the ability of each line to be pluripotent, i.e., to be able to generate many different type of cells similar to embryonic stem cells. We are optimistic that our work will simplify and drop the cost of the characterization process so that it costs far less than before our work was initiated.
  • Reprogrammed stem cell lines, i.e., induced pluripotent stem cell lines, have the potential to revolutionize research into causes of disease and genetic contributions to the causes of disease. One key limitation, however, is the ability to generate large numbers of different stem cell lines from different people to sample the range of genetic variation in the human population as it relates to disease development. A key bottleneck is the speed and cost with which reprogrammed stem cell lines can be generated and validated for usefulness. We have succeeded in developing a streamlined workflow for characterization of reprogrammed stem cell lines that drops the cost for characterization from several thousand dollars to a few hundred dollars and increases the speed and number of lines that can be handled substantially. We take advantage of novel genetic characterization methods to analyze genetic stability and the pattern of gene expression as it reveals the capabilities of the stem cell lines. We are finishing up the loose ends on this project now and should have a high quality publication prepared for submission shortly that describes this simple and inexpensive workflow that we have developed with modern gene characterization methods.

Development of small molecule screens for autism using patient-derived iPS cells

Funding Type: 
Tools and Technologies II
Grant Number: 
RT2-01906
ICOC Funds Committed: 
$1 884 808
Disease Focus: 
Autism
Neurological Disorders
Pediatrics
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
Autism Spectrum Disorders (ASDs) are a heritable group of neuro-developmental disorders characterized by language impairments, difficulties in social integrations, and the presence of stereotyped and repetitive behaviors. There are no treatments for ASDs, and very few targets for drug development. Recent evidence suggests that some types of ASDs are caused by defects in calcium signaling during development of the nervous system. We have identified cellular defects in neurons derived from induced pluripotent stem cells (iPSCs) from patients with Timothy Syndrome (TS), caused by a rare mutation in a calcium channel that leads to autism. We propose to use cells carrying this mutant calcium channel to identify drugs that act on calcium signaling pathways that are involved in ASDs. Our research project has three aims. First, we will determine whether known channel modulators reverse the cellular defects we observe in cells from TS patients. It is possible that we will find that existing drugs already approved for use in humans might be effective for treating this rare but devastating disorder. Our second aim is to determine whether screens using neuronal cells derived from ASD patients can be used to identify calcium signaling modulators. A bottleneck to therapy development for ASDs has been the lack of appropriate in vitro models for these disorders, and we would like to determine whether our studies could serve as the basis for a new type of screen in human neurons. Our third aim is to identify signaling molecules that might be affected in patients with ASDs, which could be targets for future drug discovery. There is increasing evidence that several types of ASDs are caused by defects in neuronal activity and calcium signaling. More specifically, the CaV1.2 calcium channel that we are studying has been implicated in syndromic and non-syndromic forms of autism, and also in schizophrenia and bipolar disorder. One of the more exciting aspects of our screen of neurons with a mutation in CaV1.2 is that it gives us a tool to explore calcium-mediated signaling pathways that are defective in ASDs. We will try to modify calcium signaling in neurons from ASD patients by changing the expression of proteins that are known to affect calcium signaling in other contexts. These experiments will identify targets that are active in human neurons and that affect cellular phenotypes that are defective in ASD. In summary, the work described in this proposal constitutes a critical step to fulfilling the promise that reprogramming of patient-specific cells offers for the treatment of neuropsychiatric disorders such as autism. Our studies will identify lead compounds that could be tested in the clinic for a rare form of autism, and novel molecular targets for therapeutic development in the future. Importantly, these studies will provide a proof of principle that iPSC-derived cells are valuable for drug discovery for neuropsychiatric disorders.
Statement of Benefit to California: 
Autism Spectrum Disorders (ASDs) affect approximately 1 in 110 children in California. In addition to the devastating effects that ASDs have on the families of affected individuals, treating and educating people with ASDs imposes a heavy economic burden on the state. In 2007, almost 35,000 individuals with autism were receiving services from the California Regional Centers, and the number was expected to rise to 50,000 by last year. Recent estimates suggest that the lifetime cost of caring for an individual with an ASD can exceed $3 million. In spite of their impact on our society, there are currently no effective therapies for ASDs. Our lack of cellular and molecular tools to study these disorders means that there are no good targets for drug screening, so there are very limited prospects for developing effective pharmacological treatments in the near future. New drug discovery paradigms are needed to help develop therapies for these neuropsychiatric conditions. The research described in this proposal could have a dramatic impact on drug discovery methods for ASDs. First, we hope to identify drugs that are effective in treating Timothy Syndrome, a rare form of autism caused by an electrophysiological defect in a calcium channel. Second, we aim to develop new tools to explore calcium-mediated signaling pathways that are defective in ASDs. If successful, our research will identify a family of molecular targets that will be useful for developing therapies for ASDs in the future.
Progress Report: 
  • Autism Spectrum Disorders (ASDs) are a heritable group of neuro-developmental disorders characterized by language impairments, difficulties in social integrations, and the presence of stereotyped and repetitive behaviors. There are no treatments for ASDs, and very few targets for drug development. The goal of this CIRM project is to develop a series of in vitro screens for drugs that might affect the underlying cellular defects in ASDs.
  • Since ASDs are uniquely human, we proposed to design, optimize and conduct high-throughput chemical screens using human neurons derived from induced pluripotent stem cells (iPSCs). Our lab identified cellular defects in neurons derived from patients with Timothy Syndrome (TS), a syndromic disorder often presenting with autism that is caused by a rare mutation in a calcium channel. In our project, we proposed to develop in vitro screening assays for ASDs based on these TS phenotypes, and to screen these assays to identify drugs that might affect behavioral symptoms of autism. In the first year of this award, we conducted preliminary screens and found that certain calcium channel modulators reverse some of the differentiation defects that we observe in these cells. We also extended observations that we had made in mice and showed that TS neurons have defects in the structure and length of their dendrites, measurable features that we can use as the basis for additional drug screens. We have therefore progressed within the aims of the original award.
  • For the remainder of the grant, however, we are proposing to broaden the scope of this project to include iPSC-based screens using neurons from patients with more prevalent forms of ASDs. In other research in our lab, we have characterized phenotypes in neurons derived from patients with two other diseases that are more prevalent than TS: DiGeorge Syndrome (DGS) and Phelan-McDermid Syndrome (PMDS), two neurodevelopmental disorders resulting from deletions within chromosome 22 and patients present symptoms that often include autism. We have shown that these cells have defects in the length of their dendrites, in the structure and function of their synapses, and in their ability to transmit electrical impulses. We propose to broaden the scope of our work to develop screens for TS, DGS, and PMDS. These screens will serve as a basis for identifying drugs that lessen or reverse cellular defects in these disorders, and thus may lead to more generalized treatments for ASDs.
  • We believe that this research not only fulfills critical steps in the development of a novel test for potential ASD treatments, but demonstrates the power of iPSC technology for understanding the underlying mechanisms of neurological disorders. Expanding the scope of our original project will help us increase the impact of our studies on therapeutic development and on the understanding of the neurobiology of ASDs.
  • Autism Spectrum Disorders (ASDs) are a heritable group of neurodevelopmental disorders that affect the verbal, social, and behavioral abilities of affected individuals. There are no pharmacological treatments for ASDs, in part because of a lack of validated cellular and animal models for use in drug screens. The goal of this project is to develop and validate a cell-based high throughput screening method that we will use to identify therapies for ASDs.
  • Our laboratory has established methods for collecting skin samples from patients and reprogramming these cells into induced pluripotent stem (iPS) cells, which we then differentiate into neurons. We have characterized neurons from patients with ASDs, and identified cellular phenotypes that are amenable to high-throughput methods to identify drug targets. Our efforts in Year 2 of our CIRM funding have focused on Phelan-McDermid Syndrome (PMDS), an inherited progressive neurodevelopmental disorder characterized by developmental delay, absent or severely impaired speech, and an increased risk of autism. We have discovered that neurons from PMDS patients who have autism have defects in excitatory synaptic transmission caused by the loss of one copy of the gene Shank3. Shank3 lies in the region of Chromosome 22 that is deleted in PMDS, and is important for the development of synapses. Based on our studies, PMDS neurons can be distinguished from their wildtype counterparts by low expression levels of Shank3 measured by quantitative PCR, decreased number of excitatory synapses labeled by immunocytochemistry and imaged with a microscope, and reduced excitatory cellular currents measured electrophysiologically. Each of these phenotypes is amenable to high throughput screening of therapeutic compounds. We tested several candidate therapeutics and found that prolonged treatment with the growth factor IGF-1 partially reverses the defects we have discovered in PMDS neurons. While IGF-1 is highly bioactive and therefore not an ideal drug candidate, it can be used to validate our screening method.
  • We are currently running trials to select the best phenotype and assay for larger-scale screening. In parallel, we have developed protocols to culture large numbers of iPSC-derived neurons for high throughput screens, and we are growing and banking working stocks of PMDS and control neurons. These experiments will help us identify drug candidates for PMDS, and will represent a significant advance in HTS approaches for the testing of ASD therapies using iPSC-based systems.
  • Autism Spectrum Disorders (ASDs) are a heritable group of neurodevelopmental disorders that affect the verbal, social, and behavioral ability of affected in individual. There are no treatments for ASD, in part because the biological basis for the disorders are not know. In addition, there are no methods for screening drugs that may be therapeutic. The goal of this project was to develop screening assays based on stem cells that were derived from individuals with autism.
  • Using skin samples from affected individuals, our laboratory was able to generate induced pluripotent stem cells (iPSC) and use these stem cells to generate neurons. With CIRM support, we have now generated iPSC from many individuals, some of whom carry genetic alterations that cause autism. Work under this award focused on two genetic disorders, Timothy Syndrome (TS) and Phelan-McDermid Syndrome (PMDS). Both are inherited syndromes that affect several body systems and also greatly increase the risk of autism. In each case, we found that neurons from affected individuals displayed changes in the way neurons connect and communicate. The effects were pronounced in PMDS neurons, in part due to the loss of the Shank3 gene that is involved in the function of the excitatory synapse. Work in year 3 has focused on identifying a robust alteration in neuron function that can be used for drug screening.
  • One such phenotype was discovered and involves a change in the way calcium is utilized when neurons communicate by generating an electrical current. Using chemicals that detect calcium, fluorescent assays were developed that show a robust difference in calcium response in PMDS neurons relative to neurons from unaffected individuals. Adapting the fluorescent calcium reporter assay to a high-throughput format also required the invention of new stem cell culture methods for generating neurons that were more efficient and less costly. Ultimately, a novel strategy was developed that now permits the production of very large numbers of neurons that can be assayed in high throughput screens. A limited screen using candidate drugs has confirmed the utility of the assay and future work will utilize these assays in large scale screens for drugs that normalize or augment the synaptic defects.

A hESc-based Development Candidate for Huntington's Disease

Funding Type: 
Early Translational II
Grant Number: 
TR2-01841
ICOC Funds Committed: 
$3 799 817
Disease Focus: 
Huntington's Disease
Neurological Disorders
Stem Cell Use: 
Embryonic Stem Cell
Cell Line Generation: 
Embryonic Stem Cell
oldStatus: 
Active
Public Abstract: 
Huntington’s disease (HD) is a devastating degenerative brain disease with a 1 in 10,000 prevalence that inevitably leads to death. These numbers do not fully reflect the large societal and familial cost of HD, which requires extensive caregiving. HD has no effective treatment or cure and symptoms unstoppably progress for 15-20 years, with onset typically striking in midlife. Because HD is genetically dominant, the disease has a 50% chance of being inherited by the children of patients. Symptoms of the disease include uncontrolled movements, difficulties in carrying out daily tasks or continuing employment, and severe psychiatric manifestations including depression. Current treatments only address some symptoms and do not change the course of the disease, therefore a completely unmet medical need exists. Human embryonic stem cells (hESCs) offer a possible long-term treatment approach that could relieve the tremendous suffering experienced by patients and their families. HD is the 3rd most prevalent neurodegenerative disease, but because it is entirely genetic and the mutation known, a diagnosis can be made with certainty and clinical applications of hESCs may provide insights into treating brain diseases that are not caused by a single, known mutation. Trials in mice where protective factors were directly delivered to the brains of HD mice have been effective, suggesting that delivery of these factors by hESCs may help patients. Transplantation of fetal brain tissue in HD patients suggests that replacing neurons that are lost may also be effective. The ability to differentiate hESCs into neuronal populations offers a powerful and sustainable alternative for cell replacement. Further, hESCs offer an opportunity to create cell models in which to identify earlier markers of disease onset and progression and for drug development. We have assembled a multidisciplinary team of investigators and consultants who will integrate basic and translational research with the goal of generating a lead developmental candidate having disease modifying activity with sufficient promise to initiate IND-enabling activities for HD clinical trials. The collaborative research team is comprised of investigators from multiple California institutions and has been assembled to maximize leverage of existing resources and expertise within the HD and stem cell fields.
Statement of Benefit to California: 
The disability and loss of earning power and personal freedom resulting from Huntington's disease (HD) is devastating and creates a financial burden for California. Individuals are struck in the prime of life, at a point when they are their most productive and have their highest earning potential. As the disease progresses, individuals require institutional care at great financial cost. Therapies using human embryonic stem cells (hESCs) have the potential to change the lives of hundreds of individuals and their families, which brings the human cost into the thousands. For the potential of hESCs in HD to be realized, a very forward-thinking team effort will allow highly experienced investigators in HD, stem cell research and clinical trials to come together and identify a lead development candidate for treatment of HD. This early translation grant will allow for a comprehensive and systematic evaluation of hESC-derived cell lines to identify a candidate and develop a candidate line into a viable treatment option. HD is the 3rd most prevalent neurodegenerative disease, but because it is entirely genetic and the mutation known, a diagnosis can be made with certainty and clinical applications of hESCs may provide insights into treating brain diseases that are not caused by a single, known mutation. We have assembled a strong team of California-based investigators to carry out the proposed studies. Anticipated benefits to the citizens of California include: 1) development of new human stem cell-based treatments for HD with application to other neurodegenerative diseases such as Alzheimer's and Parkinson's diseases that affect thousands of individuals in California; 2) improved methods for following the course of the disease in order to treat HD as early as possible before symptoms are manifest; 3) transfer of new technologies and intellectual property to the public realm with resulting IP revenues coming into the state with possible creation of new biotechnology spin-off companies; and 4) reductions in extensive care-giving and medical costs. It is anticipated that the return to the State in terms of revenue, health benefits for its Citizens and job creation will be significant.
Progress Report: 
  • Huntington’s disease (HD) is a devastating degenerative brain disease with a 1 in 10,000 prevalence that inevitably leads to death. Because HD is genetically dominant, the disease has a 50% chance of being inherited by the children of patients. Symptoms of the disease include uncontrolled movements, difficulties in carrying out daily tasks or continuing employment, and severe psychiatric manifestations including depression. Current treatments only address some symptoms and do not change the course of the disease, therefore a completely unmet medical need exists. Human embryonic stem cells (hESCs) offer a possible long-term treatment approach that could relieve the tremendous suffering experienced by patients and their families. Because HD is entirely genetic and the mutation known, a diagnosis can be made with certainty and clinical applications of hESCs may provide insights into treating brain diseases that are not caused by a single, known mutation. The ability to differentiate hESCs into neuronal populations offers a powerful and sustainable treatment opportunity. We have established the multidisciplinary team of investigators and consultants to integrate basic and translational research with the goal of generating a lead developmental candidate having disease modifying activity with sufficient promise to initiate IND-enabling activities for HD clinical trials.
  • In preliminary experiments, the transplantation of mouse neural stem cells, which survived in the brain for the four week period of the trial, provided protective effects in delaying disease progression in an HD mouse model and increased production of protective molecules in the brains of these mice. In the first year, the team has developed and established methods to differentiate hESCs into neural, neuronal and astrocyte precursors to be used for transplantation and has determined the correct cells to use that can be developed for future clinical development of these cells. In initial studies during this year, transplantation of neural stem cells (NSCs) provided both neurological and behavioral benefit to a HD mouse model. In addition, neuroprotective molecules were increased. Three immunosuppression regimens were tested to optimize methods for next stage preclinical trials. Finally, breeding of the three different HD mouse models has been initiated. Taken as a whole, progress supports the feasibility of the CIRM-funded studies to transplant differentiated hESCs into HD mice for preclinical development with the ultimate goal of initiating IND-enabling activities for HD clinical trials.
  • Huntington’s disease (HD) is a devastating degenerative brain disease with a 1 in 10,000 prevalence that inevitably leads to death. Because HD is genetically dominant, the disease has a 50% chance of being inherited by the children of patients. Symptoms of the disease include uncontrolled movements, difficulties in carrying out daily tasks or continuing employment, and severe psychiatric manifestations including depression. Current treatments only address some symptoms and do not change the course of the disease, therefore a completely unmet medical need exists. Human embryonic stem cells (hESCs) offer a possible long-term treatment approach that could relieve the tremendous suffering experienced by patients and their families. Because HD is entirely genetic and the mutation known, a diagnosis can be made with certainty and clinical applications of hESCs may provide insights into treating brain diseases that are not caused by a single, known mutation. The ability to differentiate hESCs into neuronal populations offers a powerful and sustainable treatment opportunity. We have established the multidisciplinary team of investigators and consultants to integrate basic and translational research with the goal of generating a lead developmental candidate having disease modifying activity with sufficient promise to initiate IND-enabling activities for HD clinical trials.
  • We previously performed transplantation of human neural stem cells into an HD mouse model and found that a subset of cells survived in the brain for the four week period of the trial, providing protective effects in delaying disease progression. In the past year, we have increased production and characterization of human neural stem cells (hNSCs) into neuronal (hNPC) and astrocyte (hAPC) precursors to be used for transplantation and optimized methods for shipping and implantation. Immunosuppression regimens were improved to optimize cell survival of implanted cells in HD mice. Transplantation of both human NSCs and NPCs are neuroprotective to HD mice and transplantation of hAPCs is in progress. Once completed, the cell giving the greatest protective benefit will be transplanted into mice that display slower progression over a longer time frame to validate and optimize approach for subsequent human application. All three HD mouse models have been bred and are ready for stem cell transplants. Taken as a whole, progress supports the feasibility of the CIRM-funded studies to transplant differentiated hESC-derived cell types into HD mice for preclinical development with the ultimate goal of identifying a lead candidate cell type and initiating IND-enabling activities for HD clinical trials.
  • Huntington’s disease (HD) is a devastating degenerative brain disease with a 1 in 10,000 prevalence that inevitably leads to death. Because HD is genetically dominant, the disease has a 50% chance of being inherited by the children of patients. Symptoms of the disease include uncontrolled movements, difficulties in carrying out daily tasks or continuing employment, and severe psychiatric manifestations including depression. Current treatments only address some symptoms and do not change the course of the disease, therefore a completely unmet medical need exists. Human embryonic stem cells (hESCs) offer a possible long-term treatment approach that could relieve the tremendous suffering experienced by patients and their families. Because HD is entirely genetic and the mutation known, a diagnosis can be made with certainty and clinical applications of hESCs may provide insights into treating brain diseases that are not caused by a single, known mutation. The ability to differentiate hESCs into neuronal populations offers a powerful and sustainable treatment opportunity. We have established the multidisciplinary team of investigators and consultants to integrate basic and translational research with the goal of generating a lead developmental candidate having disease modifying activity with sufficient promise to initiate Investigational New Drug (IND) enabling activities for HD clinical trials.
  • We have completed several rounds of transplantation of human neural stem cells into an HD mouse model and found that the cells survived in the brain for the four-week period of the trial, provided protective effects in delaying disease progression and increased production of protective molecules in the brains of these mice. In the last year the team differentiated hESCs into neural, neuronal and astrocyte precursors and performed transplantation studies to determine the best cell candidate to use and develop for future clinical work. We determined that the human neural stem cells produce the most robust effect. We have now selected a GMP grade hNSC line that will be carried forward for further testing in both rapidly progressing and slower progressing HD mice, as well as in mouse preclinical dosing studies. Taken as a whole, progress supports the feasibility of the CIRM-funded studies to transplant differentiated hESCs into HD mice for preclinical development with the ultimate goal on initiating IND-enabling activities for HD clinical trials.

Developing a therapeutic candidate for Canavan disease using induced pluripotent stem cell

Funding Type: 
Early Translational II
Grant Number: 
TR2-01832
ICOC Funds Committed: 
$1 835 983
Disease Focus: 
Genetic Disorder
Neurological Disorders
Pediatrics
Collaborative Funder: 
Germany
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
Canavan disease is a devastating disease of infants which affects their neural development and leads to mental retardation and early death. It occurs in 1 in 6,400 persons in the U.S. and there is no treatment so far. We propose to generate genetically-repaired and patient-specific stem cells (called iPSCs) from patients’ skin cells, and then coax these stem cells into specific types of corrective neural precursors using methods established in our laboratories in order to develop a therapeutic candidate for this disease. By use of a mouse model of Canavan disease, we will determine the ability of these genetically corrected cells to successfully treat the disease. These results will form the basis for an eventual clinical trial in humans, and if successful, would be the first treatment for this terrible disease. There are many families affected by this disease, and other diseases similar to it. Results from this work could have applications to this and other similar genetic diseases. Through the proposed research, maybe no parents will have to watch their child suffer and die as a result of these dreadful diseases in one day. What a wonderful day that would be!
Statement of Benefit to California: 
It is estimated that California has ~12% of all cases of Canavan disease in the U.S. Besides the tremendous emotional and physical pain that this disease inflicts on families, it produces in California a medical and fiscal burden that is larger than any other states. Thus, there is a real need to develop a strategy of treatment for this disease. Stem cells provide great hope for the treatment of a variety of human diseases that affect the citizens of California. Combination of gene therapy and iPSC technology will enable the development of therapeutic candidates of human genetic diseases via the creation of genetically-corrected patient-specific iPSCs. Our proposal aims to establish a therapeutic development candidate for Canavan disease, a devastating neurodegenerative disease that leads to mental retardation and early death. The generation of genetically-repaired and patient-specific iPSC lines will represent great potential not only for California health care patients but also for pharmaceutical and biotechnology industries in California. Moreover, California is a strong leader in pre-clinical and clinical research developments. To maintain this position, we need to create patient-specific stem cells as autologous therapeutic candidates, in order to overcome the challenges of immune rejection faced by today’s cell therapy field. This proposal addresses the very issue by generating “disease-corrected” and patient-specific iPSCs as a therapeutic candidate with the potential to create safer and more effective cell replacement therapies.
Progress Report: 
  • Canavan disease is a devastating disease of infants which affects their neural development and leads to mental retardation and early death. It occurs in 1 in 6,400 persons in the U.S. and there is no treatment so far. We propose to generate genetically-repaired and patient-specific stem cells (called iPSCs) from patients’ skin cells, and then coax these stem cells into specific types of corrective neural precursors using methods established in our laboratories in order to develop a therapeutic candidate for this disease.
  • For the reporting period, we have obtained primary dermal fibroblasts from clinically affected Canavan disease patients and have derived Canavan disease patient iPSCs. We have demonstrated that these iPSCs exhibited typical human embryonic stem cell (ESC) like morphology, expressed human ESC cell surface markers and hold pluripotency potential. We are also optimizing methods to coax these cells into specific types of neural precursors. Either the patient iPSCs or their neural precursor derivatives will be genetically corrected in the following years to develop a therapeutic tool for Canavan disease patients.
  • There are many families affected by this disease, and other diseases similar to it. Results from this work could have applications to this and other similar genetic diseases. Through the proposed research, maybe no parents will have to watch their child suffer and die as a result of these dreadful diseases in one day.
  • Canavan disease is a devastating disease of infants which affects their neural development and leads to mental retardation and early death. It occurs in 1 in 6,400 persons in the U.S. and there is no treatment so far. We propose to generate genetically-repaired and patient-specific stem cells (called iPSCs) from patients’ skin cells, and then coax these stem cells into specific types of corrective neural precursors using methods established in our laboratories in order to develop a therapeutic candidate for this disease.
  • For the reporting period, we have demonstrated that the Canavan disease patient iPSCs hold pluripotency potential. We also genetically corrected the patient iPSCs and demonstrated that these genetically-corrected cells maintained human embryonic stem cell-like features. We coaxed these cells into specific types of neural precursors and showed that the genetically-corrected patient cells restored their cellular function. These genetically corrected cells will be tested for their therapeutic effect in the next year, in order to develop a therapeutic tool for Canavan disease patients.
  • There are many families affected by this disease, and other diseases similar to it. Results from this work could have applications to this and other similar genetic diseases. Through the proposed research, maybe no parents will have to watch their child suffer and die as a result of these dreadful diseases in one day.

Pages

Subscribe to RSS - Neurological Disorders

© 2013 California Institute for Regenerative Medicine