Neurological Disorders

Coding Dimension ID: 
303
Coding Dimension path name: 
Neurological Disorders

Molecular mechanisms of neural stem cell differentiation in the developing brain

Funding Type: 
New Faculty I
Grant Number: 
RN1-00530
ICOC Funds Committed: 
$2 200 715
Disease Focus: 
Amyotrophic Lateral Sclerosis
Neurological Disorders
Stem Cell Use: 
Adult Stem Cell
Cell Line Generation: 
Adult Stem Cell
oldStatus: 
Active
Public Abstract: 
One of the most exciting possibilities in stem cell biology is the potential to replace damaged or diseased neural tissues affected by neurodegenerative disorders. Stem-cell-derived neurons provide a potentially limitless supply of replacement cells to repair damaged or diseased neurons. Typically, only one or a very few types of neurons are affected in most neurodegenerative diseases, and simply transplanting stem cells directly into a degenerating or damaged brain will not guarantee that the stem cells will differentiate into the specific neurons types needed. In fact, they may instead cause tumor formation. Thus, we must learn how to guide stem cells, cultured in a laboratory, toward a specific differentiation pathway that will produce neurons of the specified type. These cells would then provide a safe, effective way to treat neurodegenerative diseases and central nervous system injuries. Since there are hundreds or thousands of types of neurons in the cerebral cortex, functionally repairing damaged neurons in the cortex will require a detailed understanding of the mechanisms controlling differentiation, survival, and connectivity of specific neuronal subtypes. In this proposal, I propose to investigate the molecular mechanisms that guide the neural stem cells in developing embryonic brains to generate two specific types of neurons – corticospinal motor neurons (CSMNs) and corticothalamic projection neurons (CTNs). Our first goal is to understand what regulates the development of CSMNs. CSMNs are clinically important neurons that degenerate in Amyotrophic Lateral Sclerosis (ALS), and are damaged in spinal cord injuries. With our current technology, replacing damaged CSMNs has been impossible, due largely to a lack of understanding of what signals regulate their development. Our second goal is to identify genes that direct the neural stem cells to generate the CTNs. Despite their essential importance in sensory processing and involvement in epilepsy, mechanisms governing the development of CTNs have not yet been revealed. CSMNs and CTNs express many identical genes, and are generated from common neural stem cells in the embryonic brains. Yet it is unclear how they are specified from common stem cells. Our third goal is to identify transcription factor codes that neural stem cells employ to specifically generate either CSMNs or CTNs. Currently, there is no cure for neurodegenerative diseases. Understanding how CSMNs and CTNs are generated during development provides the opportunity to design procedures to direct the stem cells cultured in a laboratory to specifically produce CSMNs or CTNs, which can then be used to replaced damaged or diseased neurons, such as those affected by ALS, or spinal cord injuries.
Statement of Benefit to California: 
Neurodegenerative diseases, including Amyotrophic Lateral Sclerosis (ALS), affect tens of thousands of Californians. There are no cures for these devastating diseases, nor effective treatments that consistently slow or stop them. The research proposed in this application may provide the basis for a novel, cost-effective, cell replacement therapy for ALS, thereby benefiting the State of California and its citizens. Stem cells offer a potential renewable source of a wide range of cell types that could be used to replace damaged cells involved in neurodegenerative diseases or in spinal cord injuries. At present, transplanting stem cells directly into patients is problematic, because this approach may instead cause tumor growth. To support safe and effective cell transplants, it is important to differentiate stem cells prior to the therapy into the specific cell types affected by the diseases. Understanding how different types of neurons are generated during development provides an opportunity to develop new methods to guide the differentiation of stem cells into the proper neuron types. In this application, we propose to uncover the mechanisms that regulate the neural stem cells in developing mouse brains to generate different neuronal types in the cerebral cortex, including the corticospinal motor neurons (CSMNs) and the corticothalamic neurons (CTNs). CSMNs are the neurons that degenerate in ALS and are affected in spinal cord injuries. Dysfunction of CTNs has been implicated in epilepsy. Understanding the mechanisms regulating neural stem cells to generate CSMNs and CTNs in vivo will help scientists and physicians to direct stems cells to produce CSMNs or CTNs to replace damaged neurons in patients with neurodegenerative conditions.
Progress Report: 
  • In this reporting period, we have been continuing our work to identify genes that regulate neural stem cells to produce different types of neurons in the brain.
  • In the past grant period, we have identified Tbr1 as the major cell fate-determing gene for the corticothalamic neurons.
  • In year 4 of the grant period, we continue to explore the molecular mechanisms that regulate neural stem cells to generate various types of cortical projection neurons, in particular the corticospinal motor neurons and the corticothalamic neurons. We have identified a novel transcription factor that regulates neural stem cell differentiation.
  • During the last grant period, we continue to explore the molecular mechanisms that regulate neural stem cells to generate different types of neurons in the mammalian brains. We have identified a transcription factor that is essential for neural stem cell differentiation, neuronal migration and axon projection.
  • We have continued our study to identify the molecular mechanisms that regulate cortical neuron fate specification. We have discovered/confirmed that (1) Early cortical progenitors are multipotent, and they give rise to different types of cortical project neurons and glia based on birthdates. There is no evidence of intrinsically lineage-restricted early neural stem cells; (2) expression of Fezf2, a major cell fate determining gene for cortical neurons, is regulated by multiple enhancers and promoters. These enhancers and promotor region have distinct and sometimes overlapping activity; (3) transcription factor Nfib is essential for the differentiation of neural stem cells and required for the cortical neurons to extend corticofugal axons; and (4) splicing factor Tra2b is essential for the survival and differentiation of cortical neural progenitor cells. These results provide novel insights into the development of cortical neurons.

Molecular mechanisms involved in adult neural stem cell maintenance

Funding Type: 
New Faculty I
Grant Number: 
RN1-00527
ICOC Funds Committed: 
$2 348 520
Disease Focus: 
Aging
Neurological Disorders
Stem Cell Use: 
Adult Stem Cell
Embryonic Stem Cell
Cell Line Generation: 
Adult Stem Cell
oldStatus: 
Active
Public Abstract: 
The adult brain contains a pool of stem cells, termed adult neural stem cells, that could be used for regenerative purposes in diseases that affect the nervous system. The goal of this proposal is to understand the mechanisms that promote the maintenance of adult neural stem cells as an organism ages. Understanding the factors that maintain the pool of adult neural stem cells should open new avenues to prevent age-dependent decline in brain functions and to use these cells for therapeutic purposes in neurological and neurodegenerative diseases, such as Alzheimer’s or Parkinson’s diseases. Our general strategy is to use genes that play a central role in organismal aging as we have recently discovered that two of these genes, Foxo and Sirt1, have profound effects on the maintenance and self-renewal of adult neural stem cells. We propose to use these genes as a molecular handle to understand the mechanisms of maintenance of neural stem cells. Harnessing the regenerative power of stem cells by acting on genes that govern aging will provide a novel angle to identify stem cell therapeutics for neurological and neurodegenerative diseases, most of which are age-dependent.
Statement of Benefit to California: 
As the population of the State of California ages, neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease affect increasing numbers of patients. There are no efficient treatments of cures for these diseases. In addition to the devastating effects of neurodegenerative diseases on the patients and their relatives, the cost of caring for California’s Alzheimer patients—about $22.4 billion in 2000—has been estimated to triple by 2040 due to the aging of the baby-boomer’s generation. Stem cells from the brain, or neural stem cells, hold the promise of treatments and cures for these neurodegenerative diseases. One therapeutic strategy will be to replace degenerating cells in patients with stem cells. Another approach would be to identify strategy to better maintain the pool of neural stem cell with age. Both approaches will only be possible when the mechanisms controlling the maintenance of these stem cells and their capacity to produce their functional progeny are better understood in young and old individuals. We propose to study the mode of action in neural stem cells of two genes, Foxo and Sirt, that are known to play major roles to extend lifespan in a variety of species. These genes are major targets for the development of stem cell therapeutic strategies that will benefit a wide range of patients suffering from age-dependent neurodegenerative disorders. The development of effective replacement therapies in neurodegenerative diseases will be a benefit for the rapidly aging population of California; it will also alleviate the financial burden that these age-related disorders create for the State of California.
Progress Report: 
  • Aging is accompanied by a decline in the number and the function of adult stem cells in several tissues. In the brain, the depletion of adult neural stem cells (NSC) may underlie impaired cognitive performance associated with aging. Discovering the factors that govern the maintenance of adult NSC during aging should allow us to harness their regenerative potential for therapeutic purposes during normal aging and age-related neurodegenerative disorders. We have recently found that two 'longevity genes', Foxo3 and Sirt1, are critical for adult NSC function. In the past year, we have published a manuscript showing that Foxo3 is necessary for the maintenance of NSC in the adult brain. We have also started to explore the critical mechanisms by which Foxo3 maintains adult neural stem cells in the brain. We have used ultra-high throughput sequencing approach to reveal that Foxo3 is recruited to the regulatory regions of 3,000 genes in the adult neural stem cells, thereby triggering a gene expression network that regulates both the ability of neural stem cells to divide and their ability to give rise to progeny. Finally, we have obtained new results in the past year, showing that Sirt1, another 'longevity gene' is critical for the proper function of neural stem cells in the adult brain, and their ability to give rise to differentiated cells. Together, our results will help understand the regulation of neural stem cell maintenance in aging individuals and will provide new avenues to preserve the pool of these cells in the brain. Modulating longevity genes to harness the regenerative power of stem cells will provide new avenues for stem cell therapeutics for neurological and neurodegenerative diseases, most of which are age-dependent.
  • The adult brain contains pools of stem cells called neural stem cells that are critical for
  • the formation of new neurons in the adult brain. During aging, the number of neural stem
  • cells and their ability to give rise to new neurons strikingly decline. This decline could
  • underlie at least in part memory deterioration that occurs during aging and age-related
  • neurodegenerative disease such as Alzheimer’s disease. We have been interested over
  • the years in the importance of genes that regulate overall longevity in the control of the
  • pool of neural stem cells. We made the important discovery that Foxo3, a gene that has
  • been implicated in human exceptional longevity, is necessary for preserving the neural
  • stem cell pool. In the past year, we have made extensive progress in characterizing the
  • ensemble of genes regulated by Foxo3 in adult neural stem cells, a key step in
  • unraveling the mechanisms by which neural stem cells are maintained intact. In the past
  • year, we have observed that in the absence of another gene important for longevity
  • Sirt1, there is an unexpected increase in oligodendrocyte progenitors, which are cells
  • that are important for myelination of neurons, which is important for the proper
  • propagation of the neuronal information. Defects in myelination, which happen for
  • example in multiple sclerosis, have devastating consequences on the neurological
  • function. In the past year, we have made progress to understand the cellular and
  • molecular mechanism of action that enhances the production of oligodendrocytes in the
  • absence of Sirt1. Finally, we have made progress in initiating a project in human stem
  • cells that can be reprogrammed from adult cells, to extend our findings from mice to
  • humans, in particular as it relates to human diseases that have an age-dependent
  • component.
  • The number and function of adult stem cells decrease with age in a number of tissues. In the nervous system, the depletion of functional adult neural stem cells (NSC) may be responsible for impaired cognitive performance associated with normal or pathological aging. Understanding the factors that govern the maintenance of adult NSC should provide insights into their regenerative potential and open new avenues to use these cells for therapeutic purposes during normal aging and age-related neurodegenerative disorders.
  • Clues to key regulators of stem cell functions may come from studies of the genetics of aging, as genes that regulate longevity may do so by maintaining stem cells. To date, the most compelling examples for genes that control aging in a variety of organisms include the insulin-Akt-Foxo transcription factor pathway and the Sirt deacetylases. We have recently found that Foxo3 regulates a network of genes in adult NSC and interact with another transcription factor, called Ascl1, to preserve the integrity of the NSC pool and prevent the premature exhaustion of this important pool of cells. In the past year, we have also made the surprising discovery that inactivating Sirt1 in adult neural stem cells leads to the increased production of oligodendrocyte progenitors, which are cells that are crucial for myelination and could help demyelinating diseases, such as multiple sclerosis, or demyeliating injuries such as spinal cord injuries. Importantly, the enzymatic activity of Sirt1 can be targeted by small molecules, underscoring the potential for Sirt1 as a therapeutic target in stem cell and oligodendrocyte production. In the last year, we have also made significant progress in using cellular reprogramming to investigate the role of longevity genes in human cells. Our work examines the mechanisms by which ‘longevity genes’ regulate stem cell function and maintenance. Harnessing the regenerative power of stem cells by acting on longevity genes will provide a novel angle to identify stem cell therapeutics for regenerative medicine.
  • The adult brain contains reservoirs of neural stem cells that are critical for the formation of new neurons, oligodendrocytes, and astrocytes in the adult brain. During aging, the number of neural stem cells and their ability to give rise to new neurons strikingly decline. This decline could underlie at least in part the decline in memory that occurs during aging. We are interested in the importance of genes that regulate organismal longevity in the control of the reservoir of neural stem cells. We discovered that Foxo3, a transcription factor that has been implicated in human exceptional longevity, is important for regulating the neural stem cell pool pool. In the past year, we have made extensive progress in characterizing the interaction between Foxo3 and specific chromatin states at target genes in adult neural stem cells, which provides us with a mechanistic view onto how longevity genes can affect specific networks of target genes in neural stem cells in adult organisms. In the past year, we have made significant progress in testing the role of a gene involved in healthspan and longevity in a number of organisms, the deacetylase Sirt1, in adult neural stem cell function. We have observed that Sirt1 inactivation, whether genetic or pharmacological, leads to an increase in oligodendrocyte progenitors, which are cells that are important for myelination of axons. We have found that Sirt1 inactivation is beneficial for models of demyelinating injuries and diseases, which has important consequences for multiple sclerosis. Finally, we are making progress in reprogramming adult human fibroblasts into induced pluripotent stem cells and induced NSCs, with the aim to test the importance of longevity genes in this process.

Developmental Candidates for Cell-Based Therapies for Parkinson's Disease (PD)

Funding Type: 
Early Translational I
Grant Number: 
TR1-01267
ICOC Funds Committed: 
$5 416 003
Disease Focus: 
Parkinson's Disease
Neurological Disorders
Collaborative Funder: 
Victoria, Australia
Stem Cell Use: 
Adult Stem Cell
Embryonic Stem Cell
iPS Cell
oldStatus: 
Active
Public Abstract: 
Parkinson's Disease (PD) is a devastating disorder, stealing vitality from vibrant, productive adults & draining our health care dollars. It is also an excellent model for studying other neurodegenerative conditions. We have discovered that human neural stem cells (hNSCs) may exert a significant beneficial impact in the most authentic, representative, & predictive animal model of actual human PD. Interestingly, we have learned that, while some of the hNSCs differentiate into replacement dopamine (DA) neurons, much of the therapeutic benefit derived from a stem cell action we discovered a called the “Chaperone Effect” – even hNSC-derived cells that do not become DA neurons contributed to the reversal of severe Parkinsonian symptoms by protecting endangered host DA neurons & their connections, restoring equipoise to the host nigrostriatal system, and reducing pathological hallmark of PD. While the ultimate goal may someday be to replace dead DA neurons, the Chaperone Effect represents a more tractable near-term method of using cells to address this serious condition. However, many questions remain in the process of developing these cellular therapeutic candidates. A major question is what is the best (safest, most efficacious) way to generate hNSCs? Directly from the fetal brain? From human embryonic stem cells? From skin cells reprogrammed to act like stem cells? Also, would benefits be even greater if, in addition to harnessing the Chaperone Effect, the number of stem cell-derived DA neurons was also increased? And could choosing the right stem cell type &/or providing the right supportive molecules help achieve this? This study seeks to answer these questions. Importantly, we will do so using the most representative model of human PD, a model that not only mimics all of the human symptomatology but also all the side-effects of treatment; inattention to this latter aspect plagued earlier clinical trials in PD. A successful therapy for PD would not only be of great benefit for the many patients who now suffer from the disease, or who are likely to develop it as they age, but the results will help with other potential disease applications due to greater understanding of stem cell biology (particularly the Chaperone Effect, which represents “low hanging fruit”) as well as their potential complications and side effects.
Statement of Benefit to California: 
Not only is Parkinson's Disease (PD) a devastating disease in its own right-- impairing typically vibrant productive adults & draining our health care dollars -- but it is also an excellent model for studying other neurodegenerative diseases. We have discovered that stem cells may actually exert a beneficial impact independent of dopamine neuron replacement. As a result of a multiyear study performed by our team, implanting human neural stem cells (hNSCs) into the most authentic, representative, and predictive animal model of actual human PD, we learned that the cells could reverse severe Parkinsonian symptoms by protecting endangered host dopaminergic (DA) neurons, restoring equipoise to the cytoarchitecture, preserving the host nigrostriatal pathway, and reducing alpha-synuclein aggregations (a pathological hallmark of PD). This action, called the "Chaperone Effect" represents a more tractible near-term method of using cells to address an unmet medical need. However, many questions remain in the process of developing these cellular therapeutic candidates. A major question is what is the best (safest & most efficacious way) to generate hNSCs? Directly from the fetal brain? From human embryonic stem cells? From human induced pluripotent cells? Also, would benefits be even greater if, in addition to harnessing the Chaperone Effect, the number of donor-derived DA neurons was also increased? And could choosing the right stem cell type &/or providing the right supportive molecules help achieve this? This study seeks to answer these questions. Importantly, we will continue to use the most representative model of human PD to do so, a model that not only mimics all of the human symptomatology but also all the side-effects of treatment; inattention to this latter aspect plagued earlier clinical trials in PD. Because of the unique team enlisted, these studies can be done at a fraction of the normal cost, allowing for parsimony in the use of research dollars, clearly a benefit to California taxpayers. Not only might California patients benefit in terms of their well-being, and the economy benefit from productive adults re-entering the work force & aging adults remaining in the work force, but it is likely that new intellectual property will emerge that will provide additional financial benefit to California stakeholders, both citizens & companies.
Progress Report: 
  • Parkinson's Disease (PD) is a devastating disorder, stealing vitality from vibrant, productive adults & draining our health care dollars. It is also an excellent model for studying other neurodegenerative conditions. We have discovered that human neural stem cells (hNSCs) may exert a significant beneficial impact in the most authentic, representative, & predictive animal model of actual human PD (the adult African/St. Kitts Green Monkeys exposed systemically to the neurotoxin MPTP). Interestingly, we have learned that, while some of the hNSCs differentiate into replacement dopamine (DA) neurons, much of the therapeutic benefit derived from a stem cell action we discovered called the “Chaperone Effect” – even hNSC-derived cells that do not become DA neurons contributed to the reversal of severe Parkinsonian symptoms by protecting endangered host DA neurons & their connections, restoring equipoise to the host nigrostriatal system, and reducing pathological hallmark of PD. While the ultimate goal may someday be to replace dead DA neurons, the Chaperone Effect represents a more tractable near-term method of using cells to address this serious condition. However, many questions remain in the process of developing these cellular therapeutic candidates. A major question is what is the best (safest, most efficacious) way to generate hNSCs? Directly from the fetal brain? From human embryonic stem cells? From skin cells reprogrammed to act like stem cells? Also, would benefits be even greater if, in addition to harnessing the Chaperone Effect, the number of stem cell-derived DA neurons was also increased? And could choosing the right stem cell type &/or providing the right supportive molecules help achieve this? This international study – which involves scientists from California, Madrid, Melbourne -- has been seeking to answer these questions. Importantly, we have been doing so using the most representative model of human PD, a model that not only mimics all of the human symptomatology but also all the side-effects of treatment; inattention to this latter aspect plagued earlier clinical trials in PD. A successful therapy for PD would not only be of great benefit for the many patients who now suffer from the disease, or who are likely to develop it as they age, but the results will help with other potential disease applications due to greater understanding of stem cell biology (particularly the Chaperone Effect, which represents “low hanging fruit”) as well as their potential complications and side effects.
  • To date, we have transplanted nearly 40 Parkinsonian non-human primates (NHPs) with a range of the different stem cell types described above. We have been able to generate neurons from some of these stem cells that appear to have the characteristics of the desired A9-type midbrain dopaminergic neuron lost in PD. Following transplantation, some of these stem cell derivatives appear to survive, integrate, & behave like dopaminergic neurons. Preliminary behavioral analysis of some engrafted NHPs offers encouraging results, suggesting an improvement in the Parkinsonism score in some of the animals. These NHPs will need to be followed for 1 year to insure that improvement continues & that no adverse events intervene. Over the next year, more stem cell candidates will be tested as we further optimize their preparation & differentiation.
  • We have made substantial progress in what will amount to the largest and most comprehensive head-to-head behavioral analysis of stem cell transplanted MPTP-NHPs to date and have identified cell types that show dramatic improvement in this model. Compared to the improvement observed with undifferentiated fetal CNS-derived hNSCs (the stem cell type in used Redmond et al, PNAS, 2007), 3 human stem cell candidates have shown a larger improvement in PS.
  • Summary of Achievements for this reporting period
  • • Comprehensive Behavioral data collection of 84 monkeys comprising over 10,000 observation data points
  • • Statistical analysis of Behavioral data collected to date identifies striking and statistically significant improvements in PS for several stem cell types. (Accordingly, NO-GO (or near NO-GO) cell types have been identified via comparison of levels of improvement or no improvement) [Figure 1]
  • • DNA samples collected in order to pursue the first ever complete genome sequencing of the Vervet in collaboration with the Washington University Genome Center
  • • Biochemistry sample processing and data collection of a 2nd large batch of samples completed.
  • The identification and development of an ideal cell-based therapy for a complex neurodegenerative disease requires the rigorous evaluation of both efficacy and safety of different sources and subtypes of hNSCs. The objective of this project has been to fully evaluate and identify the optimal stem cell type for a cell based therapy for refractory Parkinson’s Disease (PD) using the systemically MPTP-lesioned Old World non-human primate (NHP) (the St. Kitts Green Monkey) the most authentic animal model of the actual human disease. Among a list of plausible potentially therapeutic stem cell sources, 7 candidates have been evaluated head-to-head. The intent has been that the stem cell type (and its derivatives) safely producing the largest improvement in behavioral scores (based on a well-established NHP PD score – the Parkinson’s Factor Score [PFS] or ParkScore (which closely parallels the Hoehn–Yahr scale used in human patients, and is an accurate functional read-out of nigrostriatal dopamine [DA] activity) -- as well as a Healthy Behaviors Score [HBS] (similar to the activities-of-daily-living [ADL] on the major Parkinson’s rating scale and allows quantification of adverse events) -- will be advanced towards IND-enabling studies, to an actual IND filing, and ultimately a clinical trial.
  • Candidate cells have been transplanted into specific sub-regions of the nigrostriatal pathway of MPTP-lesioned NHPs. Animals undergo behavioral scoring for analysis of severity of Parkinsonian behavior at multiple time points pre- and post-cell transplantation. At sacrifice, biochemical measurements of DA content are made. Tissue is also analyzed to determine the fate of donor cells; the status of the host nigrostriatal pathway; the number of alpha-synuclein aggregates; degree of inflammation; any evidence of adverse events (e.g., tumor formation, cell overgrowth, emergence of cells inappropriate to the CNS).
  • We have made substantial progress in what will amount to the largest and most comprehensive head-to-head analysis of stem cell transplanted into any disease model to date, let alone behavioral analysis into a primate model of PD. Behavioral data have been collected on ~100 monkeys comprising >10,000 observation data points. We have identified a single Developmental Candidate (DC) that shows consistent and dramatic improvement in severely Parkinsonian NHPs (i.e., a significant decrease in Parkinsonian symptoms over the entire evaluation period), reflecting a restitution of DA function – human embryonic stem cell (hESC-derived) ventral mesencephalic (VM) precursors. We also suggest adding a mechanism to these cells for insuring unambiguous safety and invariant lineage commitment (a construct already generated and inserted into this DC, and recently engrafted into some initial monkeys).
  • We believe are ready for IND-enabling studies, including additional long-term pre-clinical behavioral studies of hESC-derived hVM cells that bear the above-mentioned “safety construct” – combined with additional biochemical assays of DA metabolism, histological assessments, serial profiling to insure genomic stability. Scale-up conditions for this DC are defined and reproducible and a working cell bank has been established.
  • Parkinson's Disease (PD) is a devastating disorder that is caused by the loss of a particular type of neuron in the brain. PD patients show movement abnormalities which worsen over time and significantly reduce the quality of life. Current treatments reduce the severity of these problems but very often the efficacy of these treatments gradually weakens over time leaving patients with few therapeutic options, some of which carry significant unwanted side effects. Since the development of growing undifferentiated human stem cells in the late 1990’s, much has been learned in regards to how to make these cells develop into neuronal cells, in particular the same type of neuron that is lost in a PD patient. Therefore, a cellular therapy has been envisioned for the treatment of PD, however, the complex nature of this disease requires higher level models in which potential therapies can be accurately evaluated before moving a therapy to clinical trials.
  • Previous work using human fetal tissue showed improvement of PD symptoms in an animal model and human clinical trials, however, distinctive movement abnormalities arose from the use of this treatment and combined with the ethical issues, it is not a viable therapeutic strategy. Recent work suggests that the use of embryonic stem cells for the treatment of PD may be possible but a direct comparison of the different types of cells derived from these was lacking. Additionally, tumors caused by these cells have been reported.
  • Our research efforts funded by this CIRM award allowed us to complete the largest stem cell therapy comparison for PD using the most accurate disease model available. Over the last 3 years we have evaluated the efficacy of 8 potential therapeutic cell types and 2 control cell types (in addition to various other control groups to rule out any possibility that the observations may have resulted from something other than cells). From these efforts we have confidently identified a strategy for producing cells that show a dramatic reduction in the PD symptoms in this model and these cells will be developed for clinical trials. Furthermore, we have incorporated a critical step for ensuring the safety of this cell therapy by including a purification technique that removes cells that may give rise to tumors or produce unknown or unwanted effects.

Sustained siRNA production from human MSC to treat Huntingtons Disease and other neurodegenerative disorders

Funding Type: 
Early Translational I
Grant Number: 
TR1-01257
ICOC Funds Committed: 
$2 753 559
Disease Focus: 
Huntington's Disease
Neurological Disorders
Stem Cell Use: 
Adult Stem Cell
Embryonic Stem Cell
Cell Line Generation: 
Adult Stem Cell
oldStatus: 
Closed
Public Abstract: 
One in every ten thousand people in the USA have Huntington's Disease, and it impacts many more. Multiple generations within a family can inherit the disease, resulting in escalating health care costs and draining family resources. This highly devastating and fatal disease touches all races and socioeconomic levels, and there are currently no cures. Screening for the mutant HD gene is available, but the at-risk children of an affected parent often do not wish to be tested since there are currently no early prevention strategies or effective treatments. HD is a challenging disease to treat. Not only do the affected, dying neurons need to be salvaged or replaced, but also the levels of the toxic mutant protein must be diminished to prevent further neural damage and to halt progression of the movement disorders and physical and mental decline that is associated with HD. Our application is focused on developing a safe and effective therapeutic strategy to reduce levels of the harmful mutant protein in damaged or at-risk neurons. We are using an RNA interference strategy – “small interfering RNA (siRNA)” to prevent the mutant protein from being produced in the cell. This strategy has been shown to be highly effective in animal models of HD. However, the inability to deliver the therapeutic molecules into the human brain in a robust and durable manner has thwarted scale-up of this potentially curative therapy into human trials. We are using mesenchymal stem cells, the “paramedics of the body”, to deliver the therapeutic siRNA directly into damaged cells. We have discovered that these stem cells are remarkably effective delivery vehicles, moving robustly through the tissue and infusing therapeutic molecules into each damaged cell that they contact. Thus we are utilizing nature's own paramedic system, but we are arming them with a new tool to also reduce mutant protein levels. Our novel system will allow the therapy to be carefully tested in preparation for future human cellular therapy trials for HD. The significance of our studies is very high because there are currently no treatments to diminish the amount of toxic mutant htt protein in the neurons of patients affected by Huntington’s Disease. There are no cures or successful clinical trials for HD. Our therapeutic strategy is initially examining models to treat HD, since the need is so acute. But this biological delivery system could also be used, in the future, for other neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS), spinocerebellar ataxia (SCA1), Alzheimer's Disease, and some forms of Parkinson's Disease, where reduction of the levels of a mutant or disease-activating protein could be curative. Development of this novel stem cell therapeutic and effective siRNA delivery system is extremely important for the community of HD and neurodegenerative disease researchers, patients, and families.
Statement of Benefit to California: 
It is estimated that one in 10,000 CA residents have Huntington’s Disease (HD). While the financial burden of Huntington’s Disease is estimated to be in the billions, the emotional burden on the friends and families of HD patients is immeasurable. Health care costs are extremely high for HD patients due to the decline in both body and mind. The lost ability of HD patients to remain in the CA workforce and to support their families causes additional financial strain on the state’s economy. HD is inherited as an autosomal dominant trait, which means that 50% of the children of an HD patient will inherit the disease and will in turn pass it on to 50% of their children. Individuals diagnosed through genetic testing are at risk of losing insurance coverage. Since there are currently no cures or successful clinical trials for HD, many are reluctant to be tested. The proposed project is designed in an effort to reach out to these individuals who, given that HD is given an orphan disease designation, may feel that they are completely forgotten and thus have little or no hope for their future or that of their families. To combat this devastating disease, we are using an RNA interference strategy, “small interfering RNA (siRNA),” to prevent the mutant htt protein from being produced in the cell. This strategy has been shown to be highly effective in animal models of HD. However the siRNA needs to be delivered to the brain or central nervous system in a continual manner, to destroy the toxic gene products as they are produced. There are currently no methods to infuse or produce siRNA in the brain, in a safe and sustained manner. Therefore the practical clinical use of this dramatically effective potential therapeutic application is currently thwarted. Here we propose a solution, using adult mesenchymal stem cells (MSC) modified to infuse siRNA directly into diseased or at-risk neurons in the striata of HD patients, to decrease the levels of the toxic mutant htt protein. MSC are known as the “paramedics of the body" and have been demonstrated through clinical trials to be safe and to have curative effects on damaged tissue. Even without the modification to reduce the mutant protein levels, the infused MSC will help repair the damaged brain tissue by promoting endogenous neuronal growth through secreted growth factors, secreting anti-apoptotic factors, and regulating inflammation. Our therapeutic strategy will initially examine models to treat HD, since the need is so acute. But our biological delivery system could also be applied to other neurodegenerative disorders such as ALS, some forms of Parkinson’s Disease, and Alzheimer’s Disease, by using siRNA to interfere with key pathways in development of the pathology. This would be the first cellular therapy for HD patients and would have a major impact on those affected in California. In addition, the methods that we are developing will have far-reaching effects for other neurodegenerative disorders.
Progress Report: 
  • During the first year of funding we have made significant progress toward the goals of the funded CIRM grant TR1-01257: Sustained siRNA production from human MSC to treat Huntington’s disease and other neurodegenerative disorders.
  • The overall goal of the grant is to use human mesenchymal stem cells (MSC) as safe delivery vehicles to knock down levels of the mutant Huntingtin (htt) RNA and protein in the brain. There is mounting evidence in trinucleotide repeat disorders that the RNA, as well as the protein, is toxic and thus we will need to significantly reduce levels of both in order to have a durable impact on this devastating disease.
  • This year we have shown that human MSC engineered to produce anti-htt siRNA can directly transfer enough RNA interfering molecules into neurons in vitro to achieve significant reduction in levels of the htt protein. This is a significant achievement and a primary goal of our proposed studies, and demonstrates that the hypothesis for our proposed studies is valid. The transfer occurs through direct cell-to-cell transfer of siRNA, and we have filed an international patent for this process, working closely with our Innovation Access Program at UC Davis. A manuscript documenting the results of these studies is in preparation.
  • We continue to explore the precise methods by which the cell-to-cell transfer of small RNA molecules occurs, working in close collaboration with the national Center for Biophotonics Science and Technology at UC Davis. This Center is located across the street from our CIRM-funded Institute for Regenerative Cures (IRC) where our laboratory is located, and has equipment that allows visualization of protein-protein interactions in high clarity and detail. The proximity of our HD team researchers in the IRC to the Center for Biophotonics has been an important asset to our project and a collaborative manuscript is in preparation.
  • During year two of the proposed studies we will continue to document levels of reduction of the toxic htt protein in different types of neurons, including medium spiny neurons (MSN) derived from HD patient induced pluripotent stem cells (iPSC). We have made significant advances in developing the tools for these studies, including HD iPSC line generation and MSN maturation from human pluripotent cells in culture. A manuscript on improved techniques for generating MSN from pluripotent cells is in preparation. We have also worked closely with our colleagues at the UC Davis MIND Institute to achieve improved maturation and electrical activity in neurons derived from human pluripotent stem cells in vitro, and we are examining the impact of human MSC on enhancing survival of damaged human neurons.
  • In the second year of funding we will test efficacy of the siRNA-mediated knockdown of the mutant human htt RNA and protein in the brains of our newly developed strain of immune deficient Huntington's disease mice. This strain was developed by our teams at UC Davis to allow testing of human cells in the mice, since the current strains of HD mice will reject human stem cells. A manuscript describing generation of this novel HD mouse strain is in preparation, in collaboration with our nationally prominent Center for Mouse Biology.
  • Behavioral studies will be conducted in this strain with and without the MSC/siRNA-mediated knockdown of the mutant protein, through years 2-3, in collaboration with our well established mouse neurobehavioral core at the UC Davis Center for Neurosciences. We have documented the safety of intrastriatal injection of human MSC in immune deficient mice and will next test the efficacy of human MSC engineered to continually produce the siRNA to knock down the mutant htt protein in vivo.
  • As added leverage for this grant program, and supported entirely by philanthropic donations from the community committed to curing HD, we have performed IND-enabling studies in support of an initial planned clinical trial that will use normal donor MSC (non-engineered) to validate their significant neurotrophic effects in the brain. These trophic effects have been documented in animal models. The planned study will be a phase 1 safety trial. We have completed the clinical protocol design and have received feedback from the Food and Drug Administration. We will be conducting additional studies in response to their queries, over the next 6-10 months, through a pilot grant obtained from our Clinical Translational Science Center (CTSC), which is located in the same building as our Institute. Upon completion of these additional studies we will submit the updated IND application to the FDA. MSCs for this project have been expanded and banked using standard operating procedures in place in the Good Manufacturing Practice Facility in the CIRM/UC Davis Institute for Regenerative Cures.
  • From the funded studies 4 manuscripts are now in preparation, a chapter is in press and a review paper on MSC to treat neurodegenerative diseases is in press.
  • During the second year of funding we have made significant progress toward the goals of the funded CIRM grant TR1-01257: Sustained siRNA production from human MSC to treat Huntington’s disease and other neurodegenerative disorders.
  • The overall goal of the grant is to use human mesenchymal stem cells (MSC) as safe delivery vehicles to knock down levels of the mutant Huntingtin (htt) RNA and protein in the brain. During the second year we have more fully characterized our development candidate; MSC/anti-htt. We have documented that normal human donor MSC engineered to produce anti-htt siRNA can directly transfer enough RNA interfering molecules into neurons in vitro to achieve significant reduction in levels of the htt protein. We reported this work at the Annual meeting of the American Academy of Neurology (G Mitchell, S Olson, K Pollock, A Kambal, W Cary, K Pepper, S Kalomoiris, and J Nolta. Mesenchymal Stem Cells as a Delivery Vehicle for Intercellular Delivery of RNAi to Treat Huntington's disease. AAN IN10-1.010, 2011) and have recently completed and submitted a manuscript describing these results (S Olson, A Kambal, K Pollock, G Mitchell, H Stewart, S Kalomoiris, W Cary, C Nacey, K Pepper, J Nolta. Mesenchymal stem cell-mediated RNAi transfer to Huntington's disease affected neuronal cells for reduction of huntingtin. Submitted, In Review, July 2011).
  • We have explored the molecular methods by which the cell-to-cell transfer of small RNA molecules occurs, working in close collaboration with the national Center for Biophotonics Science and Technology at UC Davis. This Center is located across the street from our CIRM-funded Institute for Regenerative Cures (IRC) where our laboratory is located, and has equipment that allows visualization of protein-siRNA interactions in high clarity and detail. The proximity of our HD team researchers in the IRC to the Center for Biophotonics has been an important asset to our project. This work was also presented at AAN 2011, and a collaborative manuscript is in preparation for submission (S Olson, G McNerny, K Pollock, F Chuang, T Huser and J Nolta, Visualization of siRNA Complexed to RISC Machinery: Demonstrating Intercellular siRNA Transfer by Imaging Activity. MS in preparation, Presented at AAN 2011: IN4-1.014).
  • In the second year of funding we developed the models for in vivo efficacy testing of the siRNA-mediated knockdown of the mutant human htt RNA and protein in the brains of established and new strains of Huntington's disease mice. Behavioral studies were conducted in two strains, the R6/2 immune competent mice and our new immune deficient strain, the NSG/HD, in comparison to normal littermate controls that are not affected by HD. We established the batteries of behavioral tests that are now needed to test efficacy of our development candidate in the brain, in year three. Established tests include rotarod, treadscan, pawgrip, spontaneous activity, nesting, locomotor activity, and the characteristic HD mouse hindlimb clasping phenotype. In addition we monitor the status of weight and tremor, grooming, eyes, hair, body position, and tail position, which all change over time in HD mice. These tests are conducted at 48 hour intervals by two highly trained technicians who are blinded to the treatment that the mouse had received. These behavioral and phenotypic tests have been established at the level of Good laboratory practices in our new Institute for Regenerative Cures shower-in barrier facility vivarium. We have documented the biosafety of intrastriatal injection of human MSC in immune deficient mice and are now examining the in vivo efficacy of the development candidate: human MSC engineered to continually produce the siRNA to knock down the mutant htt protein in vivo, which will be completed in year three.
  • As added leverage for this funded grant program, and supported entirely by philanthropic donations from the community committed to curing HD, we have performed IND-enabling studies in support of an initial planned clinical trial that will use normal donor MSC (non-engineered) to validate their significant neurotrophic effects in the brain. These trophic effects have been documented in animal models. The planned study will be a phase 1 safety trial. We have completed the clinical protocol design and have received feedback from the Food and Drug Administration. We will be conducting additional studies in response to their queries, over the next 6-10 months, through a pilot grant obtained from our Clinical Translational Science Center (CTSC), which is located in the same building as our Institute. Upon completion of these additional studies we will submit the updated IND application to the FDA. MSCs for this project have been expanded and banked using standard operating procedures in place in the Good Manufacturing Practice Facility in the CIRM/UC Davis Institute for Regenerative Cures.
  • During the three years of funding we made significant progress toward the goals of the funded CIRM grant TR1-01257: Sustained siRNA production from human MSC to treat Huntington’s disease and other neurodegenerative disorders.
  • The overall goal of the grant is to use human mesenchymal stem cells (MSC) as safe delivery vehicles to knock down levels of the mutant Huntingtin (htt) RNA and protein in the brain. There is mounting evidence in trinucleotide repeat disorders that the RNA, as well as the protein, is toxic and thus we will need to significantly reduce levels of both in order to have a durable impact on this devastating disease.
  • We initially demonstrated that human MSC engineered to produce anti-htt siRNA can directly transfer enough RNA interfering molecules into neuronal cells in vitro to achieve significant reduction in levels of the htt protein. This is a significant achievement and a primary goal of our proposed studies, and demonstrates that the hypothesis for our proposed studies is valid. The transfer occurs either through direct cell-to-cell transfer of siRNA or through exosome transfer, and we filed an international patent for this process, working closely with our Innovation Access Program at UC Davis. This patent has IP sharing with CIRM.
  • An NIH transformative grant was awarded to Dr. Nolta to further explore these exciting findings. This provides funding for five years to further define and optimize the siRNA transfer mechanism.
  • A manuscript documenting the results of these studies was published:
  • S Olson, A Kambal, K Pollock, G Mitchell, H Stewart, S Kalomoiris, W Cary, C Nacey, K Pepper, J Nolta. Examination of mesenchymal stem cell-mediated RNAi transfer to Huntington's disease affected neuronal cells for reduction of huntingtin. Molecular and Cellular Neuroscience; 49(3):271-81, 2012.
  • Also a review was published with our collaborator Dr. Gary Dunbar:
  • S Olson, K Pollock, A Kambal, W Cary, G Mitchell, J Tempkin, H Stewart, J McGee, G Bauer, T Tempkin, V Wheelock, G Annett, G Dunbar and J Nolta, Genetically Engineered Mesenchymal Stem Cells as a Proposed Therapeutic for Huntington’s disease. Molecular Neurobiology; 45(1):87-98, 2012.
  • We examined the potential efficacy of injecting relatively small numbers of MSCs engineered to produce ant-htt siRNA into the striata of the HD mouse strain R6/2, in three series of experiments. Results of these experiments did not reach significance for the test agent as compared to controls. The slope of the decline in rotarod performance was less with the test agent, and development of clasping behavior was slightly delayed after injection of MSC/aHtt, but this caught up to the controls and was not significant after day 60.
  • Our conclusions are that the R6/2 strain is too rapidly progressing to see efficacy with the test agent, and also that improved methods of siRNA transfer from cell to cell are needed. We are currently working on this problem through the NIH transformative award, and will use the YAC 128 strain, which has a more slowly progressing phenotype, for all future studies. These mice are now bred and in use in our vivarium, for the MSC/BDNF studies funded through our disease team grant.
  • Through this translational grant funding we have also developed in vitro potency assays, using human embryonic stem cell-derived neurons and medium spiny neurons, as we have described in prior reports. The differentiation techniques (funded through other grants to our group) have now been published:1-3
  • 1. Liu J, Githinji J, McLaughlin B, Wilczek K, Nolta J. Role of miRNAs in Neuronal Differentiation from Human Embryonic Stem Cell-Derived Neural Stem Cells. Stem Cell Rev;8(4):1129-37, 2012.
  • 2. Jun-feng Feng, Jing Liu, Xiu-zhen Zhang, Lei Zhang, Ji-yao Jiang, Nolta J, Min Zhao. Guided Migration of Neural Stem Cells Derived from Human Embryonic Stem Cells by an Electric Field. Stem Cells. Feb; 30(2):349-55, 2012.
  • 3. Liu J, Koscielska KA, Cao Z, Hulsizer S, Grace N, Mitchell G, Nacey C, Githinji J, McGee J, Garcia-Arocena D, Hagerman RJ, Nolta J, Pessah I, Hagerman PJ. Signaling defects in iPSC-derived fragile X premutation neurons. Hum Mol Genet. 21(17):3795-805. 2012.

Enhancing healing via Wnt-protein mediated activation of endogenous stem cells

Funding Type: 
Early Translational I
Grant Number: 
TR1-01249
ICOC Funds Committed: 
$6 762 954
Disease Focus: 
Bone or Cartilage Disease
Stroke
Neurological Disorders
Heart Disease
Neurological Disorders
Skin Disease
Stem Cell Use: 
Adult Stem Cell
oldStatus: 
Active
Public Abstract: 
All adult tissues contain stem cells. Some tissues, like bone marrow and skin, harbor more adult stem cells; other tissues, like muscle, have fewer. When a tissue or organ is injured these stem cells possess a remarkable ability to divide and multiply. In the end, the ability of a tissue to repair itself seems to depend on how many stem cells reside in a particular tissue, and the state of those stem cells. For example, stress, disease, and aging all diminish the capacity of adult stem cells to self-renew and to proliferate, which in turn hinders tissue regeneration. Our strategy is to commandeer the molecular machinery responsible for adult stem cell self-renewal and proliferation and by doing so, stimulate the endogenous program of tissue regeneration. This approach takes advantage of the solution that Nature itself developed for repairing damaged or diseased tissues, and controls adult stem cell proliferation in a localized, highly controlled fashion. This strategy circumvents the immunological, medical, and ethical hurdles that exist when exogenous stem cells are introduced into a human. When utilizing this strategy the goal of reaching clinical trials in human patients within 5 years becomes realistic. Specifically, we will target the growing problem of neurologic, musculoskeletal, cardiovascular, and wound healing diseases by local delivery of a protein that promotes the body’s inherent ability to repair and regenerate tissues. We have evidence that this class of proteins, when delivered locally to an injury site, is able to stimulate adult tissue stem cells to grow and repair/replace the deficient tissue following injury. We have developed technologies to package the protein in a specialized manner that preserves its biological activity but simultaneously restricts its diffusion to unintended regions of the body. For example, when we treat a skeletal injury with this packaged protein we augment the natural ability to heal bone by 350%; and when this protein is delivered to the heart immediately after an infarction cardiac output is improved and complications related to scarring are reduced. This remarkable capacity to augment tissue healing is not limited to bones and the heart: the same powerful effect can be elicited in the brain, and skin injuries. The disease targets of stroke, bone fractures, heart attacks, and skin wounds and ulcers represent an enormous health care burden now, but this burden is expected to skyrocket because our population is quickly aging. Thus, our proposal addresses a present and ongoing challenge to healthcare for the majority of Californians, with a novel therapeutic strategy that mimics the body’s inherent repair mechanisms.
Statement of Benefit to California: 
Californians represent 1 in 7 Americans, and make up the single largest healthcare market in the United States. The diseases and injuries that affect Californians affect the rest of the US, and the world. For example, stroke is the third leading cause of death, with more than 700,000 people affected every year. It is a leading cause of serious long-term disability, with an estimated 5.4 million stroke survivors currently alive today. Symptoms of musculoskeletal disease are the number two most cited reasons for visit to a physician. Musculoskeletal disease is the leading cause of work-related and physical disability in the United States, with arthritis being the leading chronic condition reported by the elderly. In adults over the age of 70, 40% suffer from osteoarthritis of the knee and of these nearly 80% have limitation of movement. By 2030, nearly 67 million US adults will be diagnosed with arthritis. Cardiovascular disease is the leading cause of death, and is a major cause of disability worldwide. The annual socioeconomic burden posed by cardiovascular disease is estimated to exceed $400 billion annually and remains a major cause of health disparities and rising health care costs. Skin wounds from burns, trauma, or surgery, and chronic wounds associated with diabetes or pressure ulcer, exact a staggering toll on our healthcare system: Burns alone affect 1.25M Americans each year, and the economic global burden of these injuries approaches $50B/yr. In California alone, the annual healthcare expenditures for stroke, skeletal repair, heart attacks, and skin wound healing are staggering and exceed 700,000 cases, 3.5M hospital days, and $34B. We have developed a novel, protein-based therapeutic platform to accelerate and enhance tissue regeneration through activation of adult stem cells. This technology takes advantage of a powerful stem cell factor that is essential for the development and repair of most of the body’s tissues. We have generated the first stable, biologically active recombinant Wnt pathway agonist, and showed that this protein has the ability to activate adult stem cells after tissue injury. Thus, our developmental candidate leverages the body’s natural response to injury. We have generated exciting preclinical results in a variety of animals models including stroke, skeletal repair, heart attack, and skin wounding. If successful, this early translational award would have enormous benefits for the citizens of California and beyond.
Progress Report: 
  • In the first year of CIRM funding our objectives were to optimize the activity of the Wnt protein for use in the body and then to test, in a variety of injury models, the effects of this lipid-packaged form of Wnt. We have made considerable progress on both of these fronts. For example, in Roel Nusse and Jill Helms’ groups, we have been able to generate large amounts of the mouse form of Wnt3a protein and package it into liposomal vesicles, which can then be used by all investigators in their studies of injury and repair. Also, Roel Nusse succeeded in generating human Wnt3a protein. This is a major accomplishment since our ultimate goal is to develop this regenerative medicine tool for use in humans. In Jill Helms’ lab we made steady progress in standardizing the activity of the liposomal Wnt3a formulation, and this is critically important for all subsequent studies that will compare the efficacy of this treatment across multiple injury repair scenarios.
  • Each group began testing the effects of liposomal Wnt3a treatment for their particular application. For example, in Theo Palmer’s group, the investigators tested how liposomal Wnt3a affected cells in the brain following a stroke. We previously found that Wnt3A promotes the growth of neural stem cells in a petri dish and we are now trying to determine if delivery of Wnt3A can enhance the activity of endogenous stem cells in the brain and improve the level of recovery following stroke. Research in the first year examined toxicity of a liposome formulation used to deliver Wnt3a and we found it to be well tolerated after injection into the brains of mice. We also find that liposomal Wnt3a can promote the production of new neurons following stroke. The ongoing research involves experiments to determine if these changes in stem cell activity are accompanied by improved neurological function. In Jill Helms’ group, the investigators tested how liposomal Wnt3a affected cells in a bone injury site. We made a significant discovery this year, by demonstrating that liposomal Wnt3a stimulates the proliferation of skeletal progenitor cells and accelerates their differentiation into osteoblasts (published in Science Translational Medicine 2010). We also started testing liposomal Wnt3a for safety and toxicity issues, both of which are important prerequisites for use of liposomal Wnt3a in humans. Following a heart attack (i.e., myocardial infarction) we found that endogenous Wnt signaling peaks between post-infarct day 5-7. We also found that small aggregates of cardiac cells called cardiospheres respond to Wnt in a dose-responsive manner. In skin wounds, we tested the effect of boosting Wnt signaling during skin wound healing. We found that the injection of Wnt liposomes into wounds enhanced the regeneration of hair follicles, which would otherwise not regenerate and make a scar instead. The speed and strength of wound closure are now being measured.
  • In aggregate, our work on this project continues to move forward with a number of great successes, and encouraging data to support our hypothesis that augmenting Wnt signaling following tissue injury will provide beneficial effects.
  • In the second year of CIRM funding our objectives were to optimize packaging of the developmental candidate, Wnt3a protein, and then to continue to test its efficacy to enhance tissue healing. We continue to make considerable progress on the stated objectives. In Roel Nusse’s laboratory, human Wnt3a protein is now being produced using an FDA-approved cell line, and Jill Helms’ lab the protein is effectively packaged into lipid particles that delay degradation of the protein when it is introduced into the body.
  • Each group has continued to test the effects of liposomal Wnt3a treatment for their particular application. In Theo Palmer’s group we have studied how liposomal Wnt3a affects neurogenesis following stroke. We now know that liposomal Wnt3a transiently stimulates neural progenitor cell proliferation. We don’t see any functional improvement after stroke, though, which is our primary objective.
  • In Jill Helms’ group we’ve now shown that liposomal Wnt3a enhances fracture healing and osseointegration of dental and orthopedic implants and now we demonstrate that liposomal Wnt3a also can improve the bone-forming capacity of bone marrow grafts, especially when they are taken from aged animals.
  • We’ve also tested the ability of liposomal Wnt3a to improve heart function after a heart attack (i.e., myocardial infarction). Small aggregates of cardiac progenitor cells called cardiospheres proliferate to Wnt3a in a dose-responsive manner, and we see an initial improvement in cardiac function after treatment of cells with liposomal Wnt3a. the long-term improvements, however, are not significant and this remains our ultimate goal. In skin wounds, we tested the effect of boosting Wnt signaling during wound healing. We found that the injection of liposomal Wnt3a into wounds enhanced the regeneration of hair follicles, which would otherwise not regenerate and make a scar instead. The speed of wound closure is also enhanced in regions of the skin where there are hair follicles.
  • In aggregate, our work continues to move forward with a number of critical successes, and encouraging data to support our hypothesis that augmenting Wnt signaling following tissue injury will provide beneficial effects.
  • Every adult tissue harbors stem cells. Some tissues, like bone marrow and skin, have more adult stem cells and other tissues, like muscle or brain, have fewer. When a tissue is injured, these stem cells divide and multiply but only to a limited extent. In the end, the ability of a tissue to repair itself seems to depend on how many stem cells reside in a particular tissue, and the state of those stem cells. For example, stress, disease, and aging all diminish the capacity of adult stem cells to respond to injury, which in turn hinders tissue healing. One of the great unmet challenges for regenerative medicine is to devise ways to increase the numbers of these “endogenous” stem cells, and revive their ability to self-renew and proliferate.
  • The scientific basis for our work rests upon our demonstration that a naturally occurring stem cell growth factor, Wnt3a, can be packaged and delivered in such a way that it is robustly stimulates stem cells within an injured tissue to divide and self-renew. This, in turn, leads to unprecedented tissue healing in a wide array of bone injuries especially in aged animals. As California’s population ages, the cost to treat such skeletal injuries in the elderly will skyrocket. Thus, our work addresses a present and ongoing challenge to healthcare for the majority of Californians and the world, and we do it by mimicking the body’s natural response to injury and repair.
  • To our knowledge, there is no existing technology that displays such effectiveness, or that holds such potential for the stem cell-based treatment of skeletal injuries, as does a L-Wnt3a strategy. Because this approach directly activates the body’s own stem cells, it avoids many of the pitfalls associated with the introduction of foreign stem cells or virally reprogrammed autologous stem cells into the human body. In summary, our data show that L-Wnt3a constitutes a viable therapeutic approach for the treatment of skeletal injuries, especially those in individuals with diminished healing potential.
  • This progress report covers the period between Sep 01 2012through Aug 31 2013, and summarizes the work accomplished under ET funding TR1-01249. Under this award we developed a Wnt protein-based platform for activating a patient’s own stem cells for the purpose of tissue regeneration.
  • At the beginning of our grant period we generated research grade human WNT3A protein in quantities sufficient for all our discovery experiments. We then tested the ability of this WNT protein therapeutic to improve the healing response in animal models of stroke, heart attack, skin wounding, and bone fracture. These experimental models recapitulated some of the most prevalent and debilitating human diseases that collectively, affect millions of Californians.
  • At the end of year 2, we assembled an external review panel to select the promising clinical indication. The scientific advisory board unanimously selected skeletal repair as the leading indication. The WNT protein is notoriously difficult to purify; consequently in year 3 we developed new methods to streamline the purification of WNT proteins, and the packaging of the WNT protein into liposomal vesicles that stabilized the protein for in vivo use.
  • In years 3 and 4 we continued to accrue strong scientific evidence in both large and small animal models that a WNT protein therapeutic accelerates bone regeneration in critical size bony non-unions, in fractures, and in cases of implant osseointegration. In this last year of funding, we clarified and characterized the mechanism of action of the WNT protein, by showing that it activates endogenous stem cells, which in turn leads to faster healing of a range of different skeletal defects.
  • In this last year we also identified a therapeutic dose range for the WNT protein, and developed a route and method of delivery that was simultaneously effective and yet limited the body’s exposure to this potent stem cell factor. We initiated preliminary safety studies to identify potential risks, and compared the effects of WNT treatment with other commercially available bone growth factors. In sum, we succeeded in moving our early translational candidate from exploratory studies to validation, and are now ready to enter into the IND-enabling phase of therapeutic candidate development.
  • This progress report covers the period between Sep 01 2013 through April 30 2014, and summarizes the work accomplished under ET funding TR101249. Under this award we developed a Wnt protein-based platform for activating a patient’s own stem cells for purposes of tissue regeneration.
  • At the beginning of our grant period we generated research grade human WNT3A protein in quantities sufficient for all our discovery experiments. We then tested the ability of this WNT protein therapeutic to improve the healing response in animal models of stroke, heart attack, skin wounding, and bone fracture. These experimental models recapitulated some of the most prevalent and debilitating human diseases that collectively, affect millions of Californians. At the conclusion of Year 2 an external review panel was assembled and charged with the selection of a single lead indication for further development. The scientific advisory board unanimously selected skeletal repair as the lead indication.
  • In year 3 we accrued addition scientific evidence, using both large and small animal models, demonstrating that a WNT protein therapeutic accelerated bone healing. Also, we developed new methods to streamline the purification of WNT proteins, and improved our method of packaging of the WNT protein into liposomal vesicles (e.g., L-WNT3A) for in vivo use.
  • In year 4 we clarified the mechanism of action of L-WNT3A, by demonstrating that it activates endogenous stem cells and therefore leads to accelerated bone healing. We also continued our development studies, by identifying a therapeutic dose range for L-WNT3A, as well as a route and method of delivery that is both effective and safe. We initiated preliminary safety studies to identify potential risks, and compared the effects of L-WNT3A with other, commercially available bone growth factors.
  • In year 5 we initiated two new preclinical studies aimed at demonstrating the disease-modifying activity of L-WNT3A in spinal fusion and osteonecrosis. These two new indications were chosen by a CIRM review panel because they represent an unmet need in California and the nation. We also initiated development of a scalable manufacturing and formulation process for both the WNT3A protein and L-WNT3A formulation. These two milestones were emphasized by the CIRM review panel to represent major challenges to commercialization of L-WNT3A; consequently, accomplishment of these milestones is a critical yardstick by which progress towards an IND filing can be assessed.

Using patient-specific iPSC derived dopaminergic neurons to overcome a major bottleneck in Parkinson's disease research and drug discovery

Funding Type: 
Early Translational I
Grant Number: 
TR1-01246
ICOC Funds Committed: 
$3 701 766
Disease Focus: 
Parkinson's Disease
Neurological Disorders
Collaborative Funder: 
Germany
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Closed
Public Abstract: 
The goals of this study are to develop patient-specific induced pluripotent cell lines (iPSCs) from patients with Parkinson’s disease (PD) with defined mutations and sporadic forms of the disease. Recent groundbreaking discoveries allow us now to use adult human skin cells, transduce them with specific genes, and generate cells that exhibit characteristics of embryonic stem cells, termed induced pluripotent stem cells (iPSCs). These lines will be used as an experimental pre-clinical model to study disease mechanisms unique to PD. We predict that these cells will not only serve an ‘authentic’ model for PD when further differentiated into the specific dopaminergic neurons, but that these cells are pathologically affected with PD. The specific objectives of these studies are to (1) establish a bank of iPSCs from patients with idiopathic PD and patients with defined mutations in genes associated with PD, (2) differentiate iPSCs into dopaminergic neurons and assess neurochemical and neuropathological characteristics of PD of these cells in vitro, and (3) test the hypothesis that specific pharmacologic agents can be used to block or reverse pathological phenotypes. The absence of cellular models of Parkinson’s disease represents a major bottleneck in the scientific field of PD, which, if solved in this collaborative effort, would be instantly translated into a wide range of clinical applications, including drug discovery. This research is highly translational, as the final component is aimed at testing lead compounds that could be neuroprotective, and ultimately at developing a high-throughput drug screening program to discover new disease modifying compounds. This is an essential avenue if we want to offer our patients a new therapeutic approach that can give them a near normal life after being diagnosed with this progressively disabling disease.
Statement of Benefit to California: 
Approx. 36,000-60,000 people in the State of California are affected with Parkinson’s disease (PD), a common neurodegenerative disease that causes a high degree of disability and financial burden for our health care system. It is estimated that the number of PD cases will double by the year 2030. We have a critical need for novel therapies that will prevent or even reverse neuronal cell loss of specific neurons in the brain of patients. This collaborative proposal will provide real benefits and values to the state of California and its citizens in providing new approaches for understanding disease mechanisms, diagnostic tools and drug discovery of novel treatment for PD. Reprogramming of adult skin cells to a pluripotent state is the underlying mechanism upon which this application is built upon and offers an attractive avenue of research in this case to develop an ‘authentic’ pre-clinical model of PD. The rationale for the proposed research is that differentiated pluripotent stem cells from patients with known genetic forms of PD will recapitulate in vitro one or more of the key molecular aspects of neural degeneration associated with PD and thus provide an entirely novel human cellular system for investigation PD-related disease pathways and for drug discovery. The impact of this collaborative research project, if successful, is difficult to over-estimate. The scientific field has been struggling with the inability to directly access cells that are affected by the disease process that underlies PD and therefore all research and drug discovery has relied on ”best guess” models of the disease. Thus, the absence of cellular models of Parkinson’s disease represents a huge bottleneck in the field.
Progress Report: 
  • In the first year of the CIRM Early translational research award, we established a bank of 51 cell lines derived from skin cells of patients with Parkinson’s disease that carry specific mutations in known genes that cause PD as well as sporadic PD patients. We also recruited matched healthy individuals that serve as controls.
  • In a next step, we reprogrammed (‘rejunivated’) 17 samples of skin cells to derive pluripotent stem cells (iPSC) that closely resemble human embryonic stem cells characterized by biochemical and molecular techniques. We also optimize this process by introducing factors the will be removed after successful reprogramming.
  • We have now built a foundation for the next milestones and made already progress on the differentiation into authentic dopamine producing cells, and we have developed assays to assess the Parkinson’s disease-specific pathological phenotype of the dopamine neurons.
  • The goal of this CIRM early translational grant is to develop a model for “Parkinson’s disease (PD) in a culture dish” using patient-specific induced pluripotent stem cell lines (iPS). The underlying idea is to utilize these lines as an experimental pre-clinical model to study disease mechanisms unique to PD that could lay the foundation for drug discovery.
  • Over the last year, we have expanded our patient skin cell bank to 57 cell lines and the iPS cell bank to 39 well-characterized pluripotent stem cell lines from PD patients and healthy controls individuals. We have improved current protocols of neuronal differentiation from patient-derived iPS lines into dopamine producing neurons and can show consistency and reproducibility of making midbrain dopamine expressing nerve cells.
  • In our first publication (Nguyen et al. 2011), we describe for the first time differences in iPS-derived neurons from a PD patient with a common causative mutation in the LRRK2 gene. These patient cells are more susceptible for cellular toxins leading ultimately to more cell degeneration and cell death.
  • We are also investigating a common disease mechanism implicated in PD, which is mitochondrial dysfunction. In skin cells of a patient we were able to find profound deficits of mitochondrial function compared to control lines and we are now in the process of confirming these results in neural precursors and mature dopamine neurons.
  • Overall, we have made substantial progress towards the goal of this grant which is the a new cell culture model of PD which can replicate PD-related cellular pathology.
  • The goal of this CIRM early translational grant is to develop a model for “Parkinson’s disease (PD) in a culture dish” using patient-specific induced pluripotent stem cell lines (iPS). The underlying idea is to utilize these lines as an experimental pre-clinical model to study disease mechanisms unique to PD that could lay the foundation for drug discovery.
  • Over the last year, we have expanded our patient skin cell bank to 61 cell lines and the iPS cell bank to 51 well-characterized pluripotent stem cell lines from PD patients and healthy controls individuals. We have improved current protocols of neuronal differentiation from patient-derived iPS lines into dopamine producing neurons and can show consistency and reproducibility of making midbrain dopamine expressing nerve cells. This has been now published in Mak et al. 2012. Furthermore, we also develop new protocols to also derive other neuronal subtypes and glia, which are the support cells in the brain, to build co-culture systems. These co-cultures might represent closer the physiological conditions in the brain.
  • In our first publication (Nguyen et al. 2011), we describe for the first time differences in iPS-derived neurons from a PD patient with a common causative mutation in the LRRK2 gene. These patient cells are more susceptible for cellular toxins leading ultimately to more cell degeneration and cell death. In a second publication Byers et al. 2011, we describe similar findings for a different mutation in the alpha-synuclein gene where the normal protein is overexpressed due to a triplication of the gene locus.
  • We are also investigating a common disease mechanism implicated in PD, which is mitochondrial dysfunction. In skin cells of a patient we were able to find profound deficits of mitochondrial function compared to control lines and we are now in the process of confirming these results in neural precursors and mature dopamine neurons.
  • We are expanding the assay development to other disease-related mechanisms such as deficits in outgrowth of neuronal projections and protein aggregation.
  • Overall, through this program we have developed an invaluable resource of patient-derived cell lines that will be crucial for understanding disease mechanisms and drug discovery. We also showed proof that these cell lines can indeed recapitulates important aspects of disease and are therefore valuable assets as research tools.

Neural Stem Cells as a Developmental Candidate to Treat Alzheimer Disease

Funding Type: 
Early Translational I
Grant Number: 
TR1-01245
ICOC Funds Committed: 
$3 599 997
Disease Focus: 
Aging
Alzheimer's Disease
Neurological Disorders
Collaborative Funder: 
Victoria, Australia
Stem Cell Use: 
Adult Stem Cell
Embryonic Stem Cell
oldStatus: 
Closed
Public Abstract: 
Alzheimer disease (AD), the most common cause of dementia among the elderly and the third leading cause of death, presently afflicts over 5 million people in the USA, including over 500,000 in California. Age is the major risk factor, with 5% of the population over age 65 affected, with the incidence doubling every 5 years thereafter, such that 40-50% of those over age 85 are afflicted. Being told that one suffers from AD is one of the most devastating diagnoses a patient (and their family/caregivers) can ever receive, dooming the patient to a decade or more of progressive cognitive decline and eventual loss of all memory. At the terminal stages, the patients have lost all reasoning ability and are usually bed-ridden and unable to care for themselves. As the elderly represent the fastest growing segment of our society, there is an urgent need to develop therapies to delay, prevent or treat AD. If the present trend continues and no therapy is developed, over 16 million Americans will suffer from AD by 2050, placing staggering demands on our healthcare and economic systems. Thus, supporting AD research is a wise and prudent investment, particularly focusing on the power that stem cell biology offers. Currently, there is no cure or means of preventing AD. Existing treatments provide minor symptomatic relief– often associated with severe side effects. Multiple strategies are likely needed to prevent or treat AD, including the utilization of cell based approaches. In fact, our preliminary studies indicate that focusing on the promise of human stem cell biology could provide a meaningful therapy for a disease for which more traditional pharmaceutical approaches have failed. We aim to test the hypothesis that neural stem cells represent a novel therapeutic strategy for the treatment of AD. Our broad goal is to determine whether neural stem cells can be translated from the bench to the clinic as a therapy for AD. This proposal builds on extensive preliminary data that support the feasibility of neural stem cell-based therapies for the treatment of AD. Thus, this proposal focuses on a development candidate for treating Alzheimer disease. To translate our initial stem cell findings into a future clinical application for treating AD, we assembled a world class multi-disciplinary team of scientific leaders from the fields of stem cell biology, animal modeling, neurodegeneration, immunology, genomics, and AD clinical trials to collaborate in this early translational study aimed at developing a novel treatment for AD. Our broad goal is to examine the efficacy of human neural stem cells to rescue the cognitive phenotype in animal models of AD. Our studies aim to identify a clear developmental candidate and generate sufficient data to warrant Investigational New Drug (IND) enabling activity. The proposed studies represent a novel and promising strategy for treating AD, a major human disorder for which there is currently no effective therapy.
Statement of Benefit to California: 
Neurological disorders have devastating consequences for the quality of life, and among these, perhaps none is as dire as Alzheimer disease. Alzheimer disease robs individuals of their memory and cognitive abilities, such that they are no longer able to function in society or even interact with their family. Alzheimer disease is the most common cause of dementia among the elderly and the most significant and costly neurological disorder. Currently, 5.2 million individuals are afflicted with this insidious disorder, including over 588,000 in the State of California. Hence, over 10% of the nation's Alzheimer patients reside in California. Moreover, California has the dubious distinction of ranking first in terms of states with the largest number of deaths due to this disorder. Age is the major risk factor for Alzheimer disease, with 5% of the population over age 65 afflicted, with the incidence doubling every 5 years such that 40-50% of the population over age 85 is afflicted. As the elderly represent the fastest growing segment of our society, there is an urgent need to develop therapies to prevent or treat Alzheimer disease. By 2030, the number of Alzheimer patients living in California will double to over 1.1 million. All ethnic groups will be affected, although the number of Latinos and Asians living with Alzheimer will triple by 2030, and it will double among African-Americans within this timeframe. To further highlight the direness, at present, one person develops Alzheimer disease every 72 seconds, and it is estimated that by 2050, one person will develop the disease every 33 seconds! Clearly, the sheer volume of new cases will create unprecedented burdens on our healthcare system and have a major impact on our economic system. As the most populous state, California will be disproportionately affected, stretching our public finances to their limits. To illustrate the economic impact of Alzheimer disease, studies show that an estimated $8.5 billion of care were provided in one year in the state of California alone (this value does not include other economic aspects of Alzheimer disease). Therefore, it is prudent and necessary to invest resources to try and develop strategies to delay, prevent, or treat Alzheimer disease now. California has taken the national lead in conducting stem cell research. Despite this, there has not been a significant effort to utilize the power of stem cell biology for Alzheimer disease. This proposal seeks to reverse this trend, as we have assembled a world class group of investigators throughout the State of California and in [REDACTED] to tackle the most significant and critical questions that arise in translating basic research on human stem cells into a clinical application for the treatment of Alzheimer disease. This proposal is based on an extensive body of preliminary data that attest to the feasibility of further exploring human stem cells as a treatment for Alzheimer disease.
Progress Report: 
  • Over the past decade, the potential for using stem cell transplantation as a therapy to treat neurological disorders and injury has been increasingly explored in animal models. Studies from our lab have shown that neural stem cell transplantation can improve cognitive deficits in mice resulting from extensive neuronal loss and protein aggregation, both hallmarks of Alzheimer’s Disease pathology. Our results support the justification for exploring the use of human derived stem cells for the treatment of Alzheimer’s patients.
  • During the past few months, we have begun studies aimed at taking human derived stem cells from the bench top to the bed side. To identify the best possible human stem cells to use in our future studies, we have conducted comparisons between a wide array of human stem cells and a mouse neural stem cell line (the same mouse stem cells used in the studies mentioned above). Using these results, we have selected a cohort of human stem cell candidates to which we will continue to study in upcoming experiments involving our AD model mice.
  • In addition to identifying the best human stem cells to conduct further studies, we have also performed experiments to determine the optimal immune suppression regimen to use in our human stem cell engraftment studies. Similar to organ transplants in humans, we will need to administer immune suppressants to mice which receive our candidate human stem cells. Our group has identified a potential suppressant, also found to work in humans, which we will use in future studies.
  • Over the past decade, the potential for using stem cell transplantation as a therapy to treat neurological disorders and injury has been increasingly explored in animal models. Studies from our lab have shown that neural stem cell transplantation can improve cognitive deficits in mice resulting from extensive neuronal loss and protein aggregation, both hallmarks of Alzheimer’s Disease pathology. Our results support the justification for exploring the use of human derived stem cells for the treatment of Alzheimer’s patients.
  • During the past few months, we have begun studies aimed at taking human derived stem cells from the bench top to the bed side. To identify the best possible human stem cells to use in our future studies, we have conducted comparisons between a wide array of human stem cells and a mouse neural stem cell line (the same mouse stem cells used in the studies mentioned above). Using these results, we have selected a cohort of human stem cell candidates to which we will continue to study in upcoming experiments involving our AD model mice.
  • In addition to identifying the best human stem cells to conduct further studies, we have also performed experiments to determine the optimal immune suppression regimen to use in our human stem cell engraftment studies. Similar to organ transplants in humans, we will need to administer immune suppressants to mice which receive our candidate human stem cells. Our group has identified a potential suppressant, also found to work in humans, which we will use in future studies.
  • During the last reporting period the lab has made substantial advancements in determining the effects of long term human neural stem cells engraftment on pathologies associated with the advancement of Alzheimer's disease. In addition, data obtained by our lab has may provide additional insight on ways to target the immune system as a means of prolonging neural stem cell survival and effectiveness.

Generation of disease models for neurodegenerative disorders in hESCs by gene targeting

Funding Type: 
Tools and Technologies I
Grant Number: 
RT1-01107
ICOC Funds Committed: 
$869 262
Disease Focus: 
Amyotrophic Lateral Sclerosis
Neurological Disorders
Stem Cell Use: 
Embryonic Stem Cell
Cell Line Generation: 
Embryonic Stem Cell
oldStatus: 
Closed
Public Abstract: 
The ability to target a specific locus in the mouse genome and to alter it in a specific fashion has fundamentally changed experimental design and made mice the preeminent model for studying human diseases . However, pathogenesis in humans have unique pathways that may not be revealed by only using mouse or other animal models. An approach that combines the advantages of mouse models with parallel experiments in human embryonic stem cells (hESCs) offers significant advantages over current methodologies. With the large number of hESC lines available, the ability to grow cells in defined media, the development of drug resistant feeders and the reports of strategies to insert DNA with increasing efficiency into hESC, it would only be a matter of time to obtain homologous recombinants in hESCs. In order to provide direct clues to pathogenesis in human tissues, we propose to use homologous recombination to establish in vitro human disease models in hESCs. As a proof of principle, we have chosen Lou Gehrig's disease (or amyotrophic lateral sclerosis, ALS). ALS is a disease that progressively and selectively attacks motoneurons in the brain and the spinal cord. It becomes fatal when motoneurons controlling breathing are affected. Approximately 2% of ALS cases have been identified to be caused by mutations of the the Cu-Zn superoxide dismutase (SOD1) gene in an autosomal dominant trait. Animal models have been established and researchers have been able to propose disease mechanisms which led to potential treatments, although no cure has been offered yet. This in part might be due to lack of human cell based models and varied mutant copy numbers in transgenic animals as well as the random nature of their integration into the genome. Here, we propose to generate hESC lines by gene targeting to harbor point mutations in the SOD1 gene, which recapitulates the genetic defects in SOD1 mutated ALS patients. We will further target these mutations in hESC reporter lines of the two important cell types in ALS: motoneurons and astrocytes. The availability of these SOD1 mutated hESC and hESC reporter lines will allow researchers to obtain purified “diseased” motoneurons and astrocytes, which will facilitate the dissection of ALS pathogenesis. The completion of this proposal will provide (1) a highly efficient protocol for performing homologous recombination in hESCs, (2) a package of motoneuron and astrocyte reporters which are useful for both disease and developmental studies along the neural lineages, and (3) a set of ALS disease platforms of hESC lines to serve as an hESC ALS disease in vitro model, as well as a virtually unlimited source of “diseased” motoneurons and astrocytes. This work not only will provide tools to move pathogenesis research for ALS, but also can be reliably extended into other neural and non-neural lineage diseases, of which genetic defects have been identified, including Huntington's disease (HD) and Parkinson’s disease (PD).
Statement of Benefit to California: 
The overall objectives for this proposal are to create in vitro human neurodegenerative disease models using human embryonic stem cells (hESCs), and as a proof of principle, three point mutations of the SOD1 gene which cause familial amyotrophic lateral sclerosis (FALS) will be tested first. These SOD1 missense mutations, G37R, G85R and G93A, have been identified in FALS patients and widely used in rodent models of FALS. We propose to create SOD1 mutations in hESC lines by gene targeting technology which has been proven to be revolutionary in establishing disease models in animals. In addition, we will use similar protocol to generate motoneuron and astrocyte reporter lines in hESCs, since these two cell types and the interaction between them play the most critical roles in the pathogenesis of ALS. After obtaining the three SOD1 missense mutants in motoneuron and astrocyte reporter lines, we will extend our efforts to characterization of these lines, by examining their growth, survival, cell death and other biochemical properties. We will also perform large scale comparisons for genomic and proteomic profiles of the diseased hESC lines with wild type hESCs, as well as comparing the “diseased” and wild type hESC-derived populations of motoneurons and astrocytes. These experiments will not only provide direct clues for ALS pathogenesis research but also serve as a proof of principle for general disease research using hESCs as a model system. The protocols and reagents developed in this work will be available for Californian researchers and physicians to use for similar neurodegenerative diseases or diseases of other systems. This work will eventually facilitate the scale-up in establishment of human diseases models using human tissues or human cell culture systems for our colleagues in California and around the world.
Progress Report: 
  • The overall objectives for this proposal are to create in vitro human neurodegenerative disease models and to elucidate pathogenesis of amyotrophic lateral sclerosis (ALS), an adult onset fatal motoneuron disease. Using gene targeting and reprogramming technology, we have created ALS disease models in human pluripotent stem cells and are generating neural lineage reporters which will facilitate the downstream efforts on systemic characterization of these diseased cell lines, at undifferentiated stage and after induced lineage differentiation toward motoneurons and astrocytes. These experiments will not only provide direct clues for ALS pathogenesis but also serve as a proof of principle for general disease research using human pluripotent stem cells as a model system. We also aim to provide optimized protocols for easy to access gene targeting which eventually facilitate the development of personalized medicine, the future of regenerative medicine. The novel targeting protocol combined with our experience on directed differentiation along the neural lineage will not only will make tools to move the pathogenesis research for ALS, but also can be reliably extended to other neural and non-neural diseases, of which genetic defects have been identified, including Huntington's disease and Parkinson’s disease.
  • The overall objectives for this proposal are to create in vitro human neurodegenerative disease models for amyotrophic lateral sclerosis (ALS), an adult onset fatal motoneuron disease. Using gene targeting, site-specific integration and reprogramming technology, we have created ALS disease models in human pluripotent stem cells and generated neural lineage reporters which will facilitate the downstream efforts on systemic characterization of these diseased cell lines, at undifferentiated stage and after forced lineage differentiation toward motoneurons and astrocytes. We have optimized protocols for gene targeting using homologous recombination and site-specific integration and insertion. The novel targeting protocol combined with our experience on directed differentiation along the neural lineage are useful tools to pathogenesis research for ALS, as well as to other neural and non-neural diseases, including Huntington's disease and Parkinson’s disease.

Directed Evolution of Novel AAV Variants for Enhanced Gene Targeting in Pluripotent Human Stem Cells and Investigation of Dopaminergic Neuron Differentiation

Funding Type: 
Tools and Technologies I
Grant Number: 
RT1-01021
ICOC Funds Committed: 
$918 000
Disease Focus: 
Parkinson's Disease
Neurological Disorders
Stem Cell Use: 
Embryonic Stem Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Closed
Public Abstract: 
Human embryonic stem cells (hESCs) and induced pluripotent stem (iPS) cells have considerable potential as sources of differentiated cells for numerous biomedical applications. The ability to introduce targeted changes into the DNA of these cells – a process known as gene targeting – would have very broad implications. For example, mutations could readily be introduced into genes to study their roles in stem cell propagation and differentiation, to analyze mechanisms of human disease, and to develop disease models to aid in creating new therapies. Unfortunately, gene targeting efficiency in hESCs is very low. To meet this urgent need, we propose to develop new molecular tools and novel technologies for high efficiency gene targeting in hES and iPS cells. Importantly, this approach will be coupled with genome-wide identification and functional analysis of genes involved in the process in dopaminergic neuron development, work with fundamental implications for Parkinson's disease. Barriers to targeted genetic modification include the effective delivery of gene targeting constructs into cells and the introduction of defined changes into the genome. We have developed a high throughput approach to engineer novel properties into a highly promising, safe, and clinically relevant gene delivery vehicle. For example, we have engineered variants of this vehicle with highly efficient gene delivery to neural stem cells (NSCs), and the resulting vehicles can mediate efficient gene targeting. We now propose to engineer novel gene delivery and targeting vehicles optimized for use in hESCs and iPS cells. One application of such an improved vector system will be to study the mechanism of ESC differentiation into dopaminergic neurons aided by the key transcription factor Lmx1a. We propose to identify target genes that are regulated by Lmx1a during dopaminergic neuron differentiation using the newly developed technique of ChIP-seq, in combination with RNA expression and bioinformatics analysis. This work will identify essential control genes that drive dopaminergic neuron differentiation. Furthermore, our improved gene delivery and targeting system will be used for overexpressing candidate genes, knocking them down via RNA interference, and knocking in reporter genes to analyze gene expression networks during neuronal differentiation. The generation of efficient targeting technologies, in combination with genome wide analysis of gene regulation networks, will provide a general method for identifying and testing key regulatory genes for stem cell self-renewal and differentiation, as well as generating stem cell-based models of human disease. This blend of bioengineering and cell biology therefore has strong potential to create an important new capability for basic and applied stem cell research.
Statement of Benefit to California: 
This proposal will develop novel molecular tools and methodologies that will strongly enhance the scientific, technological, and economic development of stem cell therapeutics in California. The most important net benefit will be for the treatment of human diseases. Efficiently introducing specific genetic modifications into a stem cell genome is a greatly enabling technology that would impact many downstream medical applications. This capability will further enable investigations of self-renewal and differentiation, two defining properties of human stem cells. New tools to introduce targeted alterations of ES and iPS cells will also yield key model systems to elucidate mechanisms of human disease, and most importantly enable the generation of mutant cell lines to serve as models of human disease and systems for high throughput screening to develop novel therapies. Finally, the reverse process, the repair of genetic lesions responsible for disease, can in the long run enable the generation of patent-specific stem cell lines for therapeutic application. Each of these applications will directly benefit biomedical knowledge and human health. Furthermore, this proposal directly addresses several research targets of this RFA – the development and utilization of efficient homologous recombination techniques for gene targeting in human stem cells, the development of safer and more effective viral vectors for gene transduction in human stem cells, and the development and analysis of human embryonic stem cell lines with reporter genes inserted into key loci – indicating that CIRM believes that the proposed capabilities are a priority for California’s stem cell effort. While the potential applications of the proposed technology are broad, we will apply it to a specific and urgent biomedical problem: elucidating mechanisms of ES cell differentiation into dopaminergic neurons, part of a critical path towards developing therapies for Parkinson’s disease. While hESCs clearly have this capacity, the underlying mechanisms are incompletely understood, and the efficiency of this process must be improved. We will elucidate transcriptional networks that underlie this process, and utilize our novel gene targeting system to identify and analyze key components of these networks. This work will lead to a better fundamental understanding of mechanisms regulating stem cell differentiation, as well as enhance our ability to control this complex process for biomedical application. The co-investigators have a strong record of translating basic science and engineering into practice through interactions with industry, including the founding of biotech companies in California. Finally, this collaborative project will focus diverse research groups with many students on an important interdisciplinary project at the interface of science and engineering, thereby training future employees and contributing to the technological and economic development of California.
Progress Report: 
  • The central goal of this is to develop enhanced vehicles for gene delivery to human embryonic stem cells, both to modulate gene expression and to edit the cellular genome via homologous recombination. We have been using a novel directed evolution technology to improve the properties of a promising viral vehicle, and we are in the progress of progressively increasing gene delivery efficiency. In particular, we have isolated several viral vector variants with enhanced gene delivery to human embryonic stem cells.
  • In parallel, we have a strong interest in understanding and elucidating mechanisms of human pluripotent stem cell differentiation into dopaminergic neurons, with implications for Parkinson's Disease. In particular, the transcription factor Lmx1a plays a role in this fate specification, but the underlying mechanisms are largely unknown. We are conducting chromatin immunoprecipitation coupled with next generation DNA sequencing to identify the genes in the cellular genome that this factor regulates. We have generated an antibody to isolate this protein from cells and are in the process of pulling down DNA bound to this factor within cells undergoing dopaminergic specification. Once we have identified relevant target genes, we will use the new gene delivery technology to study their functional role in dopaminergic specification of human embryonic stem cells.
  • The central goal of this is to develop enhanced vehicles for gene delivery to human embryonic stem cells, both to modulate gene expression and to edit the cellular genome via homologous recombination. We have been using a novel directed evolution technology to improve the properties of a promising viral vehicle, and we are in the progress of progressively increasing gene delivery efficiency. In particular, we have isolated several viral vector variants with enhanced gene delivery to human embryonic stem cells.
  • In parallel, we have a strong interest in understanding and elucidating mechanisms of human pluripotent stem cell differentiation into dopaminergic neurons, with implications for Parkinson's Disease. In particular, the transcription factor Lmx1a plays a role in this fate specification, but the underlying mechanisms are largely unknown. We are conducting chromatin immunoprecipitation coupled with next generation DNA sequencing to identify the genes in the cellular genome that this factor regulates. We have generated an antibody to isolate this protein from cells and are in the process of pulling down DNA bound to this factor within cells undergoing dopaminergic specification. Once we have identified relevant target genes, we will use the new gene delivery technology to study their functional role in dopaminergic specification of human embryonic stem cells.
  • The central goal of this project is to develop enhanced vehicles for gene delivery to human embryonic stem cells, both to modulate gene expression and to edit the cellular genome via homologous recombination. Harnessing a novel directed evolution technology we have developed to improve the properties of a promising viral vehicle, we have significantly increased its gene delivery efficiency to human embryonic and human induced pluripotent stem cells. Furthermore, this advance resulted in considerable improvements in the efficiency of gene targeting (i.e. editing) in the genomes of these cells.
  • In parallel, we have a strong interest in understanding and elucidating mechanisms of luripotent stem cell differentiation into neurons, with for example implications for Parkinson's Disease. In particular, the transcription factor Lmx1a plays a role in this fate specification, but the underlying mechanisms are largely unknown. We attempted chromatin immunoprecipitation coupled with next generation DNA sequencing to identify the genes in the cellular genome that this factor regulates. Progress in this objective was ultimately hampered by the lack of a suitable antibody against Lmx1a. However, in parallel we have used an analogous approach to investigate mechanisms by which RNA transcription is regulated during the differentiation of embryonic stem cells into neurons, including motor neurons. These basic results can now be applied to enhance the efficiency of neuronal differentiation.

CIRM Shared Research Laboratory for Stem Cells and Aging

Funding Type: 
Shared Labs
Grant Number: 
CL1-00501-1.2
ICOC Funds Committed: 
$5 893 682
Disease Focus: 
Neurological Disorders
Stem Cell Use: 
Embryonic Stem Cell
iPS Cell
Cell Line Generation: 
Embryonic Stem Cell
iPS Cell
oldStatus: 
Active
Public Abstract: 
Age-related diseases of the nervous system are major challenges for biomedicine in the 21st century. These disorders, which include Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis and stroke, cause loss of neural tissue and functional impairment. Currently, there is no cure for these devastating neurological disorders. A promising approach to the treatment of age-related neurological disorders is cell therapy, i.e., transplantation of nerve cells into the brain or spinal cord to replace lost cells and restore function. Work in this field has been limited however, due to the limited availability of cells for transplantation. For example, cells from 6-10 human fetuses obtained 6-10 weeks post-conception are required for one patient with Parkinson’s disease to undergo transplantation. Human embryonic stem cells (hESCs) offer a potentially unlimited source of any cell type that may be required for cell replacement therapy, due to their remarkable ability to self-renew (they can divide indefinitely in culture) and to develop into any cell type in the body. In this proposal, we will build out approximately 3400 square feet of shared laboratory space within our existing research facility for hESC research, as well as approximately 2400 square feet for classroom facilities dedicated to training in hESC culture and manipulation. We seek to understand how hESCs differentiate into authentic, clinically useful nerve cells and will use novel molecular tools to examine the behavior of cells transplanted in animal models of human neurological disease. We will also need to develop a noninvasive method of following cells after transplantation and we propose to develop luciferase-tagged (light-emitting) hESC lines for in vivo animal imaging. In addition, we will use hESC-derived nerve cells to screen drug and chemical libraries for compounds that protect nerve cells from toxicity, and to develop in vitro disease models. We believe that these experiments are critical to enhancing our understanding of neurological diseases and providing the tools that will be necessary to move cell therapy to the clinic. Before a hESC-based therapy can be developed, it is essential to train scientists to efficiently grow, maintain and manipulate these cells. We propose to teach four 5-day hands-on training courses – two basic and two advanced hESC culture courses per year – to California scientists free of charge. These courses will provide scientists with an understanding of hESC biology and will enable them to set up and conduct hESC research after completion of training. In summary, the goal of this proposal is to provide over twenty investigators at the home institute and neighboring institutions with the ability to culture, differentiate, and genetically manipulate hESCs – including clinical-grade hESC lines – to develop diagnostic and therapeutic tools.
Statement of Benefit to California: 
We propose to build a Shared Research Laboratory and offer a Stem Cell Techniques Course for over twenty principal investigators at the home institute and neighboring institutes working collaboratively on stem-cell biology and neurological diseases of aging. We propose to: 1) Purify nerve cells at different stages of maturation from human embryonic stem cells and to develop transplantation strategies in animal models that mimic human diseases, including Parkinson’s disease, stroke and spinal cord injuries; 2) Screen drug and chemical libraries for reagents that protect nerve cells from toxicity and develop in vitro disease models using nerve cells generated from human embryonic stem cells; and 3) Assess the long-term integration and differentiation of transplanted cells using a non-invasive imaging system. We believe these experiments provide not only a blueprint for moving stem-cell transplantation for Parkinson’s disease toward the clinic, but also a generalized plan for how stem-cell therapy can be developed to treat disorders like motor neuron disease (amyotrophic lateral sclerosis, or Lou Gehrig’s disease) and spinal cord injury. As the only stem-cell research facility in California’s 10-12 most northwest counties, we are uniquely positioned to extend the promised benefits of Proposition 71 to this large part of the state. The tools and reagents we develop will be made widely available to California researchers and we will select California-based companies for commercialization of any therapies that may result. We also hope that California-based physicians will be at the forefront of translating this promising avenue of research into clinical applications. Finally, we expect that the money expended on this research will benefit the California research and business communities, and that the tools and reagents we develop will help accelerate stem-cell research in California and worldwide.
Progress Report: 
  • Age-related diseases of the nervous system are major challenges for biomedicine in the 21st century. These disorders, which include Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis and stroke, cause loss of neural tissue and functional impairment. Currently, there is no cure for these devastating neurological disorders. A promising approach to the treatment of age-related neurological disorders is cell therapy, i.e., transplantation of nerve cells into the brain or spinal cord to replace lost cells and restore function. Work in this field has been limited however, due to the limited availability of cells for transplantation. For example, cells from 6-10 human fetuses obtained 6-10 weeks post-conception are required for one patient with Parkinson’s disease to undergo transplantation. Human embryonic stem cells (hESCs) offer a potentially unlimited source of any cell type that may be required for cell replacement therapy, due to their remarkable ability to self-renew (they can divide indefinitely in culture) and to develop into any cell type in the body.
  • Funded by CIRM, we have built out approximately 3400 square feet of shared laboratory space within our existing research facility for hESC research, as well as approximately 2400 square feet for classroom facilities dedicated to training in hESC culture and manipulation. Supported by this facility, we have in the past year successfully developed a process for the production of functional dopaminergic neurons from hESCs that are suitable for potential clinical uses, e.g., in treating Parkinson’s disease (Parkinson’s disease is caused by the death of dopaminergic neurons). Our system provides a path to a scalable Good Manufacture Practice (GMP)-applicable process of generation of dopaminergic neurons from hESCs for therapeutic applications, and a ready source of large numbers of neurons for potential drug screening applications. In addition, we have developed a screening strategy that allows us to rapidly identify clinically approved drugs for use in GMP protocol that can be safely used to deplete unwanted contaminating precursor cells from dopaminergic neurons, a target for cell therapy.
  • Before a hESC-based therapy can be developed, it is essential to train scientists to efficiently grow, maintain and manipulate these cells. We have taught two types of hands-on training courses in the past year with more than 30 scientists across California participated: a basic 5-day hESC culture course and an advanced 5-day hESC culture course, to meet the diverse needs of California scientists. These courses provided scientists with an understanding of hESC biology and enabled them to set up and conduct hESC research after completion of training.
  • Age-related diseases of the nervous system are major challenges for biomedicine in the 21st century. These disorders, which include Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis and stroke, cause loss of neural tissue and functional impairment. Currently, there is no cure for these devastating neurological disorders. A promising approach to the treatment of age-related neurological disorders is cell therapy, i.e., transplantation of nerve cells into the brain or spinal cord to replace lost cells and restore function. Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) offer a potentially unlimited source of any cell type that may be required for cell replacement therapy, due to their remarkable ability to self-renew (they can divide indefinitely in culture) and to develop into any cell type in the body.
  • Funded by CIRM, we have built out approximately 3400 square feet of shared laboratory space within our existing research facility for hESC research, as well as approximately 2400 square feet for classroom facilities dedicated to training in hESC culture and manipulation. In the past year, the facility has supported over a dozen regional investigators seeking expertise in ESC/iPSC techniques. The Shared Lab maintains an average of 10 hESC and/or iPSC lines for investigators both inside and outside the Buck Institute. The facility also routinely generates neural stem cells (NSCs) from both the hESC and iPSC lines and the NSC lines have been used by many of the investigators for differentiation studies. In addition, the Shared Lab has created several genetically modified hESC lines (e.g., GFP-labeled cells) and developed techniques for efficient transfection of hESCs and their differentiated derivatives. These lines and techniques are made available for all investigators and have been used by several of them for studies of aging-related process.
  • Before a hESC-based therapy can be developed, it is essential to train scientists to efficiently grow, maintain and manipulate these cells. We have taught two types of hands-on training courses in the past year with more than 30 scientists across California participated: a basic 5-day hESC culture course and an advanced 5-day hESC culture course, to meet the diverse needs of California scientists. These courses provided scientists with an understanding of hESC biology and enabled them to set up and conduct hESC research after completion of training.
  • Age-related diseases of the nervous system are major challenges for biomedicine in the 21st century. These disorders, which include Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis and stroke, cause loss of neural tissue and functional impairment. Currently, there is no cure for these devastating neurological disorders. A promising approach to the treatment of age-related neurological disorders is cell therapy, i.e., transplantation of nerve cells into the brain or spinal cord to replace lost cells and restore function. Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) offer a potentially unlimited source of any cell type that may be required for cell replacement therapy, due to their remarkable ability to self-renew (they can divide indefinitely in culture) and to develop into any cell type in the body.
  • Funded by CIRM, we have built out approximately 3400 square feet of shared laboratory space within our existing research facility for hESC research, as well as approximately 2400 square feet for classroom facilities dedicated to training in hESC culture and manipulation. In the past year, the facility has supported over a dozen regional investigators seeking expertise in ESC/iPSC techniques. The Shared Lab maintains an average of 7 hESC and/or iPSC lines for investigators both inside and outside the Buck Institute. The facility also routinely generates neural stem cells (NSCs) from both the hESC and iPSC lines and the NSC lines have been used by many of the investigators for differentiation studies. In addition, the Shared Lab has created several genetically modified hESC lines (e.g., GFP-labeled cells) and developed techniques for efficient transfection of hESCs and their differentiated derivatives. These lines and techniques are made available for all investigators and have been used by several of them for studies of aging-related process.
  • Before a hESC-based therapy can be developed, it is essential to train scientists to efficiently grow, maintain and manipulate these cells. We have taught two types of hands-on training courses in the past year with more than 30 scientists across California participated: a basic 5-day hESC culture course and an advanced 5-day hESC culture course, to meet the diverse needs of California scientists. These courses provided scientists with an understanding of hESC biology and enabled them to set up and conduct hESC research after completion of training.
  • Age-related diseases of the nervous system are major challenges for biomedicine in the 21st century. These disorders, which include Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis and stroke, cause loss of neural tissue and functional impairment. Currently, there is no cure for these devastating neurological disorders. A promising approach to the treatment of age-related neurological disorders is cell therapy, i.e., transplantation of nerve cells into the brain or spinal cord to replace lost cells and restore function. Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) offer a potentially unlimited source of any cell type that may be required for cell replacement therapy, due to their remarkable ability to self-renew (they can divide indefinitely in culture) and to develop into any cell type in the body.
  • Funded by CIRM, we have built out approximately 3400 square feet of shared laboratory space within our existing research facility for hESC research, as well as approximately 2400 square feet for classroom facilities dedicated to training in hESC culture and manipulation. In the past year, the facility has supported over a dozen regional investigators seeking expertise in ESC/iPSC techniques. The Shared Lab maintains an average of 10 hESC and/or iPSC lines for investigators both inside and outside the Buck Institute. The facility also routinely generates neural stem cells (NSCs) from both the hESC and iPSC lines and the NSC lines have been used by many of the investigators for differentiation studies. In addition, the Shared Lab has created several genetically modified hESC lines (e.g., GFP-labeled cells) and developed techniques for efficient transfection of hESCs and their differentiated derivatives. These lines and techniques are made available for all investigators and have been used by several of them for studies of aging-related process.
  • Before a hESC-based therapy can be developed, it is essential to train scientists to efficiently grow, maintain and manipulate these cells. We have taught two types of hands-on training courses in the past year with more than 30 scientists across California participated: a basic 5-day hESC culture course and an advanced 5-day hESC culture course, to meet the diverse needs of California scientists. These courses provided scientists with an understanding of hESC biology and enabled them to set up and conduct hESC research after completion of training.
  • Age-related diseases of the nervous system are major challenges for biomedicine in the 21st century. These disorders, which include Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis and stroke, cause loss of neural tissue and functional impairment. Currently, there is no cure for these devastating neurological disorders. A promising approach to the treatment of age-related neurological disorders is cell therapy, i.e., transplantation of nerve cells into the brain or spinal cord to replace lost cells and restore function. Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) offer a potentially unlimited source of any cell type that may be required for cell replacement therapy, due to their remarkable ability to self-renew (they can divide indefinitely in culture) and to develop into any cell type in the body.
  • Funded by CIRM, we have built out approximately 3400 square feet of shared laboratory space within our existing research facility for hESC research, as well as approximately 2400 square feet for classroom facilities dedicated to training in hESC culture and manipulation. In the past year, the facility has supported over a dozen regional investigators seeking expertise in ESC/iPSC techniques. The Shared Lab maintains an average of 10 hESC and/or iPSC lines for investigators both inside and outside the Buck Institute. The facility also routinely generates neural stem cells (NSCs) from both the hESC and iPSC lines and the NSC lines have been used by many of the investigators for differentiation studies. In addition, the Shared Lab has created several genetically modified hESC lines (e.g., GFP-labeled cells) and developed techniques for efficient transfection of hESCs and their differentiated derivatives. These lines and techniques are made available for all investigators and have been used by several of them for studies of aging-related process.
  • Before a hESC-based therapy can be developed, it is essential to train scientists to efficiently grow, maintain and manipulate these cells. We have taught two types of hands-on training courses in the past year with more than 30 scientists across California participated: a basic 5-day hESC culture course and an advanced 5-day hESC culture course, to meet the diverse needs of California scientists. These courses provided scientists with an understanding of hESC biology and enabled them to set up and conduct hESC research after completion of training.

Pages

Subscribe to RSS - Neurological Disorders

© 2013 California Institute for Regenerative Medicine