Neurological Disorders

Coding Dimension ID: 
303
Coding Dimension path name: 
Neurological Disorders

Use of human iPSC-derived neurons from Huntington’s Disease patients to develop novel, disease-modifying small molecule structural corrector drug candidates targeting the unique, neurotoxic conformation of mutant huntingtin

Funding Type: 
Early Translational IV
Grant Number: 
TR4-06847
Investigator: 
ICOC Funds Committed: 
$1 333 795
Disease Focus: 
Huntington's Disease
Neurological Disorders
Stem Cell Use: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
The long-term objective of this project is to develop a drug to treat Huntington’s disease (HD), the most common inherited neurodegenerative disorder. Characterized by involuntary movements, personality changes and dementia, HD is a devastatingly progressive disease that results in death 10–20 years after disease onset and diagnosis. No therapy presently exists for HD; therefore, this project is highly innovative and ultimately aims to deliver something transformative for the HD patient population. The specific goal of the proposed research will be to achieve preclinical proof-of-concept with a novel small molecule that binds to and ameliorates the neurotoxicity of the mutant huntingtin (mHtt) protein that causes HD. Rationale for development of such compounds comes from previous research that found that mHtt assumes a shape that is selectively toxic to neurons, and that small molecules that disrupt this shape can reduce mHtt’s toxicity in primary neurons. Critical to the proposed studies will be assays that employ human striatal neurons derived from adult and juvenile HD patients and generated with induced pluripotent stem cell (iPSC) technology. These HD i-neurons display many characteristics that are also observed in striatal neurons of HD patients, including reduced survival times. They provide the most genetically precise preclinical system available to test for both drug efficacy and safety.
Statement of Benefit to California: 
The long-term objective of this project is to develop a first-in-class, disease-modifying drug to treat Huntington’s disease (HD), a devastatingly progressive genetic disorder that results in death 10–20 years after disease onset and diagnosis. No therapy presently exists for HD; therefore, this highly innovative project aims to deliver a medical breakthrough that will provide significant benefit for California’s estimated > 2000 HD patients and the family members, friends and medical system that care for them. The proposed research will be performed at a biotechnology startup, a leading academic research center and two contract research organizations, all of which are California-based. The work will over time involve more than 10 California scientists, thereby helping to employ tax-paying citizens and maintain the State’s advanced technical base. Finally, an effective, proprietary drug for the treatment of HD is expected to be highly valuable and to attract favorable financial terms upon out-licensing for development and commercialization. These revenues would flow to the California companies and institutions (including CIRM) that would have a stake in the proceeds.

Stem Cell Pathologies in Parkinson’s disease as a key to Regenerative Strategies

Funding Type: 
Research Leadership 10
Grant Number: 
LA1_C10-06535
ICOC Funds Committed: 
$6 718 471
Disease Focus: 
Parkinson's Disease
Neurological Disorders
oldStatus: 
Closed
Public Abstract: 
Protection and cell repair strategies for neurodegenerative diseases such as Parkinson’s Disease (“PD”) depend on well-characterized candidate human stem cells that are robust and show promise for generating the neurons of interest following stimulation of inherent brain stem cells or after cell transplantation. These stem cells must also be expandable in the culture dish without unwanted growth and differentiation into cancer cells, they must survive the transplantation process or, if endogenous brain stem cells are stimulated, they should insinuate themselves in established brain networks and hopefully ameliorate the disease course. The studies proposed for the CIRM Research Leadership Award have three major components that will help better understand the importance and uses of stem cells for the treatment of PD, and at the same time get a better insight into their role in disease repair and causation. First, we will characterize adult human neural stem cells from control and PD brain specimens to distinguish their genetic signatures and physiological properties of these cells. This will allow us to determine if there are stem cells that are pathological and fail in their supportive role in repairing the nervous system. Next, we will investigate a completely novel disease initiation and propagation mechanism, based on the concept that secreted vesicles from cells (also known as “exosomes”) containing a PD-associated protein, alpha-synuclein, propagate from cell-to cell. Our hypothesis is that these exosomes carry toxic forms of alpha-synuclein from cell to cell in the brain, thereby accounting disease spread. They may do the same with cells transplanted in patients with PD, thereby causing these newly transplanted cells designed to cure the disease, to be affected by the same process that causes the disease itself. This is a bottleneck that needs to be overcome for neurotransplantation to take its place as a standard treatment for PD. Our studies will address disease-associated toxicity of exosomal transmission of aggregated proteins in human neural precursor stem cells. Importantly, exosomes in spinal fluid or other peripheral tissues such as blood might represent a potentially early and reliable disease biomarker as well as a new target for molecular therapies aimed at blocking transcellular transmission of PD-associated molecules. Finally, we have chosen pre-clinical models with α-synucleinopathies to test human neural precursor stem cells as cell replacement donors for PD as well as interrogate, for the first time, their potential susceptibility to PD and contribution to disease transmission. These studies will provide a new standard of analysis of human neural precursor cells at risk for and contributing to pathology (so-called “stem cell pathologies”) in PD and other neurodegenerative diseases via transmission of altered or toxic proteins from one cell to another.
Statement of Benefit to California: 
According to the National Institute of Health, Parkinson’s disease (PD) is the second most common neurodegenerative disease in California and the United States (one in 100 people over 60 is affected) second only to Alzheimer’s Disease. Millions of Americans are challenged by PD, and according to the Parkinson’s Action Network, every 9 minutes a new case of PD is diagnosed. The cause of the majority of idiopathic PD is unknown. Identified genetic factors are responsible for less than 5% of cases and environmental factors such as pesticides and industrial toxins have been repeatedly linked to the disease. However, the vast majority of PD is thought to be etiologically multi-factorial, resulting from both genetic and environmental risk factors. Important events leading to PD probably occur in early or mid adult life. According to the Michael J. Fox Foundation, “…there is no objective test, or reliable biomarker for PD, so rate of misdiagnosis is high, and there is a seriously pressing need to develop better early detection approaches to be able to attempt disease-halting protocols at a non-symptomatic, so-called prodromal stage.” The proposed innovative and transformative research program will have a major direct impact for patients who live in California and suffer from PD and other related neurodegenerative diseases. If these high-risk high-pay-off studies are deemed successful, this new program will have tackled major culprits in the PD field. They could lead to a better understanding of the role of stem cells in health and disease. Furthermore they could greatly advance our knowledge of how the disease spreads throughout the brain which in turn could lead to entire new strategies to halt disease progression. In a similar manner these studies could lead to ways to prevent the disease from spreading to cells that have been transplanted to the brain of Parkinson’s patients in an attempt to cure their disease. This is critical for neurotransplantation to thrive as a therapeutic approach to treating PD. In addition, if we extend the cell-to-cell transmissible disease hypothesis to other neurodegenerative diseases, and cancer, the studies proposed here represent a new diagnostic approach and therapeutic targets for many diseases affecting Californians and humankind in general. This CIRM Research Leadership Award will not only have an enormous impact on understanding the cause of PD and developing new therapeutic strategies using stem cells and its technologies, this award will also be the foundation of creating a new Center for Translational Stem Cell Research within California. This could lead to further growth at the academic level and for the biotechnology industry, particularly in the area regenerative medicine.

The CIRM Human Pluripotent Stem Cell Biorepository – A Resource for Safe Storage and Distribution of High Quality iPSCs

Funding Type: 
hPSC Repository
Grant Number: 
IR1-06600
ICOC Funds Committed: 
$9 999 834
Disease Focus: 
Developmental Disorders
Heart Disease
Infectious Disease
Alzheimer's Disease
Neurological Disorders
Autism
Respiratory Disorders
Vision Loss
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
Critical to the long term success of the CIRM iPSC Initiative of generating and ensuring the availability of high quality disease-specific human IPSC lines is the establishment and successful operation of a biorepository with proven methods for quality control, safe storage and capabilities for worldwide distribution of high quality, highly-characterized iPSCs. Specifically the biorepository will be responsible for receipt, expansion, quality characterization, safe storage and distribution of human pluripotent stem cells generated by the CIRM stem cell initiative. This biobanking resource will ensure the availability of the highest quality hiPSC resources for researchers to use in disease modeling, target discovery and drug discovery and development for prevalent, genetically complex diseases.
Statement of Benefit to California: 
The generation of induced pluripotent stem cells (iPSCs) from patients and subsequently, the ability to differentiate these iPSCs into disease-relevant cell types holds great promise in facilitating the “disease-in-a-dish” approach for studying our understanding of the pathological mechanisms of human disease. iPSCs have already proven to be a useful model for several monogenic diseases such as Parkinson’s, Fragile X Syndrome, Schizophrenia, Spinal Muscular Atrophy, and inherited metabolic diseases such as 1-antitrypsin deficiency, familial hypercholesterolemia, and glycogen storage disease. In addition, the differentiated cells obtained from iPSCs represent a renewable, disease-relevant cell model for high-throughput drug screening and toxicology/safety assessment which will ultimately lead to the successful development of new therapeutic agents. iPSCs also hold great hope for advancing the use of live cells as therapies for correcting the physiological manifestations caused by disease or injury.

Generation and characterization of high-quality, footprint-free human induced pluripotent stem cell lines from 3,000 donors to investigate multigenic diseases

Funding Type: 
hiPSC Derivation
Grant Number: 
ID1-06557
ICOC Funds Committed: 
$16 000 000
Disease Focus: 
Developmental Disorders
Genetic Disorder
Heart Disease
Infectious Disease
Alzheimer's Disease
Neurological Disorders
Autism
Respiratory Disorders
Vision Loss
Cell Line Generation: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
Induced pluripotent stem cells (iPSCs) have the potential to differentiate to nearly any cells of the body, thereby providing a new paradigm for studying normal and aberrant biological networks in nearly all stages of development. Donor-specific iPSCs and differentiated cells made from them can be used for basic and applied research, for developing better disease models, and for regenerative medicine involving novel cell therapies and tissue engineering platforms. When iPSCs are derived from a disease-carrying donor; the iPSC-derived differentiated cells may show the same disease phenotype as the donor, producing a very valuable cell type as a disease model. To facilitate wider access to large numbers of iPSCs in order to develop cures for polygenic diseases, we will use a an episomal reprogramming system to produce 3 well-characterized iPSC lines from each of 3,000 selected donors. These donors may express traits related to Alzheimer’s disease, autism spectrum disorders, autoimmune diseases, cardiovascular diseases, cerebral palsy, diabetes, or respiratory diseases. The footprint-free iPSCs will be derived from donor peripheral blood or skin biopsies. iPSCs made by this method have been thoroughly tested, routinely grown at large scale, and differentiated to produce cardiomyocytes, neurons, hepatocytes, and endothelial cells. The 9,000 iPSC lines developed in this proposal will be made widely available to stem cell researchers studying these often intractable diseases.
Statement of Benefit to California: 
Induced pluripotent stem cells (iPSCs) offer great promise to the large number of Californians suffering from often intractable polygenic diseases such as Alzheimer’s disease, autism spectrum disorders, autoimmune and cardiovascular diseases, diabetes, and respiratory disease. iPSCs can be generated from numerous adult tissues, including blood or skin, in 4–5 weeks and then differentiated to almost any desired terminal cell type. When iPSCs are derived from a disease-carrying donor, the iPSC-derived differentiated cells may show the same disease phenotype as the donor. In these cases, the cells will be useful for understanding disease biology and for screening drug candidates, and California researchers will benefit from access to a large, genetically diverse iPSC bank. The goal of this project is to reprogram 3,000 tissue samples from patients who have been diagnosed with various complex diseases and from healthy controls. These tissue samples will be used to generate fully characterized, high-quality iPSC lines that will be banked and made readily available to researchers for basic and clinical research. These efforts will ultimately lead to better medicines and/or cellular therapies to treat afflicted Californians. As iPSC research progresses to commercial development and clinical applications, more and more California patients will benefit and a substantial number of new jobs will be created in the state.

Collection of skin biopsies to prepare fibroblasts from patients with Alzheimer's disease and cognitively healthy elderly controls

Funding Type: 
Tissue Collection for Disease Modeling
Grant Number: 
IT1-06589
ICOC Funds Committed: 
$643 693
Disease Focus: 
Alzheimer's Disease
Neurological Disorders
oldStatus: 
Active
Public Abstract: 
Alzheimer's Disease (AD), the most common form of dementia in the elderly, affects over 5 million Americans. There are no treatments to slow progression or prevent AD. This reflects limitations in knowledge of mechanisms underlying AD, and in tools and models for early development and testing of treatment. Genetic breakthroughs related to early onset AD led to initial treatment targets related to a protein called amyloid, but clinical trials have been negative. Extensive research links genetic risk to AD, even when the age at onset is after the age of 65. AD affects the brain alone, therefore studying authentic nerve cells in the laboratory should provide the clearest insights into mechanisms and targets for treatment. This has recently become feasible due to advances in programming skin cells into stem cells and then growing (differentiating) them into nerve cells. In this project we will obtain skin biopsies from a total of 220 people with AD and 120 controls, who are extensively studied at the UCSD AD Research Center. These studies include detailed genetic (DNA) analysis, which will allow genetic risks to be mapped onto reprogrammed cells. These derived cells that preserve the genetic background of the person who donated the skin biopsy will be made available to the research community, and have the promise to accelerate studies of mechanisms of disease, understanding genetic risk, new treatment targets, and screening of new treatments for this devastating brain disorder.
Statement of Benefit to California: 
The proposed project will provide a unique and valuable research resource, which will be stored and managed in California. This resource will consist of skin cells or similar biological samples, suitable for reprogramming, obtained from well-characterized patients with Alzheimer's Disease and cognitively healthy elderly controls. Its immediate impact will be to benefit CIRM-funded researchers as well as the greater research community, by providing them access to critical tools to study, namely nerve cells that can be grown in a dish (cultured) that retain the genetic background of the skin cell donors. This technology to develop and reprogram cells into nerve cells or other cell types results from breakthroughs in stem cell research, many of which were developed using CIRM funding. Alzheimer's Disease affects over 600,000 Californians, and lacks effective treatment. Research into mechanisms of disease, identifying treatment targets, and screening novel drugs will be greatly improved and accelerated through the availability of the resources developed by this project, which could have a major impact on the heath of Californians. California is home to world class academic and private research institutes, Biotechnology and Pharmaceutical Companies, many of whom are already engaged in AD research. This project could provide them with tools to make research breakthroughs and pioneer the development of novel treatments for AD.

CIRM Tissue Collection for Neurodevelopmental Disabilities

Funding Type: 
Tissue Collection for Disease Modeling
Grant Number: 
IT1-06611
ICOC Funds Committed: 
$874 135
Disease Focus: 
Neurological Disorders
Pediatrics
Cell Line Generation: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
Most children who go to the clinic with brain disorders have symptoms combining autism, cerebral palsy and epilepsy, suggesting underlying and shared mechanisms of brain dysfunction in these conditions. Such disorders affect 4-6% of the population with life-long disease, and account for about 10% of health care expenditures in the US. Genetic studies have pointed to frequent low-penetrant or low-frequency genetic alterations, but there is no clear way to use this information to make gene-specific diagnosis, to predict short- or long-term prognosis or to develop disease-specific therapy. We propose to recruit about 500 patients with these disorders mostly from our Children’s Hospital, the largest in California, through a dedicated on-site collaborative approach. Extracting from existing medical records, taking advantage of years of experience in recruitment and stem cell generation, and already existing or planned whole exome or genome sequencing on most patients, we propose a safe, anonymous database linked to meaningful biological, medical, radiographic and genetic data. Because team members will be at the hospital, we can adjust future disease-specific recruitment goals depending upon scientific priorities, and re-contact patients if necessary. The clinical data, coupled with the proposed hiPSC lines, represents a platform for cell-based disease investigation and therapeutic discovery, with benefits to the children of California.
Statement of Benefit to California: 
This project can benefit Californians both in financial and non-financial terms. NeuroDevelopmental Disabilities (NDDs) affect 4-6% of Californians, create a huge disease burden estimated to account for 10% of California health care costs, and have no definitive treatments. Because we cannot study brain tissue directly, it is extraordinarily difficult to arrive at a specific diagnosis for affected children, so doctors are left ordering costly and low-yield tests, which limit prognostic information, counseling, prevention strategies, quality of life, and impede initiation of potentially beneficial therapies. Easily obtainable skin cells from Californians will be the basis of this project, so the study results will have maximal relevance to our own population. By combining “disease in a dish” platforms with cutting edge genomics, we can improve diagnosis and treatments for Californians and their families suffering from neurodevelopmental disorders. Additionally, this project, more than others, will help Californians financially because: 1] The ongoing evaluations of this group of patients utilizes medical diagnostics and genetic sequencing tools developed and manufactured in California, increasing our state revenues. 2] The strategy to develop “disease in a dish” projects centered on Neurodevelopmental Disabilities supports opportunities for ongoing efforts of California-based pharmaceutical and life sciences companies to leverage these discoveries for future therapies.

Induced pluripotent stem cells from children with autism spectrum disorders

Funding Type: 
Tissue Collection for Disease Modeling
Grant Number: 
IT1-06571
ICOC Funds Committed: 
$530 265
Disease Focus: 
Autism
Neurological Disorders
Pediatrics
oldStatus: 
Active
Public Abstract: 
Autism spectrum disorders (ASD) are a family of disabling disorders of the developing brain that affect about 1% of the population. Studying the biology of these conditions has been difficult as they have been challenging to represent in animal models. The core symptoms of ASD, including deficits in social communication, imagination and curiosity are intrinsically human and difficult to model in organisms commonly studied in the laboratory. Ideally, the mechanisms underlying ASDs need to be studied in human patients and in their cells. Since they maintain the genetic profile of an individual, studying neurons derived from human induced pluripotent stem cells (hiPSC) is attractive as a method for studying neurons from ASD patients. hiPSC based studies of ASDs hold promise to uncover deficits in cellular development and function, to evaluate susceptibility to environmental insults, and for screening of novel therapeutics. In this project our goal is to contribute blood and skin samples for hiPSC research from 200 children with an ASD and 100 control subjects to the CIRM repository. To maximize the value of the collected tissue, all subjects will have undergone comprehensive clinical evaluation of their ASD. The cells collected through this project will be made available to the wider research community and should result in a resource that will enable research on hiPSC-derived neurons on a scale and depth that is unmatched anywhere else in the world.
Statement of Benefit to California: 
The prevalence and impact of Autism Spectrum Disorders (ASD) in California is staggering. California has experienced 13% new ASD cases each year since 2002. ASD are a highly heritable family of complex neurodevelopmental conditions affecting the brain, with core symptoms of impaired social skills, language, behavior and intellectual abilities. The majority with an ASD experience lifelong disability that requires intensive parental, school, and social support. The result has been a 12-fold increase in the number of people receiving ASD services in California since 1987, with over 50,000 people with ASDs served by developmental and regional centers. Within the school system, the number of special education students with ASD in California has more than tripled between 2002 and 2010. The economic, social and psychological toll is enormous. It is critical to both prevent and develop effective treatments for ASD. While rare genetic mutations account for a minority of cases, our understanding of idiopathic ASD (>85% of cases) is extremely limited. Mechanisms underlying ASDs need to be studied in human patients and in cells that share the genetic background of these patients. Since they maintain the complete genetic background of an individual, hiPSCs represent a very practical and direct method for investigating neurons from ASD patients to uncover cellular deficits in their development and function, and for screening of novel therapeutics.

Human iPSC modeling and therapeutics for degenerative peripheral nerve disease

Funding Type: 
New Faculty Physician Scientist
Grant Number: 
RN3-06530
ICOC Funds Committed: 
$3 031 737
Disease Focus: 
Neuropathy
Neurological Disorders
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
The applicant is an MD/PhD trained physician scientist, whose clinical expertise is neuromuscular disorders including peripheral nerve disease. The proposal is aimed at providing a research proposal and career development plan that will allow the applicant to develop an independent research program, which attempts to bring stem cell based therapies to patients with peripheral nerve diseases. The proposal will use “adult stem cells” derived from patients with an inherited nerve disease, correct the genetic abnormality in those cells, and determine the feasibility of transplanting the genetically engineered cells back into peripheral nerve to slow disease progression.
Statement of Benefit to California: 
The proposed research will benefit the State of California as it will support the career development of a uniquely trained physician scientist to establish an innovative translational stem cell research program aimed toward direct clinical application to patients. The cutting edge technologies proposed are directly in line with the fundamental purpose of the California Initiative for Regenerative Medicine. If successful, both scientific and patient advocate organizations would recognize that these advances came directly from the unique efforts of CIRM and the State of California to lead the world in stem cell research. Finally, as a result of funding of this award, further financial investments from private and public funding organizations would directly benefit the State in the years to come.
Progress Report: 
  • During this award period we have made significant progress. We have established induced pluripotent stem cell (iPSC) lines from four patients with Charcot-Marie-Tooth disease type 1A (CMT1A) due to the PMP22 duplication. We have validated our strategy to genetically engineer induced pluripotent stem cells from patients with inherited neuropathy, and have genetically engineered several patient lines. We further have begun to differentiate these iPSCs into Schwann cell precursors, to begin to investigate cell type specific defects that cause peripheral neurodegeneration in patients with CMT1A. Finally we have imported and characterized a transgenic rat model of CMT1A in order to begin to investigate the ability to inject iPSC derived Schwann cell precursors into rodent nerves as a possible neuroprotective strategy.

White matter neuroregeneration after chemotherapy: stem cell therapy for “chemobrain”

Funding Type: 
New Faculty Physician Scientist
Grant Number: 
RN3-06510
ICOC Funds Committed: 
$2 800 536
Disease Focus: 
Neurological Disorders
Brain Cancer
Cancer
Stem Cell Use: 
Adult Stem Cell
Embryonic Stem Cell
oldStatus: 
Active
Public Abstract: 
Chemotherapy for cancer is often life saving, but it also causes a debilitating syndrome of impaired cognition characterized by deficits in attention, concentration, information processing speed, multitasking and memory. As a result, many cancer survivors find themselves unable to return to work or function in their lives as they had before their cancer therapy. These cognitive deficits, colloquially known as "chemobrain" or "chemofog," are long-lasting and sometimes irreversible. For example, breast cancer survivors treated with chemotherapy suffer from cognitive disability even 20 years later. These cognitive problems occur because chemotherapy damages the neural stem and precursor cells necessary for the health of the brain's infrastructure, called white matter. We have discovered a powerful way to recruit the stem/precursor cells required for white matter repair that depends on an interaction between the electrical cells of the brain, neurons, and these white matter stem/precursor cells. In this project, we will determine the key molecules responsible for the regenerative influence of neurons on these white matter stem cells and will develop that molecule (or molecules) into a drug to treat chemotherapy-induced cognitive dysfunction. If successful, this will result in the first effective treatment for a disease that affects at least a million cancer survivors in California.
Statement of Benefit to California: 
Approximately 100,000 Californians are diagnosed with cancer each year, and the majority of these people require chemotherapy. While cancer chemotherapy is often life saving, it also causes a debilitating neurocognitive syndrome characterized by impaired attention, concentration, information processing speed, multitasking and memory. As a result, many cancer survivors find themselves unable to return to work or function in their lives as they had before their cancer therapy. These cognitive deficits, colloquially known as "chemobrain" or "chemofog" are long-lasting; for example, cognitive deficits have been demonstrated in breast cancer survivors treated with chemotherapy even 20 years later. With increasing cancer survival rates, the number of people living with cognitive disability from chemotherapy is growing and includes well over a million Californians. Presently, there is no known therapy for chemotherapy-induced cognitive decline, and physicians can only offer symptomatic treatment with medications such as psychostimulants. The underlying cause of "chemobrain" is damage to neural stem and precursor cell populations. The proposed project may result in an effective regenerative strategy to restore damaged neural precursor cell populations and ameliorate or cure the cognitive syndrome caused by chemotherapy. The benefit to California in terms of improved quality of life for cancer survivors and restored occupational productivity would be immeasurable.
Progress Report: 
  • Cancer chemotherapy can be lifesaving but frequently results in long-term cognitive deficits. This project seeks to establish a regenerative strategy for chemotherapy-induced cognitive dysfunction by harnessing the potential of the interactions between active neurons and glial precursor cells that promote myelin plasticity in the healthy brain. In the first year of this award, we have made on-track progress towards establishing a working experimental model system of chemotherapy-induced neurotoxicity that faithfully models the human disease both in terms of the cellular damage as well as functional deficits in cognition. We have also been able to identify several therapeutic candidate molecules that we will be studying in the coming years of the project to ascertain which of these candidates are sufficient to promote OPC population repletion and neuro-regeneration after chemotherapy exposure.

Stem Cell Mechanisms Governing Discrete Waves of Gliogenesis in the Childhood Brain

Funding Type: 
Basic Biology IV
Grant Number: 
RB4-06093
ICOC Funds Committed: 
$1 264 248
Disease Focus: 
Neurological Disorders
Pediatrics
Stem Cell Use: 
Adult Stem Cell
oldStatus: 
Active
Public Abstract: 
White matter is the infrastructure of the brain, providing conduits for communication between neural regions. White matter continues to mature from birth until early adulthood, particularly in regions of brain critical for higher cognitive functions. However, the precise timing of white matter maturation in the various neural circuits is not well described, and the mechanisms controlling white matter developmental/maturation are poorly understood. White matter is conceptually like wires and their insulating sheath is a substance called myelin. It is clear that neural stem and precursor cells contribute significantly to white matter maturation by forming the cells that generate myelin. In the proposed experiments, we will map the precise timing of myelination in the human brain and changes in the populations of neural precursor cells that generate myelin from birth to adulthood and define mechanisms that govern the process of white matter maturation. The resulting findings about how white matter develops may provide insights for white matter regeneration to aid in therapy for diseases such as cerebral palsy, multiple sclerosis and chemotherapy-induced cognitive dysfunction.
Statement of Benefit to California: 
Diseases of white matter account for significant neurological morbidity in both children and adults in California. Understanding the cellular and molecular mechanisms that govern white matter development the may unlock clues to the regenerative potential of endogeneous stem and precursor cells in the childhood and adult brain. Although the brain continues robust white matter development throughout childhood, adolescence and young adulthood, relatively little is known about the mechanisms that orchestrate proliferation, differentiation and functional maturation of neural stem and precursor cells to generate myelin-forming oligodendrocytes during postnatal brain development. In the present proposal, we will define how white matter precursor cell populations vary with age throughout the brain and determine if and how neuronal activity instructs neural stem and precursor cell contributions to human white matter myelin maturation. Disruption of white matter myelination is implicated in a range of neurological diseases, including cerebral palsy, multiple sclerosis, cognitive dysfunction from chemotherapy exposure, attention deficit and hyperactivity disorder (ADHD) and even psychiatric diseases such as schizophrenia. The results of these studies have the potential to elucidate clues to white matter regeneration that may benefit hundreds of thousands of Californians.
Progress Report: 
  • Formation of the insulated fiber infrastructure of the human brain (called "myelin") depends upon the function of a precursor cell type called "oligodendrocyte precursor cells (OPC)". The first Aim of this study seeks to determine how OPCs differ from each other in different regions of the brain, and over different ages. Understanding this heterogeneity is important as we explore the regenerative capacity of this class of precursor cells. We have, in the past year, isolated OPCs from various regions of the human brain from individuals at various ages and are studying the molecular characteristics of these precursor cells at the single cell level in order to define distinct OPC subpopulations. We have also begun to study the functional capabilities of OPCs isolated from different brain regions. The second Aim of this study seeks to understand how interactions between electrically active neurons and OPCs affect OPC function and myelin formation. We have found that when mouse motor cortex neurons "fire" signals in such a way as to elicit a complex motor behavior, much as would happen when one practices a motor task, OPCs within that circuit respond and myelination increases. This affects the function of that circuit in a lasting way. These results indicate that neurons and OPCs interact in important ways to modulate myelination and supports the hypothesis that OPC function may play a role in learning.

Pages

Subscribe to RSS - Neurological Disorders

© 2013 California Institute for Regenerative Medicine