Neurological Disorders

Coding Dimension ID: 
303
Coding Dimension path name: 
Neurological Disorders

White matter neuroregeneration after chemotherapy: stem cell therapy for “chemobrain”

Funding Type: 
New Faculty Physician Scientist
Grant Number: 
RN3-06510
ICOC Funds Committed: 
$2 800 536
Disease Focus: 
Neurological Disorders
Brain Cancer
Cancer
Stem Cell Use: 
Adult Stem Cell
Embryonic Stem Cell
oldStatus: 
Active
Public Abstract: 
Chemotherapy for cancer is often life saving, but it also causes a debilitating syndrome of impaired cognition characterized by deficits in attention, concentration, information processing speed, multitasking and memory. As a result, many cancer survivors find themselves unable to return to work or function in their lives as they had before their cancer therapy. These cognitive deficits, colloquially known as "chemobrain" or "chemofog," are long-lasting and sometimes irreversible. For example, breast cancer survivors treated with chemotherapy suffer from cognitive disability even 20 years later. These cognitive problems occur because chemotherapy damages the neural stem and precursor cells necessary for the health of the brain's infrastructure, called white matter. We have discovered a powerful way to recruit the stem/precursor cells required for white matter repair that depends on an interaction between the electrical cells of the brain, neurons, and these white matter stem/precursor cells. In this project, we will determine the key molecules responsible for the regenerative influence of neurons on these white matter stem cells and will develop that molecule (or molecules) into a drug to treat chemotherapy-induced cognitive dysfunction. If successful, this will result in the first effective treatment for a disease that affects at least a million cancer survivors in California.
Statement of Benefit to California: 
Approximately 100,000 Californians are diagnosed with cancer each year, and the majority of these people require chemotherapy. While cancer chemotherapy is often life saving, it also causes a debilitating neurocognitive syndrome characterized by impaired attention, concentration, information processing speed, multitasking and memory. As a result, many cancer survivors find themselves unable to return to work or function in their lives as they had before their cancer therapy. These cognitive deficits, colloquially known as "chemobrain" or "chemofog" are long-lasting; for example, cognitive deficits have been demonstrated in breast cancer survivors treated with chemotherapy even 20 years later. With increasing cancer survival rates, the number of people living with cognitive disability from chemotherapy is growing and includes well over a million Californians. Presently, there is no known therapy for chemotherapy-induced cognitive decline, and physicians can only offer symptomatic treatment with medications such as psychostimulants. The underlying cause of "chemobrain" is damage to neural stem and precursor cell populations. The proposed project may result in an effective regenerative strategy to restore damaged neural precursor cell populations and ameliorate or cure the cognitive syndrome caused by chemotherapy. The benefit to California in terms of improved quality of life for cancer survivors and restored occupational productivity would be immeasurable.
Progress Report: 
  • Cancer chemotherapy can be lifesaving but frequently results in long-term cognitive deficits. This project seeks to establish a regenerative strategy for chemotherapy-induced cognitive dysfunction by harnessing the potential of the interactions between active neurons and glial precursor cells that promote myelin plasticity in the healthy brain. In the first year of this award, we have made on-track progress towards establishing a working experimental model system of chemotherapy-induced neurotoxicity that faithfully models the human disease both in terms of the cellular damage as well as functional deficits in cognition. We have also been able to identify several therapeutic candidate molecules that we will be studying in the coming years of the project to ascertain which of these candidates are sufficient to promote OPC population repletion and neuro-regeneration after chemotherapy exposure.

Molecules to Correct Aberrant RNA Signature in Human Diseased Neurons

Funding Type: 
Early Translational III
Grant Number: 
TR3-05676
ICOC Funds Committed: 
$1 654 830
Disease Focus: 
Amyotrophic Lateral Sclerosis
Neurological Disorders
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
Approximately 5,600 people in the U.S. are diagnosed with ALS each year. The incidence of ALS is two per 100,000 people, and it is estimated that as many as 30,000 Americans may have the disease at any given time. There are no effective therapies of ALS to-date. Recent genetic discoveries have pinpointed mutations that lead to the aberrant function of two proteins that bind to RNA transcripts in neurons. Misregulation of these RNA binding proteins is responsible for the aberrant levels and processing of hundreds of RNA representing genes that are important for neuronal survival and function. In this proposal, we will use neurons generated from patient cells that harbor the mutations in these RNA binding proteins to (1) prioritize a RNA “signature” unique to neurons suffering from the toxic function of these proteins and (2) as an abundant source of raw material to enable high-throughput screens of drug-like compounds that will bypass the mutations in the proteins and “correct” the RNA signature to resemble that of a healthy neuron. If successful, our unconventional approach that uses hundreds of parallel measurements of specific RNA events, will identify drugs that will treat ALS patients.
Statement of Benefit to California: 
Our research aims to develop drug-like compounds that are aimed to treat Amyotrophic Lateral Sclerosis (ALS), which may be applicable to other neurological diseases that heavily impact Californians, such as Frontotemporal Lobar Degeneration, Parkinson’s and Alzheimer’s. The cellular resources and genomic assays that we are developing in this research will have great potential for future research and can be applied to other disease areas. The cells, in particular will be beneficial to California health care patients, pharmaceutical and biotechnology industries in terms of improved human models for drug discovery and toxicology testing. Our improved knowledge base will support our efforts as well as other Californian researchers to study stem cell models of neurological disease and design new diagnostics and treatments, thereby maintaining California's position as a leader in clinical research.
Progress Report: 
  • Our research aims to develop drug-like compounds that are aimed to treat Amyotrophic Lateral Sclerosis (ALS), which may be applicable to other neurological diseases that heavily impact Californians, such as Frontotemporal Lobar Degeneration, Parkinson’s and Alzheimer’s. In the first year, we have succeeded in improving the efficiency of motor neuron differentiation to generate high-quality motor neurons from induced pluripotent stem cells. We have generated RNA signatures from motor neurons differentiated from induced pluripotent stem cells from normal, healthy individuals whereby key proteins implicated in ALS are depleted using RNAi technology. We have also generated motor neurons from induced pluripotent stem cells that contained mutations in these key proteins and are in the process of applying genomic technologies to compare these cells to ones where we have depleted the proteins themselves. In parallel, we have started to optimize conditions for a small molecule screen to identify previously FDA-approved compounds that may alter aberrant and ALS-associated phenotypes in human cell lines.

Engineering Defined and Scaleable Systems for Dopaminergic Neuron Differentiation of hPSCs

Funding Type: 
Tools and Technologies II
Grant Number: 
RT2-02022
ICOC Funds Committed: 
$1 493 928
Disease Focus: 
Parkinson's Disease
Neurological Disorders
Stem Cell Use: 
Embryonic Stem Cell
iPS Cell
oldStatus: 
Active
Public Abstract: 
Human pluripotent stem cells (hPSC) have the capacity to differentiate into every cell in the adult body, and they are thus a highly promising source of differentiated cells for the investigation and treatment of numerous human diseases. For example, neurodegenerative disorders are an increasing healthcare problem that affect the lives of millions of Americans, and Parkinson's Disease (PD) in particular exacts enormous personal and economic tolls. Expanding hPSCs and directing their differentiation into dopaminergic neurons, the cell type predominantly lost in PD, promises to yield cells that can be used in cell replacement therapies. However, developing technologies to create the enormous numbers of safe and healthy dopaminergic neurons required for clinical development and implementation represents a bottleneck in the field, because the current systems for expanding and differentiating hPSCs face numerous challenges including difficulty in scaling up cell production, concerns with the safety of some materials used in the current cell culture systems, and limited reproducibility of such systems. An emerging principle in stem cell engineering is that basic advances in stem cell biology can be translated towards the creation of “synthetic stem cell niches” that emulate the properties of natural microenvironments and tissues. We have made considerable progress in engineering bioactive materials to support hESC expansion and dopaminergic differentiation. For example, basic knowledge of how hESCs interact with the matrix that surrounds them has led to progress in synthetic, biomimetic hydrogels that have biochemical and mechanical properties to support hESC expansion. Furthermore, biology often presents biochemical signals that are patterned or structured at the nanometer scale, and our application of materials chemistry has yielded synthetic materials that imitate the nanostructured properties of endogenous ligands and thereby promise to enhance the potency of growth factors and morphogens for cell differentiation. We propose to build upon this progress to create general platforms for hPSC expansion and differentiation through two specific aims: 1) To determine whether a fully defined, three dimensional (3D) synthetic matrix for expanding immature hPSCs can rapidly and scaleably generate large cell numbers for subsequent differentiation into potentially any cell , and 2) To investigate whether a 3D, synthetic matrix can support differentiation into healthy, implantable human DA neurons in high quantities and yields. This blend of stem cell biology, neurobiology, materials science, and bioengineering to create “synthetic stem cell niche” technologies with broad applicability therefore addresses critical challenges in regenerative medicine.
Statement of Benefit to California: 
This proposal will develop novel tools and capabilities that will strongly enhance the scientific, technological, and economic development of stem cell therapeutics in California. The most important net benefit will be for the treatment of human diseases. Efficiently expanding immature hPSCs in a scaleable, safe, and economical manner is a greatly enabling capability that would impact many downstream medical applications. The development of platforms for scaleable and safe cell differentiation will benefit therapeutic efforts for Parkinson’s Disease. Furthermore, the technologies developed in this proposal are designed to be tunable, such that they can be readily adapted to numerous downstream applications. The resulting technologies have strong potential to benefit human health. Furthermore, this proposal directly addresses several research targets of this RFA – the development and validation of stem cell scale-up technologies including novel cell expansion methods and bioreactors for both human pluripotent cells and differentiated cell types – indicating that CIRM believes that the proposed capabilities are a priority for California’s stem cell effort. While the potential applications of the proposed technology are broad, we will apply it to a specific and urgent biomedical problem: developing systems for generating clinically relevant quantities of dopaminergic neurons from hPSCs, part of a critical path towards developing therapies for Parkinson’s disease. This proposal would therefore work towards developing capabilities that are critical for hPSC-based regenerative medicine applications in the nervous system to clinically succeed. The principal investigator and co-investigator have a strong record of translating basic science and engineering into practice through interactions with industry, particularly within California. Finally, this collaborative project will focus diverse research groups with many students on an important interdisciplinary project at the interface of science and engineering, thereby training future employees and contributing to the technological and economic development of California.
Progress Report: 
  • Human pluripotent stem cells (hPSC) have the capacity to differentiate into every cell in the adult body, and they are thus a highly promising source of differentiated cells for the investigation and treatment of numerous human diseases. For example, neurodegenerative disorders are an increasing healthcare problem that affect the lives of millions of Americans, and Parkinson's Disease (PD) in particular exacts enormous personal and economic tolls. Expanding hPSCs and directing their differentiation into dopaminergic neurons, the cell type predominantly lost in PD, promises to yield cells that can be used in cell replacement therapies. However, developing technologies to create the enormous numbers of safe and healthy dopaminergic neurons required for clinical development and implementation represents a bottleneck in the field, because the current systems for expanding and differentiating hPSCs face numerous challenges including difficulty in scaling up cell production, concerns with the safety of some materials used in the current cell culture systems, and limited reproducibility of such systems.
  • This project has two central aims: 1) To determine whether a fully defined, three dimensional (3D) synthetic matrix for expanding immature hPSCs can rapidly and scaleably generate large cell numbers for subsequent differentiation into potentially any cell , and 2) To investigate whether a 3D, synthetic matrix can support differentiation into healthy, implantable human DA neurons in high quantities and yields. In the first year of this project, we have made progress in both aims. Specifically, we are conducting high throughput studies to optimize matrix properties in aim 1, and we have developed a material formulation in aim 2 that supports a level of DA differentiation that we are now beginning to optimize with a high throughput approach.
  • This blend of stem cell biology, neurobiology, materials science, and bioengineering to create “synthetic stem cell niche” technologies with broad applicability therefore addresses critical challenges in regenerative medicine.
  • Human pluripotent stem cells (hPSC) have the capacity to differentiate into every cell in the adult body, and they are thus a highly promising source of differentiated cells for the investigation and treatment of numerous human diseases. For example, neurodegenerative disorders are an increasing healthcare problem that affect the lives of millions of Americans, and Parkinson's Disease (PD) in particular exacts enormous personal and economic tolls. Expanding hPSCs and directing their differentiation into dopaminergic neurons, the cell type predominantly lost in PD, promises to yield cells that can be used in cell replacement therapies. However, developing technologies to create the enormous numbers of safe and healthy dopaminergic neurons required for clinical development and implementation represents a bottleneck in the field, because the current systems for expanding and differentiating hPSCs face numerous challenges including difficulty in scaling up cell production, concerns with the safety of some materials used in the current cell culture systems, and limited reproducibility of such systems.
  • This project has two central aims: 1) To determine whether a fully defined, three dimensional (3D) synthetic matrix for expanding immature hPSCs can rapidly and scaleably generate large cell numbers for subsequent differentiation into potentially any cell , and 2) To investigate whether a 3D, synthetic matrix can support differentiation into healthy, implantable human DA neurons in high quantities and yields. In the first year of this project, we have made progress in both aims. Specifically, we are conducting high throughput studies to optimize matrix properties in aim 1, and we have developed a material formulation in aim 2 that supports a level of DA differentiation that we are now beginning to optimize with a high throughput approach.
  • This blend of stem cell biology, neurobiology, materials science, and bioengineering to create “synthetic stem cell niche” technologies with broad applicability therefore addresses critical challenges in regenerative medicine.

Development of Single Cell MRI Technology using Genetically-Encoded Iron-Based Reporters

Funding Type: 
Tools and Technologies II
Grant Number: 
RT2-02018
ICOC Funds Committed: 
$1 930 608
Disease Focus: 
Stroke
Neurological Disorders
Stem Cell Use: 
Adult Stem Cell
oldStatus: 
Active
Public Abstract: 
Clinical application of cell transplantation therapy requires a means of non-invasively monitoring these cells in the patient. Several imaging modalities, including MRI, bioluminescence imaging, and positron emission tomography have been used to track stem cells in vivo. For MR imaging, cells are pre-loaded with molecules or particles that substantially alter the image brightness; the most common such labelling strategy employs iron oxide particles. Several studies have shown the ability of MRI to longitudinally track transplanted iron-labeled cells in different animal models, including stroke and cancer. But there are drawbacks to this kind of labeling. Division of cells will result in the dilution of particles and loss of signal. False signal can be detected from dying cells or if the cells of interest are ingested by other cells. To overcome these roadblocks in the drive toward clinical implementation of stem cell tracking, it is now believed that a genetic labeling approach will be necessary, whereby specific protein expression causes the formation of suitable contrast agents. Such endogenous and persistent generation of cellular contrast would be particularly valuable to the field of stem cell therapy, where the homing ability of transplanted stem cells, long-term viability, and capacity for differentiation are all known to strongly influence therapeutic outcomes. However, genetic labeling or "gene reporter" strategies that permit sensitive detection of rare cells, non-invasively and deep in tissue, have not yet been developed. This is therefore the translational bottleneck that we propose to address in this grant, through the development and validation of a novel high-sensitivity MRI gene reporter technology. There have been recent reports of gene-mediated cellular production of magnetic iron-oxide nanoparticles of the same composition as the synthetic iron oxide particles used widely in exogenous labeling studies. It is an extension of this strategy, combined with our own strengths in developing high-sensitivity MRI technology, that we propose to apply to the task of single cell tracking of metastatic cancer cells and neural stem cells. If we are successful with the proposed studies, we will have substantially advanced the field of in vivo cellular imaging, by providing a stable cell tracking technology that could be used to study events occurring at arbitrary depth in tissue (unlike optical methods) and over unlimited time duration and arbitrary number of cell divisions (unlike conventional cellular MRI). With the ability to track not only the fate (migration, homing and proliferation) but also the viability and function of very small numbers of stem cells will come new knowledge of the behavior of these cells in a far more relevant micro-environment compared with current in vitro models, and yet with far better visualization and cell detection sensitivity compared with other in vivo imaging methods.
Statement of Benefit to California: 
Stem cell therapy has enormous promise to become a viable therapy for a range of illnesses, including stroke, other cardiovascular diseases, and neurological diseases. Progress in the development of these therapies depends on the ability to monitor cell delivery, migration and therapeutic action at the disease site, using imaging and other non-invasive technologies. If breakthroughs could be made along these lines, it would not only be of enormous benefit to the citizens of the state of California, but would also greatly reduce healthcare costs. From a broader research perspective, the state of California is the front-runner in stem cell research, having gathered not only private investments, as demonstrated by the numerous biotechnology companies that are developing innovative tools, but also extensive public funds that allows the state, through CIRM, to sponsor stem cell research in public and private institutions. In order to preserve the leadership position and encourage research on stem cells, CIRM is calling for research proposals to develop innovative tools and technologies that will overcome current roadblocks in translational stem cell research. This proposal will benefit the state by providing important new technology that will be valuable for both basic and translational stem cell research. A key bottleneck to the further development and translation of new stem cell therapies is the inability to track stem cells through a human body. It is possible to image stem cells using embedded optical fluorescence labels, but optical imaging does not permit tracking of cells deep in tissue. Other imaging modalities and their associated cellular labels (for example positron emission tomography) have also been used to track cells but do not have the sensitivity to detect rare or single cells. Finally, MRI has been used to track cells deep in tissue, down to the single cell level, but only by pre-loading cells with a non-renewable supply of iron oxide nanoparticles, which prevents long-term tracking and assessment of cell viability and function. We propose here to develop MRI technology and a new form of genetically-encoded, long-term cell labeling technology, to a much more advanced state than available at present. This will make it possible to use MRI to detect and follow cancer and stem cells as they migrate to and proliferate at the site of interest, even starting from the single cell stage. This will provide a technology that will help stem cell researchers, first and foremost in California, to understand stem cell behavior in a realistic in vivo environment. This technology will be translatable to future human stem cell research studies.
Progress Report: 
  • We have made good progress in the first year. This project involves four separate scientific teams, brought together for the first time, representing diverse backgrounds ranging from magnetic resonance imaging (MRI) physics and cell tracking (Dr. Rutt), microbiology (Dr. Matin), nano and magnetic characterization (Dr. Moler) and stem cell imaging in stroke models (Dr. Guzman). Substantial progress has been made by all four teams, and we are starting to see important interactions between the teams. An overall summary of progress is that we have evaluated three different bacterial genes (magA, mms6, mamB) in one mammalian cell line (MDA-MB-231BR) and have shown significant iron accumulation in vitro with two of these genes, which is a very positive result implying that these genes may have the required characteristics to act as "reporter genes" for MRI-based tracking of cells labeled with these genes. MR imaging of mouse brain specimens has yielded promising results and in vivo imaging experiments are underway at medium MRI field strength (3 Tesla). At the same time, we are ramping up our higher field, higher sensitivity MR imaging methods and will be ready to evaluate the different variations of our MR reporter gene at 7 Tesla (the highest magnetic field widely available for human MRI) in the near future. Finally, methods to perform quantitative characterization of our reporter cells are being developed, with the goal of being able to characterize magnetic properties down to the single cell level, and also to be able to assess iron loading levels down to the single level in brain tissue slices.
  • We have made good progress in the second year. This project involves four separate scientific teams, brought together for the first time for this project, representing diverse backgrounds ranging from magnetic resonance imaging (MRI) physics and cell tracking (Dr. Rutt), microbiology (Dr. Matin), nano and magnetic characterization (Dr. Moler) and imaging reporter development and testing in small animal models of disease (Dr. Contag). Substantial progress has been made by all four teams, and we are starting to see important interactions between the teams.
  • An overall summary of progress is that we have been evaluating three different bacterial genes (magA, mms6, mamB) in two mammalian cell lines (MDA-MB-231BR and DAOY). In year I we had shown significant iron accumulation in vitro with two of these genes, which was a very positive result implying that these genes may have the required characteristics to act as "reporter genes" for MRI-based tracking of cells labeled with these genes. In year 2, we diversified and intensified the efforts to achieve expression of one or more of the bacterial genes in different cell lines, using different genetic constructs. We began a concerted effort to achieve optical labeling such that we could visualize the gene expression and to identify sub-cellular localization of the report gene products.
  • We obtained promising results from MR imaging of mouse brain. In vivo imaging experiments were accomplished at medium MRI field strength (3 Tesla). At the same time, we ramped up our higher field, higher sensitivity MR imaging methods and began to evaluate the sensitivity gains enabled at the higher magnetic field strength of 7 Tesla (the highest magnetic field widely available for human MRI
  • Finally, methods to perform quantitative characterization of our reporter cells were developed, with the goal of being able to characterize magnetic properties down to the single cell level, and also to be able to assess iron loading levels down to the single level in brain tissue slices.
  • We have made good progress in the third year. This project involves four separate scientific teams, brought together for the first time for this project, representing diverse backgrounds ranging from magnetic resonance imaging (MRI) physics and cell tracking (Dr. Rutt), microbiology (Dr. Matin), nano and magnetic characterization (Dr. Moler) and imaging reporter development and testing in small animal models of disease (Dr. Contag). Substantial progress has been made by all four teams, and we have benefited from important interactions between all teams in this third year.
  • An overall summary of progress is that we evaluated several iron-binding bacterial genes (magA, mamB, mms6, mms13), both singly and doubly, in two mammalian cell lines (MDA-MB-231BR and DAOY). In year 2, we diversified and intensified the efforts to achieve expression of one or more of the bacterial genes in different cell lines, using different genetic constructs. We completed an effort to achieve optical labeling such that we could visualize the gene expression and to identify sub-cellular localization of the report gene products. In year 3, while continuing to face challenges with single gene constructs, we succeeded in finding substantial iron uptake in cells containing unique double gene expression, notably magA and mms13.
  • We completed much of the development of our higher field, higher sensitivity MR imaging methods and evaluated the sensitivity gains enabled at the higher magnetic field strength of 7 Tesla (the highest magnetic field widely available for human MRI).
  • Finally, we demonstrated novel nanomagnetic methods to characterize our reporter cells, able to characterize magnetic properties down to the single cell level.

Use of hiPSCs to develop lead compounds for the treatment of genetic diseases

Funding Type: 
Tools and Technologies II
Grant Number: 
RT2-01920
ICOC Funds Committed: 
$1 833 054
Disease Focus: 
Neurological Disorders
Pediatrics
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
This study will use Ataxia-Telangiectasia (A-T), an early-onset inherited neurodegenerative disease of children, as a model to study the mechanisms leading to cerebellar neurodegeneration and to develop a drug that can slow or halt neurodegeneration. We will start with skin cells that were originally grown from biopsies of patients with A-T who specifically carry “nonsense” type of mutations in the ATM gene. We will convert these skin cells to stem cells capable of forming neural cells that are lacking in the brain (cerebellum) of A-T patients; presumably these neural cells need ATM protein to develop normally. We will then test the effects of our most promising new “readthrough compounds” (RTCs) on the newly-developed neural cells. Our lab has been developing the drugs over the past six years. At present, there is no other disease model (animal or in a test tube) for evaluating the effects of RTCs on the nervous system and its development. Nor is there any effective treatment for the children with A-T or other progressively-deteriorating ataxias. Success in this project would open up at least three new areas for understanding and treating neurodegenerative diseases: 1) the laboratory availability of human neural cells with specific disease-causing mutations; 2) a new approach to learning how the human brain develops and 3) a new class of drugs (RTCs) that correct nonsense mutations, even in the brain, and may correct neurodegeneration.
Statement of Benefit to California: 
This project seeks to merge the expertise of two major research cultures: one with long-standing experience in developing a treatment for a progressive childhood-onset disease called Ataxia-telangiectasia and another with recent success in converting skin cells into cells of the nervous system. California citizens will benefit by finding new ways to treat neurodegenerative diseases, like A-T, Parkinson and Alzheimer, and expanding the many possible applications of stem cell technology to medicine. More specifically, we will construct a new “disease in a dish” model for neurodegeneration, and this will enable our scientists to test the positive and negative effects of a new class of drugs for correcting inherited diseases/mutations directly on brain cells. These advances will drastically decrease drug development costs and will stimulate new biotech opportunities and increase tax revenues for California, while also training the next generation of young scientists to deliver these new medical products to physicians and patients within the next five years.
Progress Report: 
  • No effective treatments are available for most neurodegenerative diseases. This study uses Ataxia-Telangiectasia (A-T), an early-onset inherited neurodegenerative disease of children, as a model to study the mechanisms leading to cerebellar neurodegeneration and to develop a drug that can slow or halt neurodegeneration. Aim1 proposed to use “Yamanaka factors” to reprogram A-T patient-derived skin fibroblasts, which carry nonsense mutations that we have shown can be induced by RTCs to express full-length and functional ATM protein, into iPSCs. We have successfully reprogrammed A-T fibroblasts to hiPSCs and teratoma formation shows their pluripotency. Aim2 will use these established iPSCs to model neurodegeneration, focusing on differentiation to cerebellar cells, such as Purkinje cells and granule cells. We have generated the Purkinje cell promoter –driven GFP reporter system and will use this system to examine the differentiation capacity of A-T iPSCs to Purkinje cells. Aim3 will utilize the newly-developed neural cells carrying disease-causing ATM nonsense mutations as targets for evaluating the potential therapeutic effects of leading RTCs. We have already started to test the efficacy and toxicity of our lead RTC compounds on A-T iPSC-derived neural progenitor cells. The continuation of this study will help us to pick up one promising RTC compound for IND application. This project is on the right track towards its objective for the development of disease models with hiPSCs and the test of our lead small molecule compounds for the treatment of A-T or other neurodegenerative diseases.
  • No effective treatments are available for most neurodegenerative diseases. This study uses Ataxia-Telangiectasia (A-T), an early-onset inherited neurodegenerative disease of children, as a model to study the mechanisms leading to cerebellar neurodegeneration and to develop a drug that can slow or halt neurodegeneration. Aim1 proposed to use “Yamanaka factors” to reprogram A-T patient-derived skin fibroblasts, which carry nonsense mutations that we have shown can be induced by RTCs to express full-length and functional ATM protein, into iPSCs. Aim2 will use these established iPSCs to model neurodegeneration, focusing on differentiation to cerebellar cells, such as Purkinje cells and granule cells. Aim3 will utilize the newly-developed neural cells carrying disease-causing ATM nonsense mutations as targets for evaluating the potential therapeutic effects of leading RTCs.
  • During the past two years of this project, we established Ataxia-telangiectasia (A-T) patient-derived iPSC lines from two patients which contain nonsense mutations and splicing mutations. These two lines are currently used for testing the mutation-targeted therapies with small molecule readthrough (SMRT) compounds and antisense morpholino oligonucleotides (AMOs). Manuscript describing this work was recently accepted, showing that SMRT compounds can abrogate phenotypes of A-T iPSC-derived neural cells
  • This is the third year (last year) progress report. During the first two years of this project, we have already established two Ataxia-telangiectasia (A-T) patient-derived iPSC lines which contain nonsense mutations and splicing mutations, respectively. These two lines are currently used for testing the mutation-targeted therapies with small molecule readthrough (SMRT) compounds and antisense morpholino oligonucleotides (AMOs). In the third year, we have formally published our results from the first two years’ research work in Nature Communications (Lee et al., 2013). In the last year, we continue to make progresses in the characterization of A-T iPSCs and their derived neuronal cells as well as developing the mutation-targeted therapies for neurodegeneration diseases

Development of a Hydrogel Matrix for Stem Cell Growth and Neural Repair after Stroke

Funding Type: 
Tools and Technologies II
Grant Number: 
RT2-01881
ICOC Funds Committed: 
$1 825 613
Disease Focus: 
Stroke
Neurological Disorders
Stem Cell Use: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
Stroke is the leading cause of adult disability. Most patients survive their initial stroke, but do not recover fully. Because of incomplete recovery, up to 1/3 of stroke patients are taken from independence to a nursing home or assisted living environment, and most are left with some disability in strength or control of the arms or legs. There is no treatment that promotes brain repair and recovery in this disease. Recent studies have shown that stem cell transplantation into the brain can promote repair and recovery in animal models of stroke. However, a stem cell therapy for stroke has not reached the clinic. There are at least three limitations to the development of a human stroke stem cell therapy: most of the transplanted cells die, most of the cells that survive do not interact with the surrounding brain, and the process of injecting stem cells into the brain may damage the normal brain tissue that is near the stroke site. The studies in this grant develop a novel investigative team and research approach to achieve a solution to these limits. Using the combined expertise of engineering, stem cell biology and stroke scientists the studies in this grant will develop tissue bioengineering systems for a stem cell therapy in stroke. The studies will develop a biopolymer hydrogel that provides a pro-growth and pro-survival environment for stem cells when injected with them into the brain. This approach has three unique aspects. First, the hydrogel system utilizes biological components that mimic the normal brain environment and releases specific growth factors that enhance transplanted stem cell survival. Second, these growth factors will also likely stimulate the normal brain to undergo repair and recovery, providing a dual mechanism for neural repair after stroke. Third, this approach allows targeting of the stroke cavity for a stem cell transplant, and not normal brain. The stroke cavity is an ideal target for a stroke stem cell therapy, as it is a cavity and can receive a stem cell transplant without displacing normal brain, and it lies adjacent to the site in the brain of most recovery in this disease—placing the stem cell transplant near the target brain region for repair in stroke. The progress from stroke stem cell research has identified stem cell transplantation as a promising treatment for stroke. The research in this grant develops a next generation in stem cell therapies for the brain by combining new bioengineering techniques to develop an integrated hydrogel/stem cell system for transplantation, survival and neural repair in this disease.
Statement of Benefit to California: 
Advances in the early treatment of stroke have led to a decline in the death rate from this disease. At the same time, the overall incidence of stroke is projected to substantially increase because of the aging population. These two facts mean that stroke will not be lethal, but instead produce a greater number of disabled survivors. A 2006 estimate placed over half of the annual cost in stroke as committed to disabled stroke survivors, and exceeding $30 billion per year in the United States. The studies in this grant develop a novel stem cell therapy in stroke by focusing on one major bottleneck in this disease: the inability of most stem cell therapies to survive and repair the injured brain. With its large population California accounts for roughly 24% of all stroke hospital discharges in the Unites States. The development of a new stem cell therapy approach for this disease will lead to a direct benefit to the State of California.
Progress Report: 
  • This grant develops a tissue bioengineering approach to stem cell transplantation as a treatment for brain repair and recovery in stroke. Stem cell transplantation has shown promise as a therapy that promotes recovery in stroke. Stem cell transplantation in stroke has been limited by poor survival of the transplanted cells. The studies in this grant utilize a multidisciplinary team of bioengineers, neuroscientists/neurologists and stem cell biologists to develop an approach in which stem or progenitor cells can be transplanted into the site of the stroke within a biopolymer hydrogel that provides an environment which supports cell survival and treatment of the injured brain. These hydrogels need to contain naturally occurring brain molecules, so that they do not release foreign or toxic components when they degrade. Further, the hydrogels have to remain liquid so that the injection approach can be minimally invasive, and then gel within the brain. In the past year the fundamental properties of the hydrogels have been determined and the optimal physical characteristics, such as elasticity, identified. Hydrogels have been modified to contain molecules which stem or progenitor cells will recognize and support survival, and to contain growth factors that will both immediately release and, using a novel nanoparticle approach, more slowly release. These have been tested in culture systems and advanced to testing in rodent stroke models. This grant also tests the concept that the stem/progenitor cell that is more closely related to the area within the brain that receives the transplant will provide a greater degree of neural repair and recovery. Progress has been made in the past year in differentiating induced pluripotent stem cells along a lineage that more closely resembles the part of the brain injured in this stroke model, the cerebral cortex.
  • This grant determines the effect of a tissue bioengineering approach to stem cell survival and engraftment after stroke, as means of improving functional recovery in this disease. Stem cell transplantation in stroke has been limited by the poor survival of transplanted cells and their lack of differentiation in the brain. These studies use a biopolymer hydrogel, made of naturally occurring molecules, to provide a pro-survival matrix to the transplanted cells. The studies in the past year developed the chemical characteristics of the hydrogel that promote survival of the cells. These characteristics include the modification of the hydrogel so that it contains specific amounts of protein signals which resemble those seen in the normal stem cell environment. Systematic variation of the levels of these protein signals determined an optimal concentration to promote stem cell survival in vitro. Next, the studies identified the chemistry and release characteristics from the hydrogel of stem cell growth factors that normally promotes survival and differentiation of stem cells. Two growth factors have been tested, with the release characteristics more completely defined with one specific growth factor. The studies then progressed to determine which hydrogels supported stem cell survival in vivo in a mouse model of stroke. Tests of several hydrogels determined that some provide poor cell survival, but one that combines the protein signals, or “motifs”, that were studied in vitro provided improved survival in vivo. These hydrogels did not provoke any additional scarring or inflammation in surrounding tissue after stroke. Studies in the coming year will now determine if these stem cell/hydrogel matrices promote recovery of function after stroke, testing both the protein motif hydrogels and those that contain these motifs plus specific growth factors.
  • This grant determines the effect of a tissue bioengineering approach to stem cell survival and engraftment after stroke, as means of improving functional recovery in this disease. Stem cell transplantation in stroke has been limited by the poor survival of transplanted cells and their lack of differentiation in the brain. These studies use a biopolymer hydrogel, made of naturally occurring molecules, to provide a pro-survival matrix to the transplanted cells. The studies in past years developed the two chemical characteristics of hydrogels that contain recognition or signal elements for stem cells: “protein motifs” that resemble molecules in the normal stem cell environment and growth factors that normally communicate to stem cells in the brain. The hydrogels were engineered so that they contain these familiar stem cell protein motifs and growth factors and release the growth factors over a slow and sustained time course. In the past year on this grant, we tested the effects of hydrogels that had the combined characteristics of these protein motifs and growth factors, at varying concentrations, for their effect on induced pluripotent neural precursor cells (iPS-NPCs) in culture. We identified an optimum concentration for cell survival and for differentiation into immature neurons. We then initiated studies of the effects of this optimized hydrogel in vivo in a mouse model of stroke. These studies are ongoing. They will determine the cell biological effect of this hydrogel on adjacent tissue and on the transplanted cells—determining how the hydrogel enhances engraftment of the transplant. The behavioral studies, also under way, will determine if this optimized hydrogel/iPS-NPC transplant enhances recovery of movement, or motor, function after stroke.

Developing a drug-screening system for Autism Spectrum Disorders using human neurons

Funding Type: 
Early Translational II
Grant Number: 
TR2-01814
ICOC Funds Committed: 
$1 491 471
Disease Focus: 
Autism
Neurological Disorders
Pediatrics
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
Autism and autism spectrum disorders (ASD) are complex neurodevelopmental diseases that affect 1 in 150 children in the United States. Such diseases are mainly characterized by deficits in verbal communication, impaired social interaction, and limited and repetitive interests and behavior. Because autism is a complex spectrum of disorders, a different combination of genetic mutations is likely to play a role in each individual. One of the major impediments to ASD research is the lack of relevant human disease models. ASD animal models are limited and cannot reproduce the important language and social behavior impairment of ASD patients. Moreover, mouse models do not represent the vast human genetic variation. Reprogramming of somatic cells to a pluripotent state (induced pluripotent stem cells, iPSCs) has been accomplished using human cells. Isogenic pluripotent cells are attractive from the prospective to understanding complex diseases, such as ASD. Our preliminary data provide evidence for an unexplored developmental window in ASD wherein potential therapies could be successfully employed. The model recapitulates early stages of ASD and represents a promising cellular tool for drug screening, diagnosis and personalized treatment. By testing whether drugs have differential effects in iPSC-derived neurons from different ASD backgrounds, we can begin to unravel how genetic variation in ASD dictates responses to different drugs or modulation of different pathways. If we succeed, we may find new molecular mechanisms in ASD and new compounds that may interfere and rescue these pathways. The impact of this approach is significant, since it will help better design and anticipate results for translational medicine. Moreover, the collection and molecular/cellular characterization of these iPSCs will be an extremely valuable tool to understand the fundamental mechanism behind ASD. The current proposal uses human somatic cells converted into iPSC-derived neurons. The proposed experiments bring our analyses to real human cell models for the first time. We anticipate gaining insights into the causal molecular mechanisms of ASD and to discover potential biomarkers and specific therapeutic targets for ASD.
Statement of Benefit to California: 
Autism spectrum disorders, including Rett syndrome, Angelman syndrome, Timothy syndrome, Fragile X syndrome, Tuberous sclerosis, Asperger syndrome or childhood disintegrative disorder, affect many Californian children. In the absence of a functionally effective cure or early diagnostic tool, the cost of caring for patients with such pediatric diseases is high, in addition to a major personal and family impact since childhood. The strikingly high prevalence of ASD, dramatically increasing over the past years, has led to the emotional view that ASD can be traced to a single source, such as vaccine, preservatives or other environmental factors. Such perspective has a negative impact on science and society in general. Our major goal is to develop a drug-screening platform to rescue deficiencies showed from neurons derived from induced pluripotent stem cells generated from patients with ASD. If successful, our model will bring novel insights on the dentification of potential diagnostics for early detection of ASD risk, or ability to predict severity of particular symptoms. In addition, the development of this type of pharmacological therapeutic approach in California will serve as an important proof of principle and stimulate the formation of businesses that seek to develop these types of therapies (providing banks of inducible pluripotent stem cells) in California with consequent economic benefit.
Progress Report: 
  • During the first year of the project, we focused on creating a cell bank of reprogrammed fibroblasts derived from several autistic patients. These pluripotent stem cells were then induced to differentiate into neurons and gene expression analyses will be done at different time points along the process. We also used some of the syndromic and non-syndromic patients for neuronal phenotypic assays and found that a subset of idiopathic autism cases displayed a molecular overlap with Rett syndrome. Our plan is to use these data to test the ability of candidate drugs on reverting some of the neuronal defects observed in patient neurons.
  • The goal of this CIRM translational award is to generate a hiPSC-based drug-screening platform to identify potential therapies or biomarkers for autism spectrum disorders. In this second year we have made significant progress toward this goal by working on validating several neuronal phenotypes derived from iPSCs from idiopathic and syndromic autistic patients. We also made significant progress in order to optimize a synaptic readout for the screening platform. This step was important to speed up drug discovery. Using Rett syndrome iPSC-derived neurons as a prototype, we showed that we could rescue defect in synaptogenesis using a collection of FDA-approved drugs. Finally, we have initiated our analyses on global gene expression, from several neurons and progenitor cells derived from controls and autistic patients. We expect to find pathways that are altered in subgroups of patients, defined by specific clinical phenotypes.
  • The goal of this CIRM translational award is to generate a hiPSC-based drug-screening platform to identify potential therapies or biomarkers for ASDs. We have made significant progress toward this goal by working on validating several neuronal phenotypes derived from iPSC from Rett syndrome (RTT) and idiopathic autistic patients. We also made significant progress to optimize the readout for our screening platform. This was important to speed up drug discovery. Using RTT iPSC as a prototype, we showed that we could rescue defect in synaptogenesis using a collection of FDA-approved drugs. Finally, we initiate our analyses on gene expression, collected from several neurons and progenitor cells derived from controls and autistic patients. We expect to find pathways that are altered in subgroups of patients, defined by specific clinical phenotypes. Here, we describe the results of our drug screening, using FDA-approved drugs in a repurposing strategy. We also show for the first time that iPSC-derived human neurons are able to generate synchronized neuronal networks. RTT neurons behave differently from controls. Our focus now is on the completion of our gene expression analyses and to validate positive drugs using a battery of secondary cellular assays.

Inhibitory Nerve Cell Precursors: Dosing, Safety and Efficacy

Funding Type: 
Early Translational II
Grant Number: 
TR2-01749
ICOC Funds Committed: 
$1 752 058
Disease Focus: 
Neurological Disorders
Epilepsy
Pediatrics
Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Active
Public Abstract: 
Many neurological disorders are characterized by an imbalance between excitation and inhibition. Our ultimate goal: to develop a cell-based therapy to modulate aberrant brain activity in the treatment of these disorders. Our initial focus is on epilepsy. In 20-30% of these patients, seizures are unresponsive to drugs, requiring invasive surgical resection of brain regions with aberrant activity. The candidate cells we propose to develop can inhibit hyperactive neural circuits after implantation into the damaged brain. As such, these cells could provide an effective treatment not just for epilepsy, but also for a variety of other neurological conditions like Parkinson's, traumatic brain injury, and spasticity after spinal cord injury. We propose to bring a development candidate, a neuronal cell therapy, to the point of preclinical development. The neurons that normally inhibit brain circuits originate from a region of the developing brain called the medial ganglionic eminence (MGE). When MGE cells are grafted into the postnatal or adult brain, they disperse seamlessly and form inhibitory neurons that modulate local circuits. This property of MGE cells has not been shown for any other type of neural precursor. Our recent studies demonstrate that MGE cells grafted into an animal model of epilepsy can significantly decrease the number and severity of seizures. Other "proof-of-principle" studies suggest that these progenitor cells can be effective treatments in Parkinson's. In a separate effort, we are developing methods to differentiate large numbers of human MGE (H-MGE) cells from embryonic stem (ES) cells. To translate this therapy to humans, we need to determine how many MGE cells are required to increase inhibition after grafting and establish that this transplantation does not have unwanted side-effects. In addition, we need simple assays and reagents to test preparations of H-MGE cells to determine that they have the desired migratory properties and differentiate into nerve cells with the expected inhibitory properties. At present, these issues hinder development of this cell-based therapy in California and worldwide. We propose: (1) to perform "dose-response" experiments using different graft sizes of MGE cells and determine the minimal amount needed to increase inhibition; (2) to test whether MGE transplantation affects the survival of host neurons or has unexpected side-effects on the behavior of the grafted animals; (3) to develop simple in vitro assays (and identify reagents) to test H-MGE cells before transplantation. Our application takes advantage of an established multi-lab collaboration between basic scientists and clinicians. We also have the advice of neurosurgeons, epilepsy neurologists and a laboratory with expertise in animal behavior. If a safe cell-based therapy to replace lost inhibitory interneurons can be developed and validated, then clinical trials in patients destined for invasive neurosurgical resections could proceed.
Statement of Benefit to California: 
This proposal is designed to accelerate progress toward development of a novel cell-based therapy with potentially broad benefit for the treatment of multiple neurological diseases. The potential to translate our basic science findings into a treatment that could benefit patients is our primary focus and our initial target disease is epilepsy. This work will provide benefits to the State of California in the following areas: * California epilepsy patients and patients with other neurological diseases will benefit from improved therapies. The number of patients refractory to available medications is significant: a recent report from the Center for Disease Control and Prevention [www.cdc.gov/epilepsy/] estimates that 1 out of 100 adults have epilepsy and up to one-third of these patients are not receiving adequate treatment. In California, it is one of the most common disabling neurological conditions. In most states, including California, epileptic patients whose seizures aren't well-controlled cannot obtain a driver's license or work certain jobs -- truck driving, air traffic control, firefighting, law enforcement, and piloting. The annual cost estimates to treat epilepsy range from $12 to $16 billion in the U.S. Current therapies curb seizures through pharmacological management but are not designed to modify brain circuits that are damaged or dysfunctional. The goals of our research program is to develop a novel cell-based therapy with the potential to eliminate seizures and improve the quality of life for this patient population, as well as decrease the financial burden to the patients' families, private insurers, and state agencies. Since MGE cells can mediate inhibition in other neurological and psychiatric diseases, the neural based therapy we are proposing is likely to have a therapeutic and financial impact that is much broader. * Technology transfer in California. Historically, California institutions have developed and implemented a steady flow of technology transfer. Based on these precedents and the translational potential of our research goals, both to provide bioassays and potentially useful markers to follow the differentiation of MGE cells, this program is likely to result in licensing of further technology to the corporate sector. This will have an impact on the overall competitiveness of our state's technology sector and the resulting potential for creation of new jobs. * Stem cell scientists training and recruitment in California. As part of this proposal we will train a student, technicians, and associated postdocs in MGE progenitor derivation, transplantation, and cell-based therapy for brain repair. Moreover, the translational nature of the disease-oriented proposal will result in new technology which we expect to be transferable to industry partners for facilitate development into new clinical alternatives.
Progress Report: 
  • Advances in stem cell research and regenerative medicine have led to the potential use of stem cell therapies for neurodegenerative, developmental and acquired brain disease. The Alvarez-Buylla lab at UCSF is part of a collaboration that is pioneering the investigation of therapeutic interneuron replacement for the correction of neurological disorders arising from defects in neural excitation/inhibition. Our preliminary data suggests that grafting interneuron precursors into the postnatal rodent brain allows for up to a 35% increase in the number of cortical interneurons. Interneuron replacement has been used in animal models to modify plasticity, prevent spontaneous epileptic seizures, ameliorate hemiparkinsonian motor symptoms, and prevent PCP-induced cognitive deficits. Transplantation of interneuron precursors therefore holds therapeutic potential for treatment of human neurological diseases involving an imbalance in circuit inhibition/excitation.
  • The goal of the research in progress here is to ultimately prepare human interneuron precursors for clinical trials. Towards the therapeutic development of inhibitory neuron precursor transplantation for human neurological disorders, we have made significant progress in the differentiation of these cells from human ESCs and will complete optimization of this protocol. We will continue our investigation of rodent-derived interneuron transplantation to obtain relevant preclinical data for dose response, safety and efficacy in animal models. These dosing and safety data will then serve as the baseline for comparison with human interneuron precursors and inform design of preclinical studies of these cells in immunosuppressed mice. Together, these data will provide essential information for developing a plan for clinical trials using human interneuron precursors.
  • During this first year, we have made considerable headway in the optimization of the human interneuron precursor differentiation protocol, verified functional engraftment of these cells in mice, and begun to collect dose, safety and efficacy data for rodent-derived interneuron transplantation. Importantly, we have achieved the development of a protocol that robustly generates interneuron-like progenitor cells from human ES cells and demonstrated that these progenitors mature in vitro and in vivo into GABAergic inhibitory interneurons with functional potential. We have also compared the behavior of primary fetal cells to these human interneuron precursor-like cells both in vivo and in vitro. As we continue to optimize our ES cell differentiation protocol, these primary interneuron precursors will enable initial human cell dose response and behavior experiments and, along with rodent-derived cells, will provide important baseline measures.
  • In sum, this work will provide essential knowledge for the therapeutic development of inhibitory neuron transplantation. The experiments underway will yield insights that will be critical to the development of a clinical trial using human interneuron precursors.
  • During the reporting period, we have developed methods to enable the optimization of inhibitory nerve precursor cell, or MGE cell, derivation from human pluripotent stem cells (hPSCs). Optimization encompassed increasing MGE cell motility, enhancing MGE cell maturation into inhibitory nerve subtypes, and elimination of tumors post-transplantation into the rodent brain. Furthermore, we demonstrated that the injected hPSC-MGE cells functionally matured into inhibitory nerves with advanced physiological properties that integrated into the rodent brain. In addition, we determined an optimum dose of injected mouse MGE cells in rodent. Moreover, following injection of either the optimum dose or a 10-fold higher dose of mouse MGE cells, we found no detectable behavioral side effects from MGE cell transplantation.
  • In this reporting period, we continued to improve the acquisition of migratory medial ganglionic eminence (MGE)-type interneurons from human embryonic stem cells (hESC). We compared alternative procedures by testing MGE marker expression, and we developed additional tests to measure cell division and migration of MGE cell made from hESCs. We also extended our methods to clinical-grade hESC lines. With these optimized procedures, both research and clinical grade lines were transplanted into the rodent brain. In addition, we completed an evaluation of human fetal MGE transplants after-injection into the rodent brain. Finally, we report safety, survival, and neuronal differentiation of both hESC-MGE and human Fetal-MGE grafts at three months post-injection into the brain of the non-human primate rhesus macaque. A manuscript is in preparation concerning this work. Our work has continued to show the viability of using a cell therapy technique in the potential treatment of brain-related disease.

Molecular mechanisms involved in adult neural stem cell maintenance

Funding Type: 
New Faculty I
Grant Number: 
RN1-00527
ICOC Funds Committed: 
$2 348 520
Disease Focus: 
Aging
Neurological Disorders
Stem Cell Use: 
Adult Stem Cell
Embryonic Stem Cell
Cell Line Generation: 
Adult Stem Cell
oldStatus: 
Active
Public Abstract: 
The adult brain contains a pool of stem cells, termed adult neural stem cells, that could be used for regenerative purposes in diseases that affect the nervous system. The goal of this proposal is to understand the mechanisms that promote the maintenance of adult neural stem cells as an organism ages. Understanding the factors that maintain the pool of adult neural stem cells should open new avenues to prevent age-dependent decline in brain functions and to use these cells for therapeutic purposes in neurological and neurodegenerative diseases, such as Alzheimer’s or Parkinson’s diseases. Our general strategy is to use genes that play a central role in organismal aging as we have recently discovered that two of these genes, Foxo and Sirt1, have profound effects on the maintenance and self-renewal of adult neural stem cells. We propose to use these genes as a molecular handle to understand the mechanisms of maintenance of neural stem cells. Harnessing the regenerative power of stem cells by acting on genes that govern aging will provide a novel angle to identify stem cell therapeutics for neurological and neurodegenerative diseases, most of which are age-dependent.
Statement of Benefit to California: 
As the population of the State of California ages, neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease affect increasing numbers of patients. There are no efficient treatments of cures for these diseases. In addition to the devastating effects of neurodegenerative diseases on the patients and their relatives, the cost of caring for California’s Alzheimer patients—about $22.4 billion in 2000—has been estimated to triple by 2040 due to the aging of the baby-boomer’s generation. Stem cells from the brain, or neural stem cells, hold the promise of treatments and cures for these neurodegenerative diseases. One therapeutic strategy will be to replace degenerating cells in patients with stem cells. Another approach would be to identify strategy to better maintain the pool of neural stem cell with age. Both approaches will only be possible when the mechanisms controlling the maintenance of these stem cells and their capacity to produce their functional progeny are better understood in young and old individuals. We propose to study the mode of action in neural stem cells of two genes, Foxo and Sirt, that are known to play major roles to extend lifespan in a variety of species. These genes are major targets for the development of stem cell therapeutic strategies that will benefit a wide range of patients suffering from age-dependent neurodegenerative disorders. The development of effective replacement therapies in neurodegenerative diseases will be a benefit for the rapidly aging population of California; it will also alleviate the financial burden that these age-related disorders create for the State of California.
Progress Report: 
  • Aging is accompanied by a decline in the number and the function of adult stem cells in several tissues. In the brain, the depletion of adult neural stem cells (NSC) may underlie impaired cognitive performance associated with aging. Discovering the factors that govern the maintenance of adult NSC during aging should allow us to harness their regenerative potential for therapeutic purposes during normal aging and age-related neurodegenerative disorders. We have recently found that two 'longevity genes', Foxo3 and Sirt1, are critical for adult NSC function. In the past year, we have published a manuscript showing that Foxo3 is necessary for the maintenance of NSC in the adult brain. We have also started to explore the critical mechanisms by which Foxo3 maintains adult neural stem cells in the brain. We have used ultra-high throughput sequencing approach to reveal that Foxo3 is recruited to the regulatory regions of 3,000 genes in the adult neural stem cells, thereby triggering a gene expression network that regulates both the ability of neural stem cells to divide and their ability to give rise to progeny. Finally, we have obtained new results in the past year, showing that Sirt1, another 'longevity gene' is critical for the proper function of neural stem cells in the adult brain, and their ability to give rise to differentiated cells. Together, our results will help understand the regulation of neural stem cell maintenance in aging individuals and will provide new avenues to preserve the pool of these cells in the brain. Modulating longevity genes to harness the regenerative power of stem cells will provide new avenues for stem cell therapeutics for neurological and neurodegenerative diseases, most of which are age-dependent.
  • The adult brain contains pools of stem cells called neural stem cells that are critical for
  • the formation of new neurons in the adult brain. During aging, the number of neural stem
  • cells and their ability to give rise to new neurons strikingly decline. This decline could
  • underlie at least in part memory deterioration that occurs during aging and age-related
  • neurodegenerative disease such as Alzheimer’s disease. We have been interested over
  • the years in the importance of genes that regulate overall longevity in the control of the
  • pool of neural stem cells. We made the important discovery that Foxo3, a gene that has
  • been implicated in human exceptional longevity, is necessary for preserving the neural
  • stem cell pool. In the past year, we have made extensive progress in characterizing the
  • ensemble of genes regulated by Foxo3 in adult neural stem cells, a key step in
  • unraveling the mechanisms by which neural stem cells are maintained intact. In the past
  • year, we have observed that in the absence of another gene important for longevity
  • Sirt1, there is an unexpected increase in oligodendrocyte progenitors, which are cells
  • that are important for myelination of neurons, which is important for the proper
  • propagation of the neuronal information. Defects in myelination, which happen for
  • example in multiple sclerosis, have devastating consequences on the neurological
  • function. In the past year, we have made progress to understand the cellular and
  • molecular mechanism of action that enhances the production of oligodendrocytes in the
  • absence of Sirt1. Finally, we have made progress in initiating a project in human stem
  • cells that can be reprogrammed from adult cells, to extend our findings from mice to
  • humans, in particular as it relates to human diseases that have an age-dependent
  • component.
  • The number and function of adult stem cells decrease with age in a number of tissues. In the nervous system, the depletion of functional adult neural stem cells (NSC) may be responsible for impaired cognitive performance associated with normal or pathological aging. Understanding the factors that govern the maintenance of adult NSC should provide insights into their regenerative potential and open new avenues to use these cells for therapeutic purposes during normal aging and age-related neurodegenerative disorders.
  • Clues to key regulators of stem cell functions may come from studies of the genetics of aging, as genes that regulate longevity may do so by maintaining stem cells. To date, the most compelling examples for genes that control aging in a variety of organisms include the insulin-Akt-Foxo transcription factor pathway and the Sirt deacetylases. We have recently found that Foxo3 regulates a network of genes in adult NSC and interact with another transcription factor, called Ascl1, to preserve the integrity of the NSC pool and prevent the premature exhaustion of this important pool of cells. In the past year, we have also made the surprising discovery that inactivating Sirt1 in adult neural stem cells leads to the increased production of oligodendrocyte progenitors, which are cells that are crucial for myelination and could help demyelinating diseases, such as multiple sclerosis, or demyeliating injuries such as spinal cord injuries. Importantly, the enzymatic activity of Sirt1 can be targeted by small molecules, underscoring the potential for Sirt1 as a therapeutic target in stem cell and oligodendrocyte production. In the last year, we have also made significant progress in using cellular reprogramming to investigate the role of longevity genes in human cells. Our work examines the mechanisms by which ‘longevity genes’ regulate stem cell function and maintenance. Harnessing the regenerative power of stem cells by acting on longevity genes will provide a novel angle to identify stem cell therapeutics for regenerative medicine.
  • The adult brain contains reservoirs of neural stem cells that are critical for the formation of new neurons, oligodendrocytes, and astrocytes in the adult brain. During aging, the number of neural stem cells and their ability to give rise to new neurons strikingly decline. This decline could underlie at least in part the decline in memory that occurs during aging. We are interested in the importance of genes that regulate organismal longevity in the control of the reservoir of neural stem cells. We discovered that Foxo3, a transcription factor that has been implicated in human exceptional longevity, is important for regulating the neural stem cell pool pool. In the past year, we have made extensive progress in characterizing the interaction between Foxo3 and specific chromatin states at target genes in adult neural stem cells, which provides us with a mechanistic view onto how longevity genes can affect specific networks of target genes in neural stem cells in adult organisms. In the past year, we have made significant progress in testing the role of a gene involved in healthspan and longevity in a number of organisms, the deacetylase Sirt1, in adult neural stem cell function. We have observed that Sirt1 inactivation, whether genetic or pharmacological, leads to an increase in oligodendrocyte progenitors, which are cells that are important for myelination of axons. We have found that Sirt1 inactivation is beneficial for models of demyelinating injuries and diseases, which has important consequences for multiple sclerosis. Finally, we are making progress in reprogramming adult human fibroblasts into induced pluripotent stem cells and induced NSCs, with the aim to test the importance of longevity genes in this process.

Defining the Isoform-Specific Effects of Apolipoprotein E on the Development of iPS Cells into Functional Neurons in Vitro and in Vivo

Funding Type: 
New Faculty II
Grant Number: 
RN2-00952
ICOC Funds Committed: 
$2 847 600
Disease Focus: 
Stroke
Neurological Disorders
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
GOALS We propose to determine the effects of different forms of apoE on the development of induced pluripotent stem (iPS) cells into functional neurons. In Aim 1, iPS cells will be generated from skin cells of adult knock-in (KI) mice expressing different forms of human apoE and in humans with different apoE genotypes. In Aim 2, the development of the iPS cells into functional neurons in culture and in mouse brains will be compared. In Aim 3, the effects of different forms of apoE on the functional recovery of mice with acute brain injury treated with iPS cell–derived neural stem cells (NSCs) will be assessed. RATIONALE AND SIGNIFICANCE The central nervous system (CNS) has limited ability to regenerate and recover after injury. For this reason, recovery from acute and chronic neurological diseases, such as stroke and Alzheimer’s disease (AD), is often incomplete and disability results. Embryonic stem cells have great promise for treating or curing neurological diseases, but their therapeutic use is limited by ethical concerns and by rejection reactions after allogenic transplantation. The generation of iPS cells from somatic cells offers a way to potentially circumvent the ethical issues and to generate patient- and disease-specific stem cells for future therapy. In the CNS, apoE plays important roles in lipid homeostasis and in neuronal maintenance. However, apoE2, apoE3, and apoE4 differ in their ability to accomplish these tasks. ApoE4, the major genetic risk factor for AD, is associated with poor clinical outcome and more rapid progression or greater severity of head trauma, stroke, Parkinson’s disease, multiple sclerosis, and amyotrophic lateral sclerosis—all potential targets of stem cell therapy. This proposal builds on three novel findings in human apoE-KI mice. (1) NSCs express apoE. (2) ApoE plays a role in cell-fate determination (neuron vs astrocyte) of NSCs. (3) ApoE4 impairs the neuronal development of NSCs. Thus, we hypothesize that transplantation of iPS cells derived from apoE4 carriers (~20% of the general population and ~50% of AD patients) might not be beneficial or even detrimental for patients with neurological diseases. We propose in vitro and in vivo studies to assess the effects of different forms of apoE on the development of iPS cells into functional neurons and on the functional recovery of mice with acute brain injury treated with iPS cell-derived NSCs. These studies will shed light on the regulation of neuronal development of iPS cells and help to “optimize” future iPS cell therapy for neurological diseases. SPECIFIC AIMS Aim 1. To establish adult mouse and human iPS cell lines with different apoE genotypes. Aim 2. To determine the isoform-specific effects of apoE on the development of iPS cells into functional neurons in culture and in mouse brains. Aim 3. To assess the isoform-specific effects of apoE on the functional recovery of mice with acute (stroke) brain injury treated with iPS cell-derived NSCs.
Statement of Benefit to California: 
CONTRIBUTION TO THE CALFORNIA ECONOMY: A major goal of regenerative medicine is to repair damaged cells or tissue. My research focuses on (1) understanding the role of neuronal regeneration in central nervous system function and (2) developing stem cell therapy for acute and chronic neurological diseases, including stroke and Alzheimer's disease. Stroke and Alzheimer's disease are the leading causes of disability and dementia and are the fastest growing form of neurological diseases in California, in the USA, and worldwide. My research could benefit the California economy by creating jobs in the biomedical sector. Ultimately, this study could help reduce the adverse impact of neurological diseases. Thereby, I hope to increase the productivity and enhance the quality of life for Californians. The results of my studies will also help develop new technology that could contribute to the California biotechnology industry. The studies will characterize multiple lines of induced pluripotent stem (iPS) cells carrying apoE3, a protein protective to the brain, or apoE4, which is detrimental to the brain and is associated with increased risk of Alzheimer’s disease and other neurodegenerative disorders. These cell lines could be valuable for biotechnology companies and researchers who are screening for drug compounds targeting different neurological diseases. CONTRIBUTION TO THE HEALTH OF CALFORNIANS: The most important contribution of the studies will be to improve the health of Californians. Diseases that are the target of regenerative medicine, such as stroke and Alzheimer’s disease, are major causes of mortality and morbidity, resulting in billions of dollars in healthcare costs and lost productivity. As we continue our efforts in medical research, we hope to one day unlock the secrets of brain development and repair. This knowledge will help medical researchers develop beneficial therapies beyond what is currently available and potentially improve the quality of life and life expectancy of patients with neurological diseases, such as stroke and Alzheimer’s disease.
Progress Report: 
  • The goal of this proposal is to determine the isoform-specific effects of apolipoprotein (apo) E on the development of induced pluripotent stem (iPS) cells into functional neurons both in vitro and in mice. Toward this goal, we have made significant progress in Aims 1 and 2.
  • First, we further demonstrated that neural stem cells (NSCs) express apoE. ApoE-KO mice had significantly less hippocampal neurogenesis, but significantly more astrogenesis, than wildtype mice due to decreased Noggin expression in NSCs. In contrast, neuronal maturation in apoE4 knock-in (apoE4-KI) mice was impaired due to reduced survival and function of GABAergic interneurons in the hilus of the hippocampus, and a GABAA receptor potentiator rescued the apoE4-associated decrease in hippocampal neurogenesis. Thus, apoE plays an important role in hippocampal neurogenesis, and the apoE4 isoform impairs GABAergic input to newborn neurons, leading to decreased neurogenesis. A paper describing these data was published in Cell Stem Cell (Li G. et al. 2009, 5:634-645), which evidently is the 400th publication of CIRM-funded projects.
  • Second, we established mouse iPS cell lines from adult mouse fibroblasts of wildtype, apoE knockout (apoE-KO), human apoE2-KI, human apoE3-KI, and human apoE4-KI mice.
  • Finally, we developed NSC lines from mouse iPS cells with different apoE genotypes (wildtype mouse apoE, apoE-KO, apoE2, apoE3, and apoE4). These cell lines will be used to study the effects of apoE isoforms on neuronal development in vitro in culture and in vivo in mouse models.
  • The goal of this proposal is to determine the isoform-specific effects of apolipoprotein (apo) E on the development of induced pluripotent stem (iPS) cells into functional neurons both in vitro and in mice. Toward this goal, we have made significant progress in the past year, as summarized below.
  • First, We developed human iPS cells from skin fibroblasts of individuals with different apoE genotypes. We are fully characterizing these human iPS cell lines.
  • Second, We are establishing neural stem cell (NSC) lines from human iPS cells with different apoE genotypes. Some of the NSCs have been maintained in monolayer cultures for many generations. These NSCs will be used to study the effects of apoE isoforms on neuronal development in vitro in cultures and in vivo in mice.
  • Finally, we demonstrated that mouse apoE4-NSCs generated significantly fewer total neurons and fewer GABAergic interneurons than mouse apoE3-NSCs in culture. Thus, the detrimental effects of apoE4 on neurogenesis and GABAergic interneuron survival, as we observed in vivo in apoE4 knock-in mice (Li G. et al. Cell Stem Cell, 2009, 5:634-645), are recapitulated in cultures of mouse iPS cell–derived NSCs in vitro.
  • The goal of this proposal is to determine the isoform-specific effects of apolipoprotein (apo) E on the development of induced pluripotent stem (iPS) cells into functional neurons both in vitro and in mice. Toward this goal, we have made significant progress in all three aims in the past year, as summarized below.
  • 1) We have fully characterized two apoE3/3-hiPS cell lines and two apoE4/4-iPS cell lines.
  • 2) We have established NSC lines from human iPS cells with an apoE3/3 or apoE4/4 genotype. The hNSCs have been maintained in suspension or monolayer culture for multiple passages.
  • 3) We demonstrated that apoE4-hNSCs generated ~50% fewer GABAergic interneurons than apoE3-hNSCs in culture. Thus, the detrimental effects of apoE4 on GABAergic interneuron survival, as we observed in vivo in apoE4 knock-in mice (Li G. et al. Cell Stem Cell, 2009, 5:634-645), are recapitulated in cultures of human iPS cell-derived NSCs in vitro.
  • 4) We established protocols in our lab to differentiate human iPS cell-derived NSCs into different types of neurons in cultures.
  • The goal of this proposal is to determine the isoform-specific effects of apolipoprotein (apo) E on the development of induced pluripotent stem (iPS) cells into functional neurons both in vitro and in mice. Toward this goal, we have made significant progress in all three aims in the past year, as summarized below.
  • 1) We demonstrated that apoE4-miPSC-derived mNSCs had a greater “age-dependent (passage-dependent)” decrease in generation and/or survival of MAP2-positive neurons in cultures.
  • 2) We also demonstrated that apoE4-miPSC-derived mNSCs had an even greater “age-dependent (passage-dependent)” decrease in generation and/or survival of GAD67-positive GABAergic neurons, as seen in vivo in apoE4 knock-in mice (Li et al., Cell Stem Cell, 2009, 5:634–645).
  • 3) We expanded the pilot study reported last year and confirmed the detrimental effect of apoE4 on GABAergic interneuron development/survival of hiPS cell-derived hNSCs. ApoE4 also increased tau phosphorylation, one of the pathological hallmarks of Alzheimer’s disease, in neurons derived from apoE4-hiPS cells.
  • 4) We established a protocol to transplant apoE-miPS cell-derived mNSCs into mouse brains. The transplanted apoE-mNSCs developed into neurons and astrocytes and integrated into the neural circuitry.
  • The goal of this proposal is to determine the isoform-specific effects of apolipoprotein (apo) E on the development of pluripotent stem cells into functional neurons in vitro in culture and in vivo in mice for potential cell replacement therapy. Toward this goal, we have made significant progress in all three aims in the past year, as summarized below.
  • 1) We demonstrated that mouse GABAergic progenitors transplanted into the hilus of apoE3-KI and apoE4-KI mice developed into mature interneurons and functionally integrated into the hippocampal circuitry.
  • 2) We also demonstrated that transplantation of mouse GABAergic progenitors into the hilus of apoE4-KI mice rescued learning and memory deficits.
  • 3) Transplantation of mouse GABAergic progenitors into the hilus of hippocampus also rescued learning and memory deficits in apoE4-KI mice expressing Alzheimer’s disease-causing APP mutations.

Pages

Subscribe to RSS - Neurological Disorders

© 2013 California Institute for Regenerative Medicine