Heart Disease

Coding Dimension ID: 
295
Coding Dimension path name: 
Heart Disease

Enhancing healing via Wnt-protein mediated activation of endogenous stem cells

Funding Type: 
Early Translational I
Grant Number: 
TR1-01249
ICOC Funds Committed: 
$6 762 954
Disease Focus: 
Bone or Cartilage Disease
Heart Disease
Neurological Disorders
Stroke
Skin Disease
Stem Cell Use: 
Adult Stem Cell
oldStatus: 
Active
Public Abstract: 
All adult tissues contain stem cells. Some tissues, like bone marrow and skin, harbor more adult stem cells; other tissues, like muscle, have fewer. When a tissue or organ is injured these stem cells possess a remarkable ability to divide and multiply. In the end, the ability of a tissue to repair itself seems to depend on how many stem cells reside in a particular tissue, and the state of those stem cells. For example, stress, disease, and aging all diminish the capacity of adult stem cells to self-renew and to proliferate, which in turn hinders tissue regeneration. Our strategy is to commandeer the molecular machinery responsible for adult stem cell self-renewal and proliferation and by doing so, stimulate the endogenous program of tissue regeneration. This approach takes advantage of the solution that Nature itself developed for repairing damaged or diseased tissues, and controls adult stem cell proliferation in a localized, highly controlled fashion. This strategy circumvents the immunological, medical, and ethical hurdles that exist when exogenous stem cells are introduced into a human. When utilizing this strategy the goal of reaching clinical trials in human patients within 5 years becomes realistic. Specifically, we will target the growing problem of neurologic, musculoskeletal, cardiovascular, and wound healing diseases by local delivery of a protein that promotes the body’s inherent ability to repair and regenerate tissues. We have evidence that this class of proteins, when delivered locally to an injury site, is able to stimulate adult tissue stem cells to grow and repair/replace the deficient tissue following injury. We have developed technologies to package the protein in a specialized manner that preserves its biological activity but simultaneously restricts its diffusion to unintended regions of the body. For example, when we treat a skeletal injury with this packaged protein we augment the natural ability to heal bone by 350%; and when this protein is delivered to the heart immediately after an infarction cardiac output is improved and complications related to scarring are reduced. This remarkable capacity to augment tissue healing is not limited to bones and the heart: the same powerful effect can be elicited in the brain, and skin injuries. The disease targets of stroke, bone fractures, heart attacks, and skin wounds and ulcers represent an enormous health care burden now, but this burden is expected to skyrocket because our population is quickly aging. Thus, our proposal addresses a present and ongoing challenge to healthcare for the majority of Californians, with a novel therapeutic strategy that mimics the body’s inherent repair mechanisms.
Statement of Benefit to California: 
Californians represent 1 in 7 Americans, and make up the single largest healthcare market in the United States. The diseases and injuries that affect Californians affect the rest of the US, and the world. For example, stroke is the third leading cause of death, with more than 700,000 people affected every year. It is a leading cause of serious long-term disability, with an estimated 5.4 million stroke survivors currently alive today. Symptoms of musculoskeletal disease are the number two most cited reasons for visit to a physician. Musculoskeletal disease is the leading cause of work-related and physical disability in the United States, with arthritis being the leading chronic condition reported by the elderly. In adults over the age of 70, 40% suffer from osteoarthritis of the knee and of these nearly 80% have limitation of movement. By 2030, nearly 67 million US adults will be diagnosed with arthritis. Cardiovascular disease is the leading cause of death, and is a major cause of disability worldwide. The annual socioeconomic burden posed by cardiovascular disease is estimated to exceed $400 billion annually and remains a major cause of health disparities and rising health care costs. Skin wounds from burns, trauma, or surgery, and chronic wounds associated with diabetes or pressure ulcer, exact a staggering toll on our healthcare system: Burns alone affect 1.25M Americans each year, and the economic global burden of these injuries approaches $50B/yr. In California alone, the annual healthcare expenditures for stroke, skeletal repair, heart attacks, and skin wound healing are staggering and exceed 700,000 cases, 3.5M hospital days, and $34B. We have developed a novel, protein-based therapeutic platform to accelerate and enhance tissue regeneration through activation of adult stem cells. This technology takes advantage of a powerful stem cell factor that is essential for the development and repair of most of the body’s tissues. We have generated the first stable, biologically active recombinant Wnt pathway agonist, and showed that this protein has the ability to activate adult stem cells after tissue injury. Thus, our developmental candidate leverages the body’s natural response to injury. We have generated exciting preclinical results in a variety of animals models including stroke, skeletal repair, heart attack, and skin wounding. If successful, this early translational award would have enormous benefits for the citizens of California and beyond.
Progress Report: 
  • In the first year of CIRM funding our objectives were to optimize the activity of the Wnt protein for use in the body and then to test, in a variety of injury models, the effects of this lipid-packaged form of Wnt. We have made considerable progress on both of these fronts. For example, in Roel Nusse and Jill Helms’ groups, we have been able to generate large amounts of the mouse form of Wnt3a protein and package it into liposomal vesicles, which can then be used by all investigators in their studies of injury and repair. Also, Roel Nusse succeeded in generating human Wnt3a protein. This is a major accomplishment since our ultimate goal is to develop this regenerative medicine tool for use in humans. In Jill Helms’ lab we made steady progress in standardizing the activity of the liposomal Wnt3a formulation, and this is critically important for all subsequent studies that will compare the efficacy of this treatment across multiple injury repair scenarios.
  • Each group began testing the effects of liposomal Wnt3a treatment for their particular application. For example, in Theo Palmer’s group, the investigators tested how liposomal Wnt3a affected cells in the brain following a stroke. We previously found that Wnt3A promotes the growth of neural stem cells in a petri dish and we are now trying to determine if delivery of Wnt3A can enhance the activity of endogenous stem cells in the brain and improve the level of recovery following stroke. Research in the first year examined toxicity of a liposome formulation used to deliver Wnt3a and we found it to be well tolerated after injection into the brains of mice. We also find that liposomal Wnt3a can promote the production of new neurons following stroke. The ongoing research involves experiments to determine if these changes in stem cell activity are accompanied by improved neurological function. In Jill Helms’ group, the investigators tested how liposomal Wnt3a affected cells in a bone injury site. We made a significant discovery this year, by demonstrating that liposomal Wnt3a stimulates the proliferation of skeletal progenitor cells and accelerates their differentiation into osteoblasts (published in Science Translational Medicine 2010). We also started testing liposomal Wnt3a for safety and toxicity issues, both of which are important prerequisites for use of liposomal Wnt3a in humans. Following a heart attack (i.e., myocardial infarction) we found that endogenous Wnt signaling peaks between post-infarct day 5-7. We also found that small aggregates of cardiac cells called cardiospheres respond to Wnt in a dose-responsive manner. In skin wounds, we tested the effect of boosting Wnt signaling during skin wound healing. We found that the injection of Wnt liposomes into wounds enhanced the regeneration of hair follicles, which would otherwise not regenerate and make a scar instead. The speed and strength of wound closure are now being measured.
  • In aggregate, our work on this project continues to move forward with a number of great successes, and encouraging data to support our hypothesis that augmenting Wnt signaling following tissue injury will provide beneficial effects.
  • In the second year of CIRM funding our objectives were to optimize packaging of the developmental candidate, Wnt3a protein, and then to continue to test its efficacy to enhance tissue healing. We continue to make considerable progress on the stated objectives. In Roel Nusse’s laboratory, human Wnt3a protein is now being produced using an FDA-approved cell line, and Jill Helms’ lab the protein is effectively packaged into lipid particles that delay degradation of the protein when it is introduced into the body.
  • Each group has continued to test the effects of liposomal Wnt3a treatment for their particular application. In Theo Palmer’s group we have studied how liposomal Wnt3a affects neurogenesis following stroke. We now know that liposomal Wnt3a transiently stimulates neural progenitor cell proliferation. We don’t see any functional improvement after stroke, though, which is our primary objective.
  • In Jill Helms’ group we’ve now shown that liposomal Wnt3a enhances fracture healing and osseointegration of dental and orthopedic implants and now we demonstrate that liposomal Wnt3a also can improve the bone-forming capacity of bone marrow grafts, especially when they are taken from aged animals.
  • We’ve also tested the ability of liposomal Wnt3a to improve heart function after a heart attack (i.e., myocardial infarction). Small aggregates of cardiac progenitor cells called cardiospheres proliferate to Wnt3a in a dose-responsive manner, and we see an initial improvement in cardiac function after treatment of cells with liposomal Wnt3a. the long-term improvements, however, are not significant and this remains our ultimate goal. In skin wounds, we tested the effect of boosting Wnt signaling during wound healing. We found that the injection of liposomal Wnt3a into wounds enhanced the regeneration of hair follicles, which would otherwise not regenerate and make a scar instead. The speed of wound closure is also enhanced in regions of the skin where there are hair follicles.
  • In aggregate, our work continues to move forward with a number of critical successes, and encouraging data to support our hypothesis that augmenting Wnt signaling following tissue injury will provide beneficial effects.
  • Every adult tissue harbors stem cells. Some tissues, like bone marrow and skin, have more adult stem cells and other tissues, like muscle or brain, have fewer. When a tissue is injured, these stem cells divide and multiply but only to a limited extent. In the end, the ability of a tissue to repair itself seems to depend on how many stem cells reside in a particular tissue, and the state of those stem cells. For example, stress, disease, and aging all diminish the capacity of adult stem cells to respond to injury, which in turn hinders tissue healing. One of the great unmet challenges for regenerative medicine is to devise ways to increase the numbers of these “endogenous” stem cells, and revive their ability to self-renew and proliferate.
  • The scientific basis for our work rests upon our demonstration that a naturally occurring stem cell growth factor, Wnt3a, can be packaged and delivered in such a way that it is robustly stimulates stem cells within an injured tissue to divide and self-renew. This, in turn, leads to unprecedented tissue healing in a wide array of bone injuries especially in aged animals. As California’s population ages, the cost to treat such skeletal injuries in the elderly will skyrocket. Thus, our work addresses a present and ongoing challenge to healthcare for the majority of Californians and the world, and we do it by mimicking the body’s natural response to injury and repair.
  • To our knowledge, there is no existing technology that displays such effectiveness, or that holds such potential for the stem cell-based treatment of skeletal injuries, as does a L-Wnt3a strategy. Because this approach directly activates the body’s own stem cells, it avoids many of the pitfalls associated with the introduction of foreign stem cells or virally reprogrammed autologous stem cells into the human body. In summary, our data show that L-Wnt3a constitutes a viable therapeutic approach for the treatment of skeletal injuries, especially those in individuals with diminished healing potential.
  • This progress report covers the period between Sep 01 2012through Aug 31 2013, and summarizes the work accomplished under ET funding TR1-01249. Under this award we developed a Wnt protein-based platform for activating a patient’s own stem cells for the purpose of tissue regeneration.
  • At the beginning of our grant period we generated research grade human WNT3A protein in quantities sufficient for all our discovery experiments. We then tested the ability of this WNT protein therapeutic to improve the healing response in animal models of stroke, heart attack, skin wounding, and bone fracture. These experimental models recapitulated some of the most prevalent and debilitating human diseases that collectively, affect millions of Californians.
  • At the end of year 2, we assembled an external review panel to select the promising clinical indication. The scientific advisory board unanimously selected skeletal repair as the leading indication. The WNT protein is notoriously difficult to purify; consequently in year 3 we developed new methods to streamline the purification of WNT proteins, and the packaging of the WNT protein into liposomal vesicles that stabilized the protein for in vivo use.
  • In years 3 and 4 we continued to accrue strong scientific evidence in both large and small animal models that a WNT protein therapeutic accelerates bone regeneration in critical size bony non-unions, in fractures, and in cases of implant osseointegration. In this last year of funding, we clarified and characterized the mechanism of action of the WNT protein, by showing that it activates endogenous stem cells, which in turn leads to faster healing of a range of different skeletal defects.
  • In this last year we also identified a therapeutic dose range for the WNT protein, and developed a route and method of delivery that was simultaneously effective and yet limited the body’s exposure to this potent stem cell factor. We initiated preliminary safety studies to identify potential risks, and compared the effects of WNT treatment with other commercially available bone growth factors. In sum, we succeeded in moving our early translational candidate from exploratory studies to validation, and are now ready to enter into the IND-enabling phase of therapeutic candidate development.
  • This progress report covers the period between Sep 01 2013 through April 30 2014, and summarizes the work accomplished under ET funding TR101249. Under this award we developed a Wnt protein-based platform for activating a patient’s own stem cells for purposes of tissue regeneration.
  • At the beginning of our grant period we generated research grade human WNT3A protein in quantities sufficient for all our discovery experiments. We then tested the ability of this WNT protein therapeutic to improve the healing response in animal models of stroke, heart attack, skin wounding, and bone fracture. These experimental models recapitulated some of the most prevalent and debilitating human diseases that collectively, affect millions of Californians. At the conclusion of Year 2 an external review panel was assembled and charged with the selection of a single lead indication for further development. The scientific advisory board unanimously selected skeletal repair as the lead indication.
  • In year 3 we accrued addition scientific evidence, using both large and small animal models, demonstrating that a WNT protein therapeutic accelerated bone healing. Also, we developed new methods to streamline the purification of WNT proteins, and improved our method of packaging of the WNT protein into liposomal vesicles (e.g., L-WNT3A) for in vivo use.
  • In year 4 we clarified the mechanism of action of L-WNT3A, by demonstrating that it activates endogenous stem cells and therefore leads to accelerated bone healing. We also continued our development studies, by identifying a therapeutic dose range for L-WNT3A, as well as a route and method of delivery that is both effective and safe. We initiated preliminary safety studies to identify potential risks, and compared the effects of L-WNT3A with other, commercially available bone growth factors.
  • In year 5 we initiated two new preclinical studies aimed at demonstrating the disease-modifying activity of L-WNT3A in spinal fusion and osteonecrosis. These two new indications were chosen by a CIRM review panel because they represent an unmet need in California and the nation. We also initiated development of a scalable manufacturing and formulation process for both the WNT3A protein and L-WNT3A formulation. These two milestones were emphasized by the CIRM review panel to represent major challenges to commercialization of L-WNT3A; consequently, accomplishment of these milestones is a critical yardstick by which progress towards an IND filing can be assessed.

Derivation and analysis of pluripotent stem cell lines with inherited TGF-b mediated disorders from donated IVF embryos and reprogrammed adult skin fibroblasts

Funding Type: 
New Cell Lines
Grant Number: 
RL1-00662
ICOC Funds Committed: 
$1 424 412
Disease Focus: 
Heart Disease
Stem Cell Use: 
Embryonic Stem Cell
iPS Cell
Cell Line Generation: 
Embryonic Stem Cell
iPS Cell
oldStatus: 
Closed
Public Abstract: 
The field of regenerative medicine revolves around the capacity of a subset of cells, called stem cells, to become the mature tissues of the adult human body. By studying stem cells, we hope to develop methods and reagents for treating disease. For instance, we hope to develop methods for making stem cells become cardiovascular cells in the lab which could then be used to rapidly screen large numbers drugs that may be used to treat cardiovascular disease. In another example, if we are able to create bone in the lab from stem cells, we may be able to help treat people with catastrophic skeletal injuries such as wounded soldiers. Until recently, the most flexible type of stem cell known was the embryonic stem cell. Embryonic stem cells are pluripotent, meaning they can give rise to all of the adult tissues. In contrast, stem cells found in the adult are considered only multipotent, in that they can only become a limited number of mature cells. For example, bone marrow stem cells can give rise to all of the components of the blood, but cannot make nerves for a spinal chord. Breakthroughs in the past couple of months have indicated that it is possible to "reprogram" adult skin cells and make them become pluripotent, like stem cells from an embryo. These new kind of cells ares called "induced pluripotent cells" or iPS cells for short. This has lead to great excitement within the scientific community because it raises the possibility that we may use this technology to rapidly create pluripotent stem cells from a large host of human diseases using skin from affected individuals. However, whether the new iPS cells made from skin cells and embryonic stem cells are functionally the same in all applications remains to be seen. Our lab is in the unique position to test this hypothesis. We have derived several normal embryonic stem cell lines and are in the process of deriving iPS cells from normal skin. Furthermore, we are fortunate enough to have begun deriving a new embryonic stem cell line harboring an inherited mutation that results in severe cardiovascular and bone disease that affects more than 7,500 Californians. What's more, one of our collaborators has over the past ten years assembled a cell bank of more that 50 unique adult skin cell lines with the same inherited disease. Therefore, for our proposal, we will make new normal and disease specific iPS and embryonic stem cell lines. We will use these new stem cell lines to test whether the iPS and embryonic stem cells are truly functionally the same, by comparing them after we make them become cardiovascular and bone cells. This work will allow us to advance the field of regenerative medicine on two fronts. 1. We will perform an important comparison of iPS and embryonic stem cell lines. 2. We will compare the disease specific cells with normal cells which will help us better understand cardiovascular and bone disease and pave the way for the development of new therapies.
Statement of Benefit to California: 
Our proposal compares normal and disease specific pluripotent stem cells derived from embryonic and adult skin sources. This proposal will benefit the state of California and its citizens in several specific ways. First, the specific inherited disease we are studying affects approximately one in every 5,000 people worldwide. That translates into over 7,500 Californians and over 60,000 men, women and children of every race and ethnic group in the United States. By examining the characteristics of the disease specific lines, we hope to better understand the mechanisms of the disease and create assays for screening new drugs that can be used to treat people with the disease. Second, this disease is one of a broad class of cardiovascular disease, called thoracic aortic disease. An estimated 3,700 Californians are treated for thoracic aortic disease every year. Our findings may provide insight into the mechanisms underlying these diseases and other cardiovascular diseases. Third, this disease also results in skeletal defects. By studying the mechanisms of the skeletal defects, we will better understand the mechanisms of bone development, which will lead to improved applications of stem cell therapies for individuals with bone injury and disease. Finally, by providing detailed comparisons of iPS and embryonic stem cells, our work will have important ramifications for the future direction of the entire field of stem cell research and regenerative medicine.
Progress Report: 
  • During the past year, we have used the funds from this grant to derive a new embryonic stem cell line with an inherited mutation that results in a severe cardiovascular and bone disease called Marfan syndrome that affects more than 7,500 Californians. In addition, using adult skin cell lines with the same inherited disease, we have made significant progress deriving iPS cells with Marfan syndrome. During the next year we also hope to expand our studies by recruiting patients with a disease very similar to Marfan syndrome called Loeys-Dietz syndrome, to donate skin biopsies so that we can make iPS cells to study that disease as well. Using these new stem cell lines, we are testing whether the iPS and embryonic stem cells are truly functionally the same, by comparing them after we make them become cardiovascular and bone cells.
  • One of the biggest challenges in stem cell biology is figuring out how to make the stem cells become the adult cells we want to study and not some other random adult cells. Over the past year, we have made great strides in turning our stem cells into the cell types most severely affected in people with Marfan syndrome, namely bone and cardiovascular cells. What is most exciting to us is that even with these preliminary studies, it looks like we might be seeing differences between the stem cells with Marfan syndrome and normal stem cells after they are coaxed into become the bone and cardiovascular cells. These results are still very preliminary though, and we need to take great care during the next year to rigorously repeat our experiments before we can be certain of those results. If we can reproduce the differences, these differences may be the basis for screening for new drugs to treat people with Marfan syndrome or lead to a better understanding as to what exactly is the sequence of cellular events that leads to the patient’s symptoms. What’s more, by studying how to efficiently make bone and cardiovascular cells from human embryonic stem cells and iPS cells in the dish, we hope to provide important data that could be beneficial in a wide variety of applications such as tissue engineering or cellular replacement therapies using bone or blood vessels.
  • Marfan Syndrome (MFS) is a genetic disorder that affects more than 7,500 Californians. Patients develop severe complications, affecting several parts of the body (eyes, limbs, aorta). During the last two years, we have used the funds from this grant to develop new cell lines aimed at studying MFS in a dish. These cell lines, are called pluripotent stem cells, and have been generated from: (i) an embryo that was donated for research and was known to have inherited the MFS disease (these cell lines are named human embryonic stem cells (hESCs)); and (ii) from skin biopsies of adult patients (these cell lines are named induced pluripotent stem cells (iPSCs)). These stem cell lines allow us to study MFS by differentiating the cells to adult cells (mainly bone and cardiovascular cells) and not other random adult cells. Using these new stem cell lines, we can test whether hESCs and iPSCs are functionally the same, by comparing them after we make them become cardiovascular and bone cells. We have observed that when the cells form bone or muscle cells, the stem cells with MFS are different and do not behave the same as those made with normal stem cells. We also started to use reagents that can force MFS cells to resemble and behave like normal bone cells. This is called “rescuing the disease phenotype”. For the first time, we are close to describing a stem cell-based technology not only to understand the mechanism(s) of the MFS but also to develop a screen for new drugs to treat people with MFS. However, we still need to confirm our results by repeating the experiments. Our results are very promising for understanding the bone issues in MFS, but continued efforts are also required to understand the cardiovascular issue. It is important to point out that the most important health risk associated with the disease is an aortic aneurysm that, if untreated, leads to death around 35 years old. In conclusion, we are continuing to generate data that will provide the foundation for improving our knowledge of the disease, and also will potentially assist us in developing new therapies for improving MFS patient lives.
  • The field of regenerative medicine revolves around the capacity of a subset of cells, called stem cells, to become the mature tissues of the adult human body. By studying stem cells, we hope to develop methods for treating a wide variety of diseases. For instance, we hope to develop methods for making stem cells become cardiovascular cells in the lab, which could then be used to rapidly screen large numbers of drugs that may be used to treat cardiovascular disease. We are also trying to create skeletal tissue from stem cells so that we may be able to help treat people with catastrophic skeletal injuries such as wounded soldiers.
  • Until recently, the most flexible type of stem cell known was the embryonic stem cell. Embryonic stem cells are pluripotent, meaning they can give rise to all cell types in the body. In contrast, stem cells found in the adult are considered only multipotent, in that they can only become a limited number of mature cells. Breakthroughs in the past five years have indicated that it is possible to "reprogram" adult skin cells and make them become pluripotent, like stem cells from an embryo. These new kinds of cells are called "induced pluripotent cells" or iPS cells. This has lead to great excitement within the scientific community because it raises the possibility that we may use this technology to rapidly create pluripotent stem cells from a large host of human diseases using easy to obtain tissue like skin and fat from affected individuals.
  • Our laboratory is in the unique position to test this hypothesis. We have derived several normal embryonic stem cell lines and iPS cells from normal skin. Furthermore, we have derived a new embryonic stem cell line and induced pluripotent stem cells from fibroblasts harboring an inherited mutation that results in severe cardiovascular and bone disease that affects more than 7,500 Californians, called Marfan's Syndrome.
  • We have created stem cells lines, both embryonic and induced pluripotent stem cells from cells having this disease. We have compared these cells to normal embryonic and induced pluripotent stem cells to examine exactly what makes these diseased cells behave in a way to have impaired bone formation. In addition, we have completed the differentiation, banking and full characterization of vascular cells derived from Marfan's Syndrome embryonic stem cells and Marfan’s syndrome induced pluripotent stem cells. We have seen that the cells with Marfan’s syndrome have a particular signaling pathway that has functional disregulation compared to normal, healthy cells. We have been able to explore how this disease process manipulates this pathway to cause this specific disease. Through this kind of modeling, we can use these cells to screen for treatment as well as model the disease in a way to manipulate the specific pathways this disease impacts to hopefully bring clinical treatments to patients who suffer from this disease.

Metabolic regulation of cardiac differentiation and maturation

Funding Type: 
Basic Biology V
Grant Number: 
RB5-07356
ICOC Funds Committed: 
$1 124 834
Disease Focus: 
Heart Disease
Stem Cell Use: 
Embryonic Stem Cell
iPS Cell
oldStatus: 
Closed
Public Abstract: 
Cells in the body take up nutrients from their environment and metabolize them in a complex set of biochemical reactions to generate energy and replicate. Control of these processes is particularly important for heart cells, which need large amounts of energy to drive blood flow throughout the body. Not surprisingly, the nutritional requirements of heart cells are very different than those of stem cells. This proposal will investigate the metabolism of pluripotent stem cells and how this changes during differentiation to cardiac cells. We will determine which nutrients are important to make functional heart cells and use this information to optimize growth conditions for producing heart cells for regenerative medicine and basic biology applications. We accomplish this by feeding cells nutrients (sugar, fat) labeled with isotopes. As these labeled molecules are consumed, the isotopes are incorporated into different metabolites which we track using mass spectrometry. This advanced technique will allow us to see how sugars and fat are metabolized inside stem cells and cardiac cells obtained through differentiation. We will also study the electrical activity of these heart cells to ensure that adequate nutrients are provided for the generation of cells with optimal function. Ultimately, this project will lead to new methods for producing functional heart cells for regenerative medicine and may also lead to insights into how cardiac cells malfunction in heart disease.
Statement of Benefit to California: 
Heart disease is one of the leading causes of death in California. As a result, much of the regenerative medicine community in the state and the many Californians suffering from heart failure are interested in obtaining functional heart cells from stem cells. Our work will identify the most important nutrients required to coax stem cell-derived heart cells to behave like true adult heart cells. This information will make more effective cell models for researchers and companies to study how this disease affects heart cell metabolism. Since enzymes are highly targetable with drugs, the basic scientific findings from our work will be of great interest to California biotechnology companies and can stimulate job growth in the state. Our findings will also provide insight into very specific types of genetic heart disease, and this work may lead to additional grants from federal funding sources, bringing about additional revenue and job growth in California. A better understanding of how different nutrients influence heart cell function may provide guidance into new treatment strategies for heart disease. Finally, this work will highlight the importance of diet, nutrition, and healthy heart function, providing useful information relating to public health.

Mechanism of heart regeneration by cardiosphere-derived cells

Funding Type: 
Basic Biology IV
Grant Number: 
RB4-06215
ICOC Funds Committed: 
$1 367 604
Disease Focus: 
Heart Disease
Stem Cell Use: 
Adult Stem Cell
oldStatus: 
Active
Public Abstract: 
In the process of a heart attack, clots form suddenly on top of cholesterol-laden plaques, blocking blood flow to heart muscle. As a result, living heart tissue dies and is replaced by scar. The larger the scar, the higher the chance of premature death and disability following the heart attack. While conventional treatments aim to limit the initial injury (by promptly opening the clogged artery) and to prevent further damage (using various drugs), regenerative therapy for heart attacks seeks to regrow healthy heart muscle and to dissolve scar. To date, cell therapy with CDCs is the only intervention which has been shown to be clinically effective in regenerating the injured human heart. However, the cellular origin of the newly-formed heart muscle and the mechanisms underlying its generation remain unknown. The present grant seeks to understand those basic mechanisms in detail, relying upon state-of-the-art scientific methods and preclinical disease models. Our work to date suggests that much of the benefit is due to an indirect effect of transplanted CDCs to stimulate the proliferation of surrounding host heart cells. This represents a major, previously-unrecognized mechanism of cardiac regeneration in response to cell therapy. The proposed project will open up novel mechanistic insights which will hopefully enable us to boost the efficacy of stem cell-based treatments by bolstering the regeneration of injured heart muscle.
Statement of Benefit to California: 
Coronary artery disease is the predominant cause of premature death and disability in California. Clots form suddenly on top of cholesterol-laden plaques in the wall of a coronary artery, blocking blood flow to the heart muscle. This leads to a “heart attack”, in which living heart muscle dies and is replaced by scar. The larger the scar, the greater the chance of death and disability following the heart attack. While conventional treatments aim to limit the initial injury (by promptly opening the clogged artery) and to prevent further injury (using various drugs), regenerative therapy for heart attacks seeks to regrow healthy heart muscle and to dissolve scar. To date, cell therapy with CDCs is the only intervention that has been shown to be clinically effective in regenerating the injured human heart. However, the cellular origin of the newly-formed heart muscle and the mechanisms underlying its generation remain unknown. The present grant seeks to understand those basic mechanisms in detail, relying upon state-of-the-art scientific methods and preclinical disease models. The resulting insights will enable more rational development of novel therapeutic approaches, to the benefit of the public health of the citizens of California. Economic benefits may also accrue from licensing of new technology.
Progress Report: 
  • Key abbreviations:
  • CDCs: cardiosphere-derived cells
  • MI: myocardial infarction
  • The present award tests the hypothesis that CDCs promote regrowth of normal mammalian heart tissue through induction of adult cardiomyocyte cell cycle re-entry and proliferation (as occurs naturally in zebrafish and neonatal mice). Such a mechanism, if established, would challenge the dogma that terminally-differentiated adult cardiomyocytes cannot re-enter the cell cycle. We have employed an inducible cardiomyocyte-specific fate-mapping approach (to specifically mark resident myocytes and their progeny), coupled with novel methods of myocyte purification and rigorous quantification. We have also developed assays that enable us to exclude potential technical confounding factors. The use of bitransgenic mice is essential for our experimental design (as it enables fate mapping of resident myocytes in a mammalian model), while the use of mouse CDCs in our in vivo experiments (as opposed to human CDCs) enables us to avoid immunosuppression and its complications. To date, mouse, rat and pig models have proven to be reliable in predicting clinical effects of CDC therapy in humans, and results with human and mouse CDCs in comparable models (e.g., SCID mice for human CDCs versus wild-type mice for mouse CDCs) have not revealed any major mechanistic divergence. Our results demonstrate that induction of cardiomyocyte proliferation represents a major, previously-unrecognized mechanism of cardiac regeneration in response to cell therapy. One full-length publication describing these findings has appeared (K. Malliaras et al., EMBO Mol Med, 2013, 5:191-209), and another paper has been submitted. The work has already begun to open up novel mechanistic insights which will enable us to improve the efficacy of stem cell-based treatments and bolster cardiomyocyte repopulation of infarcted myocardium.

Induction of Pluripotent Stem Cell-Derived Pacemaking Cells

Funding Type: 
Basic Biology IV
Grant Number: 
RB4-05764
ICOC Funds Committed: 
$1 334 880
Disease Focus: 
Heart Disease
Stem Cell Use: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
Currently, over 350,000 patients per year with abnormal heart rhythm receive electronic pacemakers to restore their normal heart beat. Electronic pacemakers do not respond to the need for changing heart rate in situations such as exercise and have limited battery life, which can be resolved with biopacemakers. In this proposed project, we will examine methods that improve the generation of pacemaking cells from human induced pluripotent stem cells as candidates for biopacemaker.
Statement of Benefit to California: 
This proposal aims to generate pacemaking cells through facilitated differentiation from human induced pluripotent stem cells that may serve as biopacemakers. Over 350,000 patients a year in the U.S. require the implantation of an electronic pacemaker to restore their heart rhythm, with more than 3 million patients that are dependent on this device. At the cost of $58K per pacemaker implantation, the healthcare burden is greater than $20 billion a year. However, the cost associated with these electronic devices does not end with surgery for implantation. These devices require a battery change every 5 to 10 years that involve another surgical procedure. With California being the most populated state, this can be very costly to the Californians. It also does not give the patients the quality of life by having to endure repeated surgeries. The possibility of biopacemaker that requires no future battery replacements and other advantages such as physiological adaptation to the active state of the patient make biopacemakers a truly desirable alternative to electronic devices. Moreover, one in 20,000 infants or preemies with congenital sinoatrial node dysfunction are also inappropriate candidates to receive electronic pacemakers because they are physically too small and require a proportional increase in the length of pacing leads with their significant growth rate. Therefore, there is a great need for biopacemakers that may overcome the deficiencies of electronic devices.
Progress Report: 
  • This goal of this project is to improve the yield of pacemaking cells from human induced pluripotent stem cells (hiPSCs) that can be used to engineer biopacemaker. We have demonstrated that manipulation of the membrane potential of hiPSCs using small molecules can upregulate genes of the desired cell type progressing to the pacemaking cells at all differentiation stages. In the differentiation stage to mesodermal cells, treated hiPSCs exhibit a membrane potential that is further down the differentiation path than untreated control. This source was this change was examined.

Studying Arrhythmogenic Right Ventricular Dysplasia with patient-specific iPS cells

Funding Type: 
Basic Biology IV
Grant Number: 
RB4-06276
ICOC Funds Committed: 
$1 582 606
Disease Focus: 
Heart Disease
Pediatrics
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
Most heart conditions leading to sudden death or impaired pumping heart functions in the young people (<35 years old) are the results of genetic mutations inherited from parents. It is very difficult to find curative therapy for these inherited heart diseases due to late diagnosis and lack of understanding in how genetic mutations cause these diseases. Using versatile stem cells derived from patients’ skin cells with genetic mutations in cell-cell junctional proteins, we have made a significant breakthrough and successfully modeled one of these inherited heart diseases within a few months in cell cultures. These disease-specific stem cells can give rise to heart cells, which allow us to discover novel abnormalities in heart energy consumption that causes dysfunction and death of these diseased heart cells. Currently, there is no disease-slowing therapy to these inherited heart diseases except implanting a shocking device to prevent sudden death. We propose here to generate more patient-specific stem cell lines in a dish from skin cells of patients with similar clinical presentations but with different mutations. With these new patient-specific stem cell lines, we will be able to understand more about the malfunctioned networks and elucidate common disease-causing mechanisms as well as to develop better and safer therapies for treating these diseases. We will also test our new therapeutic agents in a mouse model for their efficacy and safety before applying to human patients.
Statement of Benefit to California: 
Heart conditions leading to sudden death or impaired pumping functions in the young people (<35 years old) frequently are the results of genetic mutations inherited from parents. Currently, there is no disease-slowing therapy to these diseases. It is difficult to find curative therapy for these diseases due to late diagnosis. Many cell culture and animal models of human inherited heart diseases have been established but with significant limitation in their application to invent novel therapy for human patients. Recent progress in cellular reprogramming of skin cells to patient-specific induced pluripotent stem cells (iPSCs) enables modeling human genetic disorders in cell cultures. We have successfully modeled one of the inherited heart diseases within a few months in cell cultures using iPSCs derived from patients’ skin cells with genetic mutations in cell-cell junctional proteins. Heart cells derived from these disease-specific iPSCs enable us to discover novel disease-causing abnormalities and develop new therapeutic strategies. We plan to generate more iPSCs with the same disease to find common pathogenic pathways, identify new therapeutic strategies and conduct preclinical testing in a mouse model of this disease. Successful accomplishment of proposed research will make California the epicenter of heart disease modeling in vitro, which very likely will lead to human clinical trials and benefit its young citizens who have inherited heart diseases.
Progress Report: 
  • Most heart conditions leading to sudden death or impaired cardiac pumping functions in the young people (<35 years old) are the results of genetic mutations inherited from parents. It is very difficult to find curative therapy for these inherited heart diseases due to late diagnosis and lack of understanding in how genetic mutations cause these diseases. One of these inherited heart diseases is named arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C). The signature features of sick ARVD/C hearts are progressive heart muscle loss and their replacement by fat and scare tissues, which can lead to lethal irregular heart rhythms and/or heart failure. We have made a significant breakthrough and successfully modeled the sick ARVD/C heart muscles within two months in cell cultures using versatile stem cells derived from ARVD/C patients’ skin cells with genetic mutations in one of the desmosomal (a specific type of cell-cell junctions in hearts) proteins, named plakophilin-2. These disease-specific stem cells can give rise to heart cells, which allow us to discover specific abnormalities in heart energy consumption of ARVD/C heart muscles that causes dysfunction and death of these diseased heart cells. In the Year 1 of this grant support, we have made and characterized additional stem cells lines from ARVD/C patients with different desmosomal mutations. We are in the process to determine if heart muscles derived from these new ARVD/C patient-specific stem cells have common disease-causing mechanisms as we had published. We found two proposed therapeutic agents are ineffective in suppressing ARVD/C disease in culture but we have identified one potential drug that suppressed the loss of ARVD/C heart cells in culture. We also started to establish a known ARVD/C mouse model for future preclinical drug testing.

Human ES cell based therapy of heart failure without allogenic immune rejection

Funding Type: 
Early Translational III
Grant Number: 
TR3-05559
ICOC Funds Committed: 
$1 857 600
Disease Focus: 
Heart Disease
Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Active
Public Abstract: 
Heart failure is a major and ever-growing health problem affecting an estimated 5.8 million Americans with about half a million new cases every year. There are limited therapeutic options for heart failure. Heart transplantation is effective but has limited impact due to scarcity of donor organs and eventual immune rejection even under chronic immune suppression. Therefore, there is a clear unmet medical need to develop new effective therapies to treat heart failure. Human ES cell based cell therapy could provide a cure for heart diseases by providing renewable source of human cardiomyocytes (CMs) to restore lost cardiomyocytes and cardiac functions. In support of this notion, hESC-derived cardiomyocytes (hESC-CMs) can repopulate lost cardiac muscle and improve heart function in preclinical animal models of advanced heart failure. However, one key bottleneck hindering such clinic development is that hESC-CMs will be rejected by allogenic immune system of the recipients, and the typical immunosuppressant regimen is especially toxic for patients with heart diseases and leads to increased risk of cancer and infection. To resolve this bottleneck, I propose to develop a novel approach to protect the hESC-CMs from allogenic immune system. If successful, our approach will not only greatly improve the feasibility of developing hESC-CMs to treat heart failure but also has broad application in other hESC-based cell therapies for which allogenic immune rejection remains a major hurdle.
Statement of Benefit to California: 
Heart disease is a leading cause of death and disability among Californians with an above average rate of mortality. It costs the State tremendous expenditure for the treatment and loss of productivity. There are limited therapeutic options for advanced heart diseases. In this context, heart transplantation is effective but limited by the shortage of donors. Therefore, there is clearly an urgent unmet medical need for new and effective therapies to treat heart failure. Human ES cell based cell therapy approach offers the unique potential to provide renewable source of cardiomyocytes to treat heart failure by restoring lost cardiomyocytes and cardiac function. However, one key bottleneck is that the allogenic hESC-derived cardiomyocytes will be immune rejected by recipients, and the typical immunosuppression regimen is especially toxic for fragile patients with heart diseases. In addition, chronic immune suppression greatly increases the risk of cancer and infection. Our proposed research is aimed to develop novel strategies to prevent allogenic immune rejection of hESC-derived cardiomyocytes without inducing systemic immune suppression. If successful, our approach will greatly facilitate the development of hESC-derived cardiomyocytes for treating heart disease and also has broad application in other hESC-based therapy for which allogenic immune rejection remains a bottleneck.
Progress Report: 
  • Heart failure affects an estimated 5.8 million Americans with about half a million new cases every year. It is also one of the leading causes of death and loss of productivity in California. There is a clear unmet medical need to develop new therapies to treat patients with heart failure. Human embryonic stem cells (hESCs) can undergo unlimited self-renewal and retain the pluripotency to differentiate into all cell types in the body. Therefore, as a renewable source of various cell types in the body, hESCs hold great promise for the cell replacement therapy of many human diseases. In this context, significant progress has been made in the differentiation of hESCs into functional cardiomyocytes (CMs), providing the potential of cell replacement therapy to cure heart diseases through the restoration of lost cardiac function. However, one key bottleneck hindering the clinic development of hESC-derived CMs is that hESC-derived CMs will be rejected by allogenic immune system of the recipients, and the typical immunosuppressant regimen can be highly toxic for patients with heart diseases. To resolve this bottleneck and improve the feasibility of the hESC-based therapy of heart failure, we developed and validated a novel approach to protect the hESC-derived CMs from the allogenic human immune system in vivo.

Identification of Novel Therapeutics for Danon Disease Using an iPS Model of the Disease

Funding Type: 
Early Translational III
Grant Number: 
TR3-05687
ICOC Funds Committed: 
$1 701 575
Disease Focus: 
Heart Disease
Pediatrics
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
Autophagy is the cells mechanism for breaking down and recycling proteins. Danon disease is an inherited disorder of autophagy. Patients with this disease have major abnormalities in heart and skeletal muscle and generally die by the time they are in their 20s. Recently we used a new technology to turn skin cells from two patients with this disease into stem cells. The objective of our work is to use these cells to find new medications. To achieve this objective we will use techniques we helped develop to make Danon disease stem cells into heart cells. We will then screen hundreds of thousands of different drugs on these heart cells, to find drugs that make these cells work better. The most promising drugs will be tested on mice with a genetic defect that is similar to those found in patients with Danon disease. When complete, the proposed research will result in the development of a drug suitable for clinical trials of patients with Danon disease. As impaired autophagy is associated with may other diseases, including heart failure, cancer and Parkinson's disease, it is possible that the drug identified will be suitable for treatment of a variety of ailments. Furthermore, the studies will serve as proof of concept for other stem cell based drug discovery systems.
Statement of Benefit to California: 
Heart failure is among the most common reasons Californians are hospitalized, and one of the greatest expenses for the health care system. Danon disease is a type of heart failure that patients inherit. It is rare but almost always fatal. Patients who suffer from Danon disease cannot correctly perform autophagy, which is a way that cells recycle proteins. We believe that our work will help in the development of new drugs to treat Danon disease. It is also possible that the drugs we discover will be useful for the treatment of other types of heart failure. As other disease such as cancer and Parkinson's disease are associated with impaired autophagy, these drugs may help them as well. From a public health perspective, the development of new drugs for heart failure would be of great benefit to Californians. Furthermore, the work could lead to additional grants from federal agency's, as well as larger studies on patients done in partnership with industry. Such studies have the potential of creating jobs and revenue for the state.
Progress Report: 
  • The goal of our project was to use stem cells to help identify new drugs for the treatment of Danon Disease, a rare, inherited disease that causes severe heart disease. Patients with Danon disease generally die in the second and third decade of life of heart failure. We have been working on this project for roughly one year. Since starting we have developed multiple stem cell lines from patients with Danon Disease. We have used these stem cells to make heart cells and have begun testing medicines on these heart cells to see if we can get them to work better. We plan in the future to identify new medicines to test any new medicines we identify on mice that have been made to mimic the disease. We are very hopeful that by the end of this project we will have come up with new ways for helping patients with this deadly disease.

Human Embryonic Stem Cell-Derived Cardiomyocytes for Patients with End Stage Heart Failure

Funding Type: 
Disease Team Therapy Planning I
Grant Number: 
DR2-05394
ICOC Funds Committed: 
$108 895
Disease Focus: 
Heart Disease
oldStatus: 
Closed
Public Abstract: 
Patients with end-stage heart failure (ESHF) have a 2-year survival rate of 50% with conventional medical therapy. This dismal survival rate is actually significantly worse than patients with AIDS, liver cirrhosis, stroke, and other debilitating diseases. Stem cell therapy may be a promising strategy for inducing myocardial regeneration via paracrine activation, prevention of cardiac apoptosis, and other mechanisms. Several studies have convincingly shown that human embryonic stem cells can be differentiated into cardiomyocytes (hESC-CMs) and that these cells can be used to effectively improve cardiac function following myocardial infarction (MI). The objectives of this CIRM Disease Team Therapy proposal are two-fold: (1) to perform IND enabling studies involving hESC-CM for subsequent FDA approval and (2) to complete a Phase I trial with ESHF patients undergoing the left ventricular assist device (LVAD) procedure whereby hESC-CMs will be injected at the same time.
Statement of Benefit to California: 
Coronary artery disease (CAD) is the number one cause of mortality and morbidity in the US. Following myocardial infarction (MI), the limited ability of the surviving cardiac cells to proliferate thereafter renders the damaged heart susceptible to dangerous consequences such as heart failure. In recent years, stem cell therapy has emerged as a promising candidate for treating ischemic heart disease. In contrast to adult stem cells, human embryonic stem cells (hESCs) have the advantage of being pluripotent, which endows them with the ability to differentiate into virtually every cell type. Numerous studies have demonstrated that hESC-derived cardiomyocytes (hESC-CMs) can improve cardiac function in small and large animal models. In addition, the FDA has approved hESC-derived oligodendrocyte progenitor cells for patients with acute spinal cord injury and hESC-derived retinal pigment epithelial cells for patients with Stargardt’s macular dystrophy. Hence the conventional controversies and regulatory hurdles related to hESC-based trials are no longer major barriers to the field. In this proposal, we seek to extend and translate the robust pre-clinical data into clinical reality by demonstrating the safety and feasibility of hESC-CM transplantation. We will perform careful IND-enabling research in the first 3 years. Afterwards, our medical teams will initiate a phase 1 clinical trial involving 10 patients with end stage heart failure (ESHF). We will perform direct intramyocardial injection of hESC-CMs in ESHF patients undergoing left ventricular assist device (LVAD) implantation as a bridge toward orthotopic heart transplantation (OHT). After the patients have received matching donor hearts, the native recipient hearts will be explanted. This will provide us an opportunity to carefully assess the fate of these cells and to ensure safety before we can embark on a larger clinical trial in Years 5-10.
Progress Report: 
  • Patients with end-stage heart failure (ESHF) have a 2-year survival rate of 50% with conventional medical therapy. This dismal survival rate is actually significantly worse than patients with AIDS, liver cirrhosis, stroke, and other debilitating diseases. Stem cell therapy may be a promising strategy for inducing myocardial regeneration via paracrine activation, prevention of cardiac apoptosis, and other mechanisms. Several studies have convincingly shown that human embryonic stem cells can be differentiated into cardiomyocytes (hESC-CMs) and that these cells can be used to effectively improve cardiac function following myocardial infarction (MI). Over the past year, we have assembled a strong multi-disciplinary team and applied for the CIRM Disease Team Therapy proposal.

Preclinical Development and First-In-Human Testing of [REDACTED] in Advanced Heart Failure

Funding Type: 
Disease Team Therapy Planning I
Grant Number: 
DR2-05434
ICOC Funds Committed: 
$106 239
Disease Focus: 
Heart Disease
oldStatus: 
Closed
Public Abstract: 
This application seeks to bring to the clinic a new treatment for myocardial disease based on human embryonic stem cell (hESC) derived cardiomyocytes. hESC-cardiomyocytes have the unique potential to address the underlying cause of heart disease by repopulating areas of damaged myocardium (heart tissue) with viable cardiac cells. This therapeutic approach represents a potential breakthrough in heart disease treatment, serving one of the most intractable, largest, and most costly unmet clinical needs in the U.S. Currently available heart disease treatments have demonstrated ability to slow progression of the disease, but to date none can restore the key underlying defect in heart failure, a loss of contractile function. Cell therapy approaches have generated excitement for their unique potential to play a curative role in myocardial disease through the restoration of lost contractile and/or circulatory function. hESC-cardiomyocytes are unique amongst the cell therapy approaches in that they are a human cardiomyocyte (heart muscle cell) product; replacing damaged myocardium with viable heart cells which can integrate and form fully functional cardiac tissue. This approach has the potential to significantly halt or reverse cardiac functional decline. These benefits can significantly impact patient medication requirements and hospitalizations associated with ongoing cardiac decline, key drivers of the enormous health care costs associated with heart failure. The proposed scope of this project includes activities leading up to and including a regulatory filing with the FDA to initiate clinical testing of hESC-cardiomyocytes for the treatment of heart failure, as well as the enrollment and initial follow-up of a small cohort of patients in a first-in-human trial. The proposed product has completed extensive process development, product characterization, and preclinical (animal model studies) proof-of-concept studies to date. The scope of the proposed research includes: (i) performance of key preclinical safety and efficacy studies to enable entry to clinical testing (ii) manufacture of material for use in preclinical studies, development work, and clinical testing (iii) development and qualification of assays for product characterization, and (iv) preparation for and execution of initial clinical studies.
Statement of Benefit to California: 
The proposed project has the potential to benefit the state of California through 1) providing improved medical outcomes for patients with heart disease, 2) increasing California’s leadership in the emerging field of stem cell research, and 3) preserving and creating high quality, high paying jobs for Californians. Heart disease is one of the most intractable, wide-spread, and fatal diseases in the U.S. More than 5.8 million Americans currently suffer from heart failure; close to 60% of heart failure patients die within 5 years of diagnosis. Although specific statistics are not available for California, they are likely similar to those nationwide, with incidence of more than 10 in 1000 individuals >65 years of age (AHA, 2010). Currently available heart disease therapies have demonstrated the ability to slow disease progression, but to date none can restore the key underlying defect leading to heart failure, a loss of cardiac contractile function. Cell therapy, an approach to regenerate or repair the damaged heart with new cells, addresses this fundamental need, and is considered one of the most important and promising frontiers for the treatment of heart disease. Although multiple other cell therapy products are currently being evaluated for the treatment of heart disease, human embryonic stem cell derived cardiomyocytes have unique potential to address the underlying defect of loss of contractile activity in heart failure, by replacing scarred or damaged heart tissue with new, functional human heart cells to restore cardiac function. California has a history of leadership in biotechnology, and is emerging as a leader in the development of stem cell therapeutics. Cutting edge stem cell research, in many cases funded by CIRM, is already underway in academic research laboratories and biotechnology companies throughout the state. The proposed project has the potential to further increase California’s leadership in the field of stem cell therapeutics through the performance of the first clinical testing of an hESC-derived cardiac cell therapy. The applicant has been located in California since its inception, and currently employs nearly 200 full-time employees at its California headquarters with more than 50% of employees holding an advanced degree. These positions are highly skilled positions, offering competitive salaries and comprehensive benefits. The successful performance of the proposed project would enable significant additional jobs creation as the program progresses through more advanced clinical testing.

Pages

Subscribe to RSS - Heart Disease

© 2013 California Institute for Regenerative Medicine