Heart Disease

Coding Dimension ID: 
295
Coding Dimension path name: 
Heart Disease

Technology for hESC-Derived Cardiomyocyte Differentiation and Optimization of Graft-Host Integration in Adult Myocardium

Funding Type: 
SEED Grant
Grant Number: 
RS1-00242
ICOC Funds Committed: 
$634 287
Disease Focus: 
Heart Disease
Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Closed
Public Abstract: 
Stem cells therapies hold great promise in the treatment of cardiac diseases such as coronary heart disease or congestive heart failure. Thanks to their ability to transform into almost any kind of tissue, engrafted stem cells can potentially replace damaged heart tissues with healthy tissues, effectively restoring the heart’s original functions. While initial studies demonstrated the potential benefits of stem cell injection for repairing heart damage, they told researchers little about exactly how improvements were made to the heart and how the improvement might be enhanced. Also, there is concern that the stem cells could negatively impact some aspects of heart function and lead to disturbances of heart rhythm and future attacks. In light of this, we propose to develop a model to study the detailed interaction of stem cells and healthy heart tissue in the laboratory, where events within the cells and between the cells can be measured accurately and many experiments can be done to increase our understanding, without the use of human subjects. Specifically, we plan to focus on two main goals. The first goal is to develop a platform to better understand the gradual transition that stem cell lines make as they mature into heart cells, process known as differentiation. We will record the electrical activity arising from newly formed heart cells to determine when exactly they form and how the behave in response to electrical stimuli or drugs as they mature. This will tell us more about the behavior of the cells that could be injected into the heart so that we know how they will respond when they merge with the heart and when is the best time to introduce them. The second goal, building on the first one, is to observe how the stem cells make contact with the heart cells, including how they grow together mechanically and how they begin to communicate electrically as a repaired tissue. This will be carried out by growing the stem cells and heart cells separately and then allowing them to grow together, just as they would in the heart. Simultaneous recording of electrical activity at numerous locations in the culture will let us map the activity across the culture and evaluate the communication between heart cells (host) and stem cells (graft). Understanding the microscopic nature of integration of stem cells into healthy tissue will lead to a greater knowledge of what can happen when stem cells are injected into the heart and begin to replace the non-functional tissue and connect to healthy tissue. Insights gained with such model should lead to a better understanding of the repair process and highlight strategies for making stem cell-based therapies safer and more effective. This model will also allow testing and development of chemical or electrical manipulations that would increase the yield and reliability of the differentiation process, paving the way for the ultimate scale-up of stem cell therapies for clinical use.
Statement of Benefit to California: 
There is currently no cure for heart damage caused by heart attack, and stem cells offer a very promising solution to this problem that affects millions of Americans. We feel that addressing possible solutions to this pervasive problem is a very constructive and meaningful way to utilize some of the financial resources allocated for stem cell research in California. Within (and outside) the CIRM community, we also have the important goal of making currently unavailable electronic, microfabrication and signal processing technologies available in the form our proposed research platforms. With our planned outreach efforts, we will freely share our methods and equipment, hopefully enhancing the work of many other research groups. By using CIRM funds, we could make such systems available for use with non-registered (as well as registered) cell lines. The outcome of this research stands to impact not only citizens of California, but also the nation and the world. We aim to make considerable progress with research paid for by the citizens of California, demonstrating the degree to which we, as a people, are committed to solving problems in medicine and health care and improving the lives of others. This work will also benefit our State and taxpayers through the training of post-doctoral and graduate students with a clear mindset of leadership, creativity and compassion. Through publication and presentations at local, national and international forums, we hope to disseminate the knowledge gained and encourage further advances.
Progress Report: 
  • The success of cardiac cell grafts for repair of infarcts or congestive heart failure has been moderate to date. While graft cells may survive transplantation, their contribution to conduction and force generation is neither well-defined nor understood. Also, there is concern that the stem cells could negatively impact some aspects of heart function and lead to disturbances of heart rhythm. In light of this, we proposed to develop a model to study the detailed interaction of stem cells and healthy heart tissue in the laboratory, focusing on two main thrusts.
  • The first part of this project had seen the successful development of a platform to better understand the transition that stem cells make as they mature into heart cells, a process known as differentiation. Using arrays of microelectrodes, recording of electrical activity from maturing stem cells was demonstrated. Impact of electrical stimulation on the differentiation process had been probed. Investigation of the interaction between stem cells and heart cells had also been initiated. The second part focused mainly on the latter aspect – functional coupling of stem cells in the heart tissue. New analysis tools for the quantification of the conduction of the electrical activity across a heart tissue were developed. Studies with mixed co-cultures of cardiac cells and fibroblasts revealed a high sensitivity of the conduction properties to the presence of non-conductive cells (fibroblasts), and provide a model for assessing conduction in stem cell grafts of varying homogeneity. Co-cultures of heart cells (host) and stem cells (graft), first grown separately then allowed them to merge, highlighted issues of conduction mismatch at the interface between the host and graft tissue, as well as the dependence of this conduction on the maturity and purity of the grafts used. Most importantly, these studies demonstrated the value of the model developed under this grant for the investigation of electrical coupling and conduction in stem cell grafts, issues that are vital to the safe, effective and successful use of stem cell therapy.

Micro Platform for Controlled Cardiac Myocyte Differentiation

Funding Type: 
SEED Grant
Grant Number: 
RS1-00239-A
ICOC Funds Committed: 
$363 707
Disease Focus: 
Heart Disease
Stem Cell Use: 
Embryonic Stem Cell
Public Abstract: 
Congestive heart failure, the inability of the heart to continue to pump effectively due to damage of its muscle cells, affects approximately 4.8 million Americans and is a leading cause of mortality. Causes of the irreversible damage to the cardiomyocytes that results in congestive heart failure include hypertension, heart attacks, and coronary disease. Because the cadiomyocytes in the adult heart tissue are terminally differentiated and thus cannot regenerate themselves, once they are damaged, they are irreversibly damaged. As a consequence, despite the advances in medical devices and pharmaceuticals, still more than 50% of congestive heart failure patients die within 5 years of initial diagnosis. The goal therefore must be to restore the heart cells’ functions. This is possible by transplanting fetal and neonatal cardiomyocytes which can then integrate into the host tissue. This approach has demonstrated success in improving heart function. However, the limited availability of fetal donors has prevented its adoption as a viable therapeutic approach. Embryonic stem cells can overcome this challenge as they proliferate continuously in vitro and can be furthermore stimulated to differentiate. Embryoid bodies are three-dimensional clusters of heterogenous stem cells, some of which contain cardiac myocytes, which demonstrate characteristic spontaneous contractions. Controlled and efficient differentiation of the stem cells into cardiomyocytes and an effective way to characterize/verify these cells is critical. Ensuring a pure population of cardiac myocytes is essential because otherwise there is a high-likelihood of tumor formation when transplanted. Previous studies have shown that a low percentage of all embryoid bodies spontaneously form cardiomyocytes. Our goal is to therefore develop a self-contained system to grow and controllably differentiate the human embryonic stem cells into cardiomyocytes in high-yields. Few studies have characterized the types of cardiac myocytes in the differentiating human EBs. Our strategy is to use electrical and chemical cues to induce the high-yield differentiation of stem cells into cardiomyocytes and to monitor this process over time both electrically and optically.
Statement of Benefit to California: 
Improvements in differentiating stem cells into homogenous populations of specific cell types are much needed for transplantation therapy in general—and for congestive heart failure patients in particular. The benefits associated with the development of this micro platform have even broader reaching implications beyond biomedical research. After this system is developed, it will serve as a first platform of its kind that can be later commercialized, which would help spur industry growth. To vitalize and enable high-tech/biotech companies to this {REDACTED} area {REDACTED}, engaging industry involvement to this area is necessary. Supporting such activities would furthermore foster the opportunity for student internships with industry and well as afford the students opportunities in entrepreneurship. Our institution is a Hispanic-serving undergraduate institute with almost 50% minority students. Such a proposed system is vital for promoting both the diversity and research culture {REDACTED} and will be leveraged extensively in outreach programs to encourage underrepresented minorities in science education and training. By actively reaching out to specific students who would particularly benefit from our proposed undergraduate internship program, we can attract at-risk students to engage them in research to promote their retention.

Micro Platform for Controlled Cardiac Myocyte Differentiation

Funding Type: 
SEED Grant
Grant Number: 
RS1-00239-B
ICOC Funds Committed: 
$363 707
Disease Focus: 
Heart Disease
Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Closed
Public Abstract: 
Congestive heart failure, the inability of the heart to continue to pump effectively due to damage of its muscle cells, affects approximately 4.8 million Americans and is a leading cause of mortality. Causes of the irreversible damage to the cardiomyocytes that results in congestive heart failure include hypertension, heart attacks, and coronary disease. Because the cadiomyocytes in the adult heart tissue are terminally differentiated and thus cannot regenerate themselves, once they are damaged, they are irreversibly damaged. As a consequence, despite the advances in medical devices and pharmaceuticals, still more than 50% of congestive heart failure patients die within 5 years of initial diagnosis. The goal therefore must be to restore the heart cells’ functions. This is possible by transplanting fetal and neonatal cardiomyocytes which can then integrate into the host tissue. This approach has demonstrated success in improving heart function. However, the limited availability of fetal donors has prevented its adoption as a viable therapeutic approach. Embryonic stem cells can overcome this challenge as they proliferate continuously in vitro and can be furthermore stimulated to differentiate. Embryoid bodies are three-dimensional clusters of heterogenous stem cells, some of which contain cardiac myocytes, which demonstrate characteristic spontaneous contractions. Controlled and efficient differentiation of the stem cells into cardiomyocytes and an effective way to characterize/verify these cells is critical. Ensuring a pure population of cardiac myocytes is essential because otherwise there is a high-likelihood of tumor formation when transplanted. Previous studies have shown that a low percentage of all embryoid bodies spontaneously form cardiomyocytes. Our goal is to therefore develop a self-contained system to grow and controllably differentiate the human embryonic stem cells into cardiomyocytes in high-yields. Few studies have characterized the types of cardiac myocytes in the differentiating human EBs. Our strategy is to use electrical and chemical cues to induce the high-yield differentiation of stem cells into cardiomyocytes and to monitor this process over time both electrically and optically.
Statement of Benefit to California: 
Improvements in differentiating stem cells into homogenous populations of specific cell types are much needed for transplantation therapy in general—and for congestive heart failure patients in particular. The benefits associated with the development of this micro platform have even broader reaching implications beyond biomedical research. After this system is developed, it will serve as a first platform of its kind that can be later commercialized, which would help spur industry growth. To vitalize and enable high-tech/biotech companies to this {REDACTED} area {REDACTED}, engaging industry involvement to this area is necessary. Supporting such activities would furthermore foster the opportunity for student internships with industry and well as afford the students opportunities in entrepreneurship. Our institution is a Hispanic-serving undergraduate institute with almost 50% minority students. Such a proposed system is vital for promoting both the diversity and research culture {REDACTED} and will be leveraged extensively in outreach programs to encourage underrepresented minorities in science education and training. By actively reaching out to specific students who would particularly benefit from our proposed undergraduate internship program, we can attract at-risk students to engage them in research to promote their retention.
Progress Report: 
  • This year, we have made quite some progress in developing the microtechnology platform. We have developed a new way to form and culture human embryonic stem cells into uniform embryoid bodies in a high throughput fashion. Instead of using the laborious ‘hanging drop method’ or the complicated ‘spinning flask method’, we have developed a way for researchers to easily pipette their cells into standard well plates and increase their throughput by almost 1000x. This is achieved by placing inserts with rounded-bottom microwells into standard well plates. Each one of these inserts that can fit into a standard 24 or 96 well plate can have up to 1000 wells and therefore can create 1000 embryoid bodies, all of uniform size. We can even create wells of various sizes such that we can induce embryoid bodies of predefined sizes and numbers of cells. Many recent publications have demonstrated that the initial size of the embryoid bodies affect differentiation. We have observed this as well. Moreover, this new platform allows researchers to perform real-time microscopy of the cells during this whole process.
  • In addition to developing this new chip, we have also electrically stimulated at different stages during differentiation. The different stages of differentiation include: 1) during embryoid body development 2) when transferred to gelatin coated dishes 3) after about a week on gelatin and 4) isolated beating areas. Electrical stimulation was accomplished using a C-PACE voltage pulsing device at a 1 Hz frequency, 4.5 V (2.5 V/cm), and a 1 ms duration. Unfortunately, none of the electrical stimulation yielded any exhibited increased expression of cardiac markers. Future studies will examine pacing of differentiated cardiac cells for synchronization and will employ more markers using a PCR super microarray.
  • We have also worked on custom software development that allows us to automatically identify and track individual cells within the microplatform.
  • There were a number of factors that caused some unexpected delays in scientific progress this year. Most notably, the PI Michelle Khine and her lab moved to a new university. Therefore, this took quite some time to take down and then re-establish the lab at its new location. Now at UC Irvine, she finally has the ideal infrastructure to make progress quickly on this project. This one year extension to finish this project is therefore much needed and greatly appreciated.
  • To uniformly control the differentiation of embryoid bodies (EBs), we have developed a very simple to use culture platform the create homogenous-sized EBs.
  • We have made quite some progress with the EB array culture plate development, described in detail in the last progress report. Since then, we have developed a way to 1) translate to a more transparent material with lower autofluorescence (cyclic olefin copolymer, COC) to be compatible with optical imaging (Figure 1, c) and then 2) mated the microwells to the bottom of 24 well plates for ease of handling. While we have not had success with applying electric fields to induce cardiomyocyte differentiation, we are now working with !) optimizing the EB size to yield the most cardiomyocytes and then 2)perfusing the EBs with soluble factors.

Specification of Ventricular Myocyte and Pacemaker Lineages Utilizing Human Embryonic Stem Cells

Funding Type: 
SEED Grant
Grant Number: 
RS1-00198
ICOC Funds Committed: 
$609 999
Disease Focus: 
Heart Disease
Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Closed
Public Abstract: 
Heart failure is a leading cause of mortality in California and the United States. Currently, there are no “cures” for heart failure.Other life threatening forms of heart disease include dysfunction of cardiac pacemaker cells, necessitating implantation of mechanical pacemakers. Although mechanical pacemakers can be efficacious, there are potential associated problems, including infection, limited battery half-life, and lack of responsiveness to normal biological cues. Our research with human embryonic stem cells will be aimed at developing therapies for heart failure, and cardiac pacemaker dysfunction. In each of these disease settings, one might effect a “cure” by replacing worn out or dysfunctional cardiac cells with new ones. In the case of heart failure, the cells that need to be replaced are heart muscle cells, which do the majority of the work in the heart. In the case of pacemaker dysfunction, the cells that need to be replaced are pacemaker cells, a highly specialized type of heart muscle cell. To replace these cells, we need to find cells that can become heart muscle or cardiac pacemaker cells, understand how to generate fairly large numbers of them, and how to persuade them to become either heart muscle or cardiac pacemaker cells. Potential cardiac progenitor cells may come from a number of different sources, either from patients themselves, or from extrinsic sources. Regardless of the source,we need to define factors which will make the cells multiply and will make them become the cell type that we need for repair. The biology of human heart cells is likely to be distinctive from that of heart cells from other animals. For example, a human heart has to function for multiple decades, unlike hearts of other animals who live in general for shorter periods of time. The size, required function, and rhythm of the human heart are also distinct from that of other animals. For these reasons, for repair of human heart, it is important to study human cardiac progenitors and to define pathways required to grow them and to differentiate them utilizing human cells as a model experimental system. Our proposed research will utilize human embryonic stem cells as a source of cardiac progenitors. As human embryonic stem cells can turn into many different kinds of cells, we will create special lines of human embryonic stem cells that will become fluorescent when they adopt the cardiac progenitor, heart muscle, or pacemaker state. These lines will then be treated with a large number of small molecules to find small molecules which amplify cells the number of fluorescent cells in each of these states. The small molecules activate known biochemical pathways, so we can then use the small molecules themselves, or activate identified pathways to achieve the goal of obtaining sufficient numbers of specific cardiac cell types for cardiac therapy.
Statement of Benefit to California: 
More Californians die each year of cardiovascular disease than from the next four leading causes of death combined. Californians continue to die or be disabled as a direct result of cardiovascular disease. Although advances in medical treatment have improved post-infarct survival, heart failure is an increasingly abundant manifestation of cardiovascular disease. A secondary complication of heart failure, and other cardiac diseases, is cardiac pacemaker dysfunction, a potentially fatal condition which is currently ameliorated by mechanical pacemakers. However, mechanical pacemakers have many associated complications,particularly for pediatric patients. For both heart failure and pacemaker dysfunction, replacement of heart muscle cells or biological pacemaker cells offers the hope of improving upon current medical practice. Our research is aimed toward developing new therapies which will allow for the replacement of these critical cell types in diseased heart.
Progress Report: 
  • In the current reporting period, we have worked on the generation of human embryonic stem cell derived marker cell lines for different steps of cardiomyocyte differentiation. The cell lines are designed to express fluorescent proteins under the control of gene promoters that mark cardiac progenitor cells, cardiomyocytes, or cardiac conduction system cells.
  • We tested several HUES cell lines for this purpose and chose cell lines that can differentiate into cardiomyocytes efficiently but are easy to expand and appear stable over several passages in culture. We generated several BAC transgenic cell lines that specifically express green fluorescent protein in cardiomyocytes. Further cell lines are being generated. The cell lines will be used in high-throughput screens to identify molecules and mechanisms that direct the efficient in vitro differentiation into different cardiac cells.

Development of Neuro-Coupled Human Embryonic Stem Cell-Derived Cardiac Pacemaker Cells.

Funding Type: 
SEED Grant
Grant Number: 
RS1-00171
ICOC Funds Committed: 
$744 639
Disease Focus: 
Heart Disease
Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Closed
Public Abstract: 
Optimal cardiac function depends on the properly coordinated cardiac conduction system (CCS). The CCS is a group of specialized cells responsible for generating cardiac rhythm and conducting these signals efficiently to working myocardium. This specialized CCS includes the sinoatrial node, atrioventricular node and His-Purkinje system. These specialized pacemaking /conducting cells have different properties from the surrounding myocytes responsible for the contractile force. Genetic defects or postnatal damage by diseases or aging processes of these cells would result in impaired pulse generation (sinus node dysfunction, SND) or propagation (heart block). Implantation of an electronic cardiac pacemaker is necessary for intolerant bradycardia to restore cardiac rhythm. However, the electronic implantable pacemaker has multiple associated risks (e.g. infections) and requires frequent generator changes due to limited battery life. Sinus node dysfunction is a generalized abnormality of cardiac impulse formation and accounts for >30 percent of permanent pacemaker placements in the US. A perfect therapy to SND will be to repair or replace the defective sinus node by cellular or genetic approaches. Many recent studies have demonstrated, in a proof-of-concept style, of generating a biological pacemaker by implanting various types of progenitor or stem cells into ventricular myocardium to form a pulse-generating focus. However, a perfect biological pacemaker will require good connections with the intrinsic neuronal network for proper physiological responses. Elucidation of the factors controlling the evolution of pacemaker cells and their interaction with the peripheral neuronal precursor cells (neural crest cells, NCCs) will be paramount for creating an adaptive biological pacemaker. The NCCs have been shown to be contiguous with the developing conduction system in embryonic hearts of humans. However, the influence and interaction of the NCCs with the developing cardiac pacemaker cells remains unclear. In addition, there is no simple marker for identifying the pacemaker cells and the electrophysiological (EP) recording is the only physiological method to trace the evolution of cardiac pacemaker cells from human embryonic stem cells (hESCs). We have successfully obtained the EP properties of early hESC-derived cardiomyocytes. We propose here an in vitro co-culture system to study fate of the pacemaker cells evolved from hESCs and to investigate the influence of NCCs on the early, cardiac committed myocytes derived from hESCs. Such a study will provide insight in the development of pacemaker cells and in the mechanisms of early neuro-cardiac interaction. Results from the proposed study may suggest strategies for developing efficient and neuro-coupled cardiac pacemakers from ESCs. These neuro-coupled biological pacemaker cells may one day used clinically to replace the need for implanting an electronic pacemaker for the treatment of intolerant bradycardia.
Statement of Benefit to California: 
Optimal cardiac function depends on the properly coordinated cardiac conduction system. Genetic defects or postnatal damage by diseases or aging processes of these pacemaker cells would result in impaired pulse generation (sinus node dysfunction) or propagation (heart block). The implantation of an electronic cardiac pacemaker is necessary for intolerant bradycardia to restore physiologic cardiac rhythm. However, the electronic implantable pacemaker has multiple associated risks (e.g. infections and thrombosis) and requires frequent generator changes due to limited battery life. Sinus node dysfunction (SND) is a generalized abnormality of cardiac impulse formation and accounts for 30-50 percent of permanent pacemaker placements in the US. A perfect therapy to SND will be to repair or replace the defective sinus node by cellular or genetic approaches. Most of the research work on developing biological pacemakers are performed in Columbia University at New York City, Johns Hopkins University at Baltimore, and Technion-Israel Institute of Technology at Haifa, Israel. All of their approaches produced short-lived and non-responsive biological pacemakers to physiological demands. None of human stem cell-related research in California is devoted to this highly promising field of developing biological pacemakers. The proposed research here will elucidate the factors controlling the evolution of pacemaker cells and their interaction with the peripheral neuronal precursor cells (neural crest cells). Such a study will provide insight in the development of pacemaker cells and in the mechanisms of early neuro-cardiac interaction. These factors then can be used to generate better neuro-coupled biological pacemaker cells in California. These neuro-coupled biological pacemaker cells may one day be used clinically to replace the need for implanting an electronic pacemaker for the treatment of intolerant bradycardia. Creating the neuro-coupled, adaptive biological pacemakers will make California the epicenter of the next generation of pacemaker therapy, and will benefit its citizens who have intolerant cardiac bradycardia.
Progress Report: 
  • Cardiovascular diseases remain the major cause of death in the US. Human Stem and progenitor cell-derived cardiomyocytes (SPC-CMs) hold great promise for myocardial repairs. Recent progress in cellular reprogramming of various somatic cell types into induced pluripotent stem cells opened the door for developing patient-specific, cell-based therapies. However, most SPC-CMs displayed heterogeneous and immature electrophysiological (EP) phenotypes with uncontrollable automaticity. Implanting these electrically immature and inhomogeneous CMs to the hearts would likely be arrhythmogenic and deleterious. Furthermore, as CMs mature, they undergo changes in automaticity and electrical properties. We used human embryonic stem cell-derived CMs (hESC-CMs) as the model system to study the development and maturation of CMs in the embryoid body (EB) environment. Elucidating molecular pathways governing EP maturation of early hESC-CMs in EBs would enable engineered microenvironment to create functional pacemaker cells or electrophysiologically compatible hESC-CMs for cell replacement therapies. We have established antibiotic (Abx)-resistant hESC lines conferred by lentiviral vectors under the control of a cardiac-specific promoter. With simple Abx treatment, we easily isolated >95% pure hESC-CMs at various stages of differentiation from EBs. In the first year of this grant support and using the Abx selection system, we found that hESC-CMs isolated at early stages of differentiation without further contacts with non-cardiomyocytes (non-CMs) depicted arrested electrical maturation. The intracellular Ca2+-mediated automaticity developed very early and contributed to dominant automaticity throughout hESC-CM differentiation regardless of the presence or absence of non-CMs. In contrast, sarcolemmal ion channels evolved later upon further differentiation within EBs and their maturation required the interaction with non-CMs. In the second year, we further developed an add-back co-culture system to enable adding non-CMs back to early isolated hESC-CMs, which rescued the arrest of EP maturation. We also developed techniques to isolate pure subsets of non-CMs, such as neural crest and endothelial cells, from hESC-derived EBs, which exerted influences on maturation of specific subsets of ion channel populations respectively. Therefore, our study showed for the first time that non-CMs exert significant influences on the EP maturation of hESC-CMs during differentiation. Knowledge of this study will allow us to improve functional maturation of primitive hESC-CMs or to create neuro-coupled pacemaker cells before cell transplantation.
  • Cardiovascular diseases remain the major cause of death in the US. Human Stem and progenitor cell-derived cardiomyocytes (SPC-CMs) hold great promise for myocardial repairs. Recent progress in cellular reprogramming of various somatic cell types into induced pluripotent stem cells opened the door for developing patient-specific, cell-based therapies. However, most SPC-CMs displayed heterogeneous and immature electrophysiological (EP) phenotypes with uncontrollable automaticity. Implanting these electrically immature and inhomogeneous CMs to the hearts would likely be arrhythmogenic and deleterious. Furthermore, as CMs mature, they undergo changes in automaticity and electrical properties. We used human embryonic stem cell-derived CMs (hESC-CMs) as the model system to study the development and EP maturation of CMs in the embryoid body (EB) environment. Elucidating molecular pathways governing EP maturation of early hESC-CMs in EBs would enable engineered microenvironment to create functional pacemaker cells or electrophysiologically compatible hESC-CMs for cell replacement therapies. We have established antibiotic (Abx)-resistant hESC lines conferred by lentiviral vectors under the control of a cardiac-specific promoter. With simple Abx treatment, we easily isolated >95% pure hESC-CMs at various stages of differentiation from EBs. In the first year of this grant support and using the Abx selection system, we found that hESC-CMs isolated at early stages of differentiation without further contacts with non-cardiomyocytes (non-CMs) depicted arrested electrical maturation. The intracellular Ca2+-mediated automaticity developed very early and contributed to dominant automaticity throughout hESC-CM differentiation regardless of the presence or absence of non-CMs. In contrast, sarcolemmal ion channels evolved later upon further differentiation within EBs and their maturation required the interaction with non-CMs. In the second year, we further developed an add-back co-culture system to enable adding non-CMs back to early isolated hESC-CMs, which rescued the arrest of EP maturation. In the third no-cost extension year, we further successfully established the cocultures of human neural crest cell (NCC)-derivatives and early-purified hESC-CMs. We found that peripheral neurons derived from human NCCs exerted strong influences on the development of a specific subset of ion channel populations during early hESC-CM differentiation. Therefore, our study showed for the first time that non-CMs, especially neurons derived from NCCs, exert significant influences on the EP maturation of hESC-CMs during differentiation. Knowledge of this study will allow us to improve functional maturation of primitive hESC-CMs or to create neuro-coupled pacemaker cells before cell transplantation.

Discovering Potent Molecules with Human ESCs to Treat Heart Disease

Funding Type: 
SEED Grant
Grant Number: 
RS1-00169
ICOC Funds Committed: 
$714 654
Disease Focus: 
Heart Disease
Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Closed
Public Abstract: 
This work is directly relevant to human embryonic stem cell (hESC) research because it brings new ideas about novel compounds to affect cardiomyogenesis. The work addresses an urgent need to develop new agents to treat cardiovascular disease. We will develop potent and selective drug-like molecules as cardiomyocyte differentiation agents. Heart disease is the leading cause of mortality and decline in the quality of life in the developed world. The ability of hESCs to form cardiomyocytes has spawned hope that these cells may be used to replace damaged myocardium. Despite their ability to form cardiomyocytes, efficient and controlled cardiomyogenesis in ESC cultures has not been achieved due to the unavailability of differentiation agents and an incomplete understanding of the pathways that regulate cardiac development. Success has been achieved in developing a robust and dependable high-throughput assay to study the effects of small molecules on cardiomyocyte differentiation. Powerful cell-based assays were developed and provided readouts that led to high-content results because multiple signals were probed. The assay is capable of capturing fast or long-acting biology because of the time-course readouts. Cell-based assays are superior to molecular screens because the cell-based assay delivers active compounds or “hits” that are permeable and non-cytotoxic. Moreover, refined “hits” can be used as probes to reveal novel signaling pathways and proteins that control differentiation, in a process termed chemical biology. By taking advantage of knowledge of the current “hits” we will rapidly synthesize novel drug-like compounds in a low-risk approach to. The “hits” will be refined and improved through an efficient synthetic process we use in our lab called “Dynamic Medicinal Chemistry”. Even after miniaturization and automation, screening is still expensive. A key to improve the screening process is to use pharmacologically active, drug-like compounds to provide rich target-relevant information. Intelligently designing libraries for screening by incorporating drug-like features into “lead” library design will improve the attrition rate and lead to more pharmacologically relevant compounds for future studies. This proposal is directly responsive to the California Institute for Regenerative Medicine SEED Grant Program because it provides for developing and testing new agents of use in cardiomyoenesis of hESCs. Importantly, it brings new investigators and a collaborative approach to the stem cell field. The agents discovered and developed may hold great promise as the groundwork for future medications development for a new class of damaged myocardium replacement agents. The theoretical rationale for the work is the use of high-content screening coupled with drug-like new agent discovery approaches. The work will also be of use in the elucidation of key biochemical targets and novel signaling pathways important in hESC cardiomyogenesis.
Statement of Benefit to California: 
In 2002, in the State of California, approximately 697,000 adult Californians died from heart disease. The cost as measured by loss of lifelong earnings was more than $79 billion. Setting aside the pain and suffering, the economic impact of cardiovascular disease to the State of California is staggering. Despite recent advances in cardiovascular medications development, new approaches and novel drug-like compounds are urgently needed to treat cardiovascular disease in California and elsewhere. The poor prognosis for heart disease for Californians underscores the critical need to develop alternative therapeutic strategies. The demonstrated ability of human embryonic stem cells (hESCs) to form cardiomyocytes has spawned widespread hope that these cells may be used as a source to replace damaged myocardium in humans. Despite their ability to form cardiomyocytes, efficient and controlled cardiomyogenesis in hESC culture has not been achieved due to the unavailability of differentiation agents and also because of an incomplete understanding of the pathways that regulate cardiac cell development. Using a high-throughput whole cell assay with image analysis, we have identified four small molecules that promote cardiomyogenesis in human ESCs. This proposal is directly responsive to the California Institute for Regenerative Medicine SEED Grant Program because it provides for developing and testing new agents of use in cardiomyogenesis of hESCs. It also brings new investigators and new collaborative approaches to the field. The promising agents discovered already constitute an excellent starting point and further refinement and development of these compounds may hold great promise as the groundwork for future medications development for a new class of damaged myocardium differentiation agents. The theoretical rationale for the work is the use of high-content screening coupled with drug-like new agent discovery approaches. The work will be of use in the elucidation of key biochemical targets and novel signaling pathways important in hESC cardiomyogenesis. The compounds discovered in our whole hESC-based assays thus far are not potent enough to be developed as drug candidates. But these compounds hold great promise as agents that could be refined further into drug leads. If the leads become drugs, promise of a new class of medication to treat cardiovascular disease may become a reality. Such drugs would decrease cardiovascular disease and decrease health care costs in California. This will likely have a significant economic impact to the State of California. The proposed work represents essential translational research required for new drug development.
Progress Report: 
  • The original goals of the proposal were to apply medicinal chemistry to generate more potent and drug-like analogs of small molecules that stimulate differentiation of cardiomyocytes from embryonic stem cell (ESC) and potentially other progenitor cell types found in adult human heart. During the grant period, we over-achieved each Aim and provided large numbers of drug-like small molecules for cardiomyocyte differentiation studies. In addition, other related information was gained that has considerably expanded our understanding related to developing regenerative medicines.
  • 1. Synthetic Chemistry: From an initial screen of thousands of compounds, six 'hits' were identified. Almost 1300 compounds were synthesized as analogs of these “hits” with the goal of generating more effective novel compounds as possible therapeutics for heart disease.
  • 2. Assay development and screening: Novel synthetic chemical analogs were studied in cell-based assays to evaluate potency of stimulating cardiac cell development relative to the starting 'hit' compounds. The biological data contributed to structure activity relationship (SAR) studies, and provided valuable information about parts of the molecules important for cardiomyocyte stem cell differentiation and for other important pharmaceutical properties. The iterative feedback from the biological testing helped to guide the next generation designs of new and ever more effective compounds.
  • 3. Chemical optimization. Focused structure activity relationship (SAR) studies for 4 chemical series from the ESC cardiogenesis differentiation screen were done. SAR for 2 additional chemical classes was done but those agents proved less potent. In addition to SAR, considerable information was obtained leading to improved solubility and membrane permeability of compounds in development, which became a focus of the chemical optimizations.
  • In summary, the work has already led to one or more promising drug-like compounds ready for efficacy testing in animal models and thus, efforts have greatly accelerated the timeline of getting compounds to human patients.
  • The original goals of the proposal were to apply medicinal chemistry to generate more potent and drug-like analogs of small molecules that stimulate differentiation of cardiomyocytes from embryonic stem cells (ESCs) and potentially other progenitor cell types found in adult human heart. During the grant period, we over-achieved each Aim and provided large numbers of drug-like small molecules for cardiomyocyte differentiation studies. In addition, other related information was gained that has considerably expanded our understanding related to developing regenerative medicines.
  • 1. Synthetic Chemistry: From an initial screen of thousands of compounds, six ‘hits’ were identified. Almost 1400 compounds were synthesized as analogs of these “hits” with the goal of generating more effective novel compounds as possible therapeutics for heart disease.
  • 2. Assay development and screening: Novel synthetic chemical analogs were studied in cell-based assays to evaluate potency of stimulating cardiac cell development relative to the starting ‘hit’ compounds. The biological data contributed to structure activity relationship (SAR) studies, and provided valuable information about parts of the molecules important for cardiomyocyte stem cell differentiation and for other important pharmaceutical properties. The iterative feedback from the biological testing helped to guide the next generation design of new and ever more effective compounds.
  • 3. Chemical optimization. Focused structure activity relationship (SAR) studies for 4 chemical series from the ESC cardiogenesis differentiation screen were done. SAR for 2 additional chemical classes was done but those agents proved less potent. In addition to SAR, considerable information was obtained leading to improved solubility and membrane permeability of compounds in development, which became a focus of the chemical optimizations. The most potent compounds increased stem cell differentiation to cardiomyocytes 5-10 fold. The compounds were non-toxic, reasonably tractable to make, stable and were water-soluble and hence relatively easy to handle.
  • 4. A number of biological signaling pathways were identified as affiliated with cardiomyocyte differentiation. One such pathway also is involved in anti-cancer activities. Thus, our efforts in identifying cardiomyocyte differentiation agents led us to study novel biology associated with cancer. One “hit” of this signaling pathway was chosen to do synthetic chemistry and “hit” to lead refinement. Approximately 100 compounds were synthesized and tested for inhibition of this signaling pathway.
  • In summary, the work has already led to a number of promising drug-like compounds ready for efficacy testing in animal models and thus, efforts have greatly accelerated the timeline of getting compounds to human patients. A total of 1500 compounds were synthesized to optimize the potency and properties of cardiomyocyte differentiation agents. The most potent stimulated production of human cardiomyocytes 5-10-fold compared to vehicle-stimulated cells.

Human Cardiovascular Progenitors, their Niches and Control of Self-renewal and Cell Fate

Funding Type: 
Basic Biology I
Grant Number: 
RB1-01354
ICOC Funds Committed: 
$1 378 076
Disease Focus: 
Heart Disease
Stem Cell Use: 
Adult Stem Cell
oldStatus: 
Closed
Public Abstract: 
For the millions of Americans who are born with or develop heart disease, stem cell research offers the first hope of reversing or repairing heart muscle damage. Thus, early reports suggesting heart regeneration after transplantation of adult bone marrow-derived stem cells were met with great excitement in both the scientific and lay community. However, although adult stem cell transplantation was shown to be safe, results from over a dozen clinical trials concluded that the benefits were modest at best and whether any true regeneration is occurring was questionable. The basis for these disappointing results may be related to poorly characterized cell types used that have little capacity for true regeneration and an inadequate understanding the factors necessary for survival and differentiation of transplanted stem cells. In this application, we are proposing to study the growth and differentiation properties of an authentic endogenous human cardiac progenitor cell that can differentiate into cardiac muscle cells, smooth muscle cells and endothelial cells. We will also determine the factors that support its growth and renewal during normal development. This knowledge will be applied to future clinical trials of cardiovascular cell therapy that allow truly regenerative therapy.
Statement of Benefit to California: 
Heart disease, stroke and other cardiovascular diseases are the #1 killer in California. Despite medical advances, heart disease remains a leading cause of disability and death. Recent estimates of its cost to the U.S. healthcare system amounts to almost $300 billion dollars. Although current therapies slow the progression of heart disease, there are few, if any options, to reverse or repair damage. Thus, regenerative therapies that restore normal heart function would have an enormous societal and financial impact not only on Californians, but the U.S. more generally. The research that is proposed in this application could lead to new therapies that would restore heart function after and heart attack and prevent the development of heart failure and death.
Progress Report: 
  • In this application, we propose to study the growth and differentiation properties of an authentic endogenous human cardiac progenitor cells (CPCs) that can differentiate into cardiac muscle cells, smooth muscle cells and endothelial cells. We have isolated these multipotent CPCs from human ventricles and human induced pluripotent cells and compared therie differentiation potential. Additionally, we have characterized a cardiac niche in the developing heart, demonstrated that both the extracellulat matrix molecules and the three dimensional environment is important for CPC renewal. We believe these experiments will significantly advance out understanding of the biology of CPCs and facilitate their application as a regenerative therapy.
  • In this application, we propose to study the growth and differentiation properties of an authentic endogenous human cardiac progenitor cells (CPCs) that can differentiate into cardiac muscle cells, smooth muscle cells and endothelial cells. We have isolated these multipotent CPCs from human ventricles and human induced pluripotent cells and compared therie differentiation potential. Additionally, we have characterized a cardiac niche in the developing heart, demonstrated that both the extracellulat matrix molecules and the three dimensional environment is important for CPC
  • renewal. We believe these experiments will significantly advance out understanding of the biology of CPCs and facilitate their application as a regenerative therapy.

Autologous cardiac-derived cells for advanced ischemic cardiomyopathy

Funding Type: 
Disease Team Research I
Grant Number: 
DR1-01461
ICOC Funds Committed: 
$5 560 232
Disease Focus: 
Heart Disease
Stem Cell Use: 
Adult Stem Cell
Cell Line Generation: 
Adult Stem Cell
oldStatus: 
Closed
Public Abstract: 
The adult human heart contains small numbers of cardiac stem cells that are able to partially repair the heart following a heart attack or throughout the course of progressive heart failure. We have developed a method to isolate these cells and grow them to large numbers in the lab. Isolation begins with a minimally-invasive biopsy taken from a patient’s heart. Our method can be used to then generate clusters of cells (termed “cardiospheres [CSps]”) or individual cells (termed “cardiosphere-derived cells [CDCs]”), each with their own advantages and disadvantages. When delivered to animals after a heart attack or in the midst of heart failure, these cells can better repair the heart, form new heart muscle and new blood vessels. CDCs are currently being given to patients after a recent heart attack, using a catheter to deliver the single cells into a blood vessel supplying the heart, as part of an ongoing clinical trial. The proposed research aims to test both CSps and CDCs in large animals in the midst of heart failure, using a catheter to deliver the cells directly into the heart muscle, in preparation for another clinical trial. Preliminary data shows that CSps may be a more potent cell therapeutic when compared to their single cell counterparts. Direct injection into the muscle not only allows for safe delivery of the cell clusters, but also increases the effective dose of the cells. Patients with heart failure also stand to benefit more from such a cell-based therapeutic when compared to those victims of a recent heart attack. As such, this research will involve not only animal studies, but also cell manufacturing studies, and the preparation and filing of an IND in order to begin a clinical trial. The first study will test both cell products along with the direct-injection catheter in a large scale animal model in order to determine the optimum cell dose. The second study will determine the optimum number of injections to perform during the procedure. These results will be available by the end of the first year, and will allow for a final pivotal study to be conducted during the course of the second year. This pivotal study will examine both the safety and efficacy of cell delivery in the large scale animal model, utilizing a group of control animals, and will serve as key preclinical data when filing an IND. During the course of the first two years, cell manufacturing studies will be conducted in parallel. These studies will enable us to develop procedures to reproducibly generate, store, ship, and deliver the cell therapeutic in the manner that will be adopted during the clinical trial. During the third year, the preclinical and manufacturing data will be combined with a clinical protocol formulated during the course of the pivotal animal study, to constitute the bulk of an IND. Following pre-IND discussions and IND review, we will begin conducting a clinical trial in patients with heart failure in the hope of halting disease progression for these individuals.
Statement of Benefit to California: 
Few families in California are not impacted by heart disease. Cardiovascular disease remains the leading cause of death and disability in Americans- on average, cardiovascular disease kills one American every 37 seconds. The death toll from cardiovascular disease is greater than that for cancer, chronic respiratory diseases, accidents, and diabetes combined. Death rates have improved, but new treatments are urgently needed. Aside from the human costs, cardiovascular disease exacts a tremendous fiscal toll: the American Heart Association estimates that the total costs of cardiovascular disease in the United States approached one-half trillion dollars in 2008. All taxpayers must bear the economic burden of resulting death and disability. Clearly, virtually all Californians stand to benefit, directly or indirectly, from the development of more effective treatments of cardiovascular disease. Heart disease is a particularly good target not just because of the magnitude of the public health problem, but also because heart muscle does not ordinarily regenerate once it has been destroyed by heart attacks and other types of damage. We seek to tap into the innate repair mechanisms of the heart by harvesting adult cardiac stem cells. The present work seeks to provide the scientific basis for regulatory filings that would allow us to reintroduce cardiac stem cells into patients with advanced heart failure. The treatment would be “autologous”, in that cells from any given patient would be used to treat that same patient. Thus, the cells are a perfect genetic match, obviating the risk of rejection. If our studies are successful, we may offer a cost-effective way to reduce the tremendous damage to Californians inflicted by major types of cardiovascular disease. This in turn may also reduce the economic burden presently borne by taxpayers who support the health care systems in California. In addition to the public health benefits, spinoff technology developed by this disease team will benefit existing California-based biotechnology companies, leading to fuller employment and an enhanced tax base.
Progress Report: 
  • Disease Team Award DR1-01461, Autologous cardiac-derived cells for advanced ischemic cardiomyopathy, is targeted at developing novel therapies for the treatment of heart failure, a condition which afflicts 7 million Americans. Heart failure, when symptomatic, has a mortality exceeding that of many malignant tumors; new therapies are desperately needed. In the first year of CIRM support, we have developed and validated a development candidate, cardiospheres, which are three-dimensional (3D) functional microtissues engineered in culture and suitable for implantation in the hearts of patients via minimally-invasive catheter-based methods. Cardiospheres, derived from heart biopsies using methods developed by the Principal Investigator, have now been successfuly delivered via magnetically-navigated injection catheters into healthy heart tissue surrounding zones of myocardial damage in preclinical models. The 3D microtissues engraft efficiently in preclinical models of heart failure, as expected from prior work indicating their complex multi-layer nature combining cardiac progenitors, supporting cells and derivatives into the cardiomyocyte and endothelial lineages. We have also developed standard operating procedures for cardiosphere manufacturing, and are in the process of developing release criteria for the 3D microtissue development candidate. Next steps include efficacy studies, with a view to an approved IND by mid-2012.
  • Disease Team Award DR1-01461, autologous cardiac-derived cells for advanced ischemic cardiomyopathy, is targeted at developing novel therapies for the treatment of heart failure, a condition which afflicts 7 million Americans. Heart failure, when symptomatic, has a mortality exceeding that of many malignant tumors; new therapies are desperately needed. In the second year of CIRM support, pivotal pre-clinical studies have been completed. We have found that dose-optimized injection of CSps preserves systolic function, attenuates remodeling, decreases scar size and increases viable myocardium in a porcine model of ischemic cardiomyopathy. The 3D microtissues engraft efficiently in preclinical models of heart failure, as expected from prior work indicating their complex multi-layer nature combining cardiac progenitors, supporting cells and derivatives into the cardiomyocyte and endothelial lineages. Analysis of the MRI data continues. We have developed standard operating procedures for cardiosphere manufacturing and release criteria, product and freezing/thawing stability testing have been completed for the 3D microtissue development candidate. We have identified two candidate potency assays for future development. The disease team will evaluate the results of the safety study (immunology, histology, and markers of ischemic injury) and complete the pivotal pig study in Q1 2012. With data in hand, full efforts will be placed on preparation of the IND for Q2 2012 submission.

Preclinical evaluation of human embryonic stem cell-derived cardiovascular progenitors

Funding Type: 
New Faculty Physician Scientist
Grant Number: 
RN3-06378
ICOC Funds Committed: 
$2 930 388
Disease Focus: 
Heart Disease
Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Active
Public Abstract: 
Because the regenerative capacity of adult heart is limited, any substantial cell loss as a result of a heart attack is mostly irreversible and may lead to progressive heart failure. Human pluripotent stem cells can be differentiated to heart cells, but their properties when transplanted into an injured heart remain unresolved. We propose to perform preclinical evaluation for transplantation of pluripotent stem cell-derived cardiac cells into the injured heart of an appropriate animal model. However, an important issue that has limited the progress to clinical use is their fate upon transplantation; that is whether they are capable of integrating into their new environment or they will function in isolation at their own pace. As an analogy, the performance of a symphony can go into chaos if one member plays in isolation from all surrounding cues. Therefore, it is important to determine if the transplanted cells can beat in harmony with the rest of the heart and if these cells will provide functional benefit to the injured heart. We plan to isolate cardiac cells derived from human pluripotent stem cells, transplant them into the model’s injured heart, determine if they result in improvement of the heart function, and perform detailed electrophysiology studies to determine their integration into the host tissue. The success of the proposed project will set the platform for future clinical trails of stem cell therapy for heart disease.
Statement of Benefit to California: 
Heart disease remains the leading cause of mortality and morbidity in the US with an estimated annual cost of over $300 billion. In California alone, more than 70,000 people die every year from cardiovascular diseases. Despite major advancement in treatments for patients with heart failure, which is mainly due to cellular loss upon myocardial injury, the mortality rate remains high. Human embryonic stem cells (hESC) and induced pluripotent stem cells (iPSC) could provide an attractive therapeutic option to treat patients with damaged heart. We propose to isolate heart cells from hESCs and transplant them in an injured animal model's heart and study their fate. In the process, we will develop reagents that can be highly valuable for future research and clinical studies. The reagents generated in these studies can be patented forming an intellectual property portfolio shared by the state and the institution where the research is carried out. Most importantly, the research that is proposed in this application could lead to future stem cell-based therapies that would restore heart function after a heart attack. We expect that California hospitals and health care entities will be first in line for trials and therapies. Thus, California will benefit economically and it will help advance novel medical care.
Progress Report: 
  • Identification and isolation of pure cardiac cells derived from human pluripotent stem cells has proven to be a difficult task. We have designed a method to genetically engineer human embryonic stem cells (hESCs) to harbor a label that is expressed during sequential maturation of cardiac cells. This will allow us to prospectively isolate cardiac cells at different stages of development for further characterization and transplantation. Using this method, we have screened proteins that are expressed on the surface of cells as markers. Using antibodies against these surface markers allows for isolation of these cells using cell sorting techniques. Thus far, we have identified two surface markers that can be used to isolate early cardiac progenitors. Using these markers, we have enriched for cardiac cells from differentiating hESCs and have characterized their properties in the dish as well as in small animals. We plan to transplant these cells in large animal models and monitor their survival, expansion and their integration into the host myocardium. Molecular imaging techniques are used to track these cells upon transplantation.

Human Induced Pluripotent Stem Cell-Derived Cardiovascular Progenitor Cells for Cardiac Cell Therapy.

Funding Type: 
New Faculty Physician Scientist
Grant Number: 
RN3-06455
ICOC Funds Committed: 
$3 179 315
Disease Focus: 
Heart Disease
Stem Cell Use: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
Despite therapeutic advances, cardiovascular disease remains a leading cause of mortality and morbidity in California. Regenerative therapies that restore normal function after a heart attack would have an enormous societal and financial impact. Although very promising, regenerative cardiac cell therapy faces a number of challenges and technological hurdles. Human induced pluripotent stem cells (hiPSC) allow the potential to deliver patient specific, well-defined cardiac progenitor cells (CPC) for regenerative clinical therapies. We propose to translate recent advances in our lab into the development of a novel, well-defined hiPSC-derived CPC therapy. All protocols will be based on clinical-grade, FDA-approvable, animal product-free methods to facilitate preclinical testing in a large animal model. This application will attempt to translate these findings by: -Developing techniques and protocols utilizing human induced pluripotent stem cell-derived cardiac progenitor cells at yields adequate to conduct preclinical large animal studies. -Validation of therapeutic activity will be in small and large animal models of ischemic heart disease by demonstrating effectiveness of hiPSC-derived CPCs in regenerating damaged myocardium post myocardial infarction in small and large animal models. This developmental candidate and techniques described here, if shown to be a feasible alternative to current approaches, would offer a novel approach to the treatment of ischemic heart disease.
Statement of Benefit to California: 
Cardiovascular disease remains the leading cause of morbidity and mortality in California and the US costing the healthcare system greater than 300 billion dollars a year. Although current therapies slow progression of heart disease, there are few options to reverse or repair the damaged heart. The limited ability of the heart to regenerate following a heart attack results in loss of function and heart failure. Human clinical trials testing the efficacy of adult stem cell therapy to restore mechanical function after a heart attack, although promising, have had variable results with modest improvements. The discovery of human induced pluripotent stem cells offers a potentially unlimited renewable source for patient specific cardiac progenitor cells. However, practical application of pluripotent stem cells or their derivatives face a number of challenges and technological hurdles. We have demonstrated that cardiac progenitor cells, which are capable of differentiating into all cardiovascular cell types, are present during normal fetal development and can be isolated from human induced pluripotent stem cells. We propose to translate these findings into a large animal pre-clinical model and eventually to human clinical trials. This could lead to new therapies that would restore heart function after a heart attack preventing heart failure and death. This will have tremendous societal and financial benefits to patients in California and the US in treating heart failure.
Progress Report: 
  • Cardiovascular disease remains to be a major cause of morbidity and mortality in California and the United States. Despite the best medical therapies, none address the issue of irreversible myocardial tissue loss after a heart attack and thus there has been a great interest to develop approaches to induce regeneration. Our lab has focused on harvesting the full potential of patient specific induced pluripotent stem cells (iPSCs) to use to attempt to regenerate the damaged tissue. We believe that these iPSCs can be potentially used in the future to generate sufficient number of cells to be implanted in the damaged heart to regenerate the lost tissue post heart attack. Our lab has studied how these cardiac progenitors evolve in the developing heart and applied our finding to iPSCs to recapitulate the cardiac progenitors to ultimately use in clinical therapies. We have successfully derived these cardiac progenitors from patient derived iPSCs in a clinical grade fashion to ensure that we can apply same protocols in the future to clinical use if we are successful in demonstrating the efficacy of this therapy in our translational large animal studies that we will be conducting.

Pages

Subscribe to RSS - Heart Disease

© 2013 California Institute for Regenerative Medicine