Heart Disease

Coding Dimension ID: 
295
Coding Dimension path name: 
Heart Disease

Studying Arrhythmogenic Right Ventricular Dysplasia with patient-specific iPS cells

Funding Type: 
Basic Biology IV
Grant Number: 
RB4-06276
ICOC Funds Committed: 
$1 582 606
Disease Focus: 
Heart Disease
Pediatrics
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
Most heart conditions leading to sudden death or impaired pumping heart functions in the young people (<35 years old) are the results of genetic mutations inherited from parents. It is very difficult to find curative therapy for these inherited heart diseases due to late diagnosis and lack of understanding in how genetic mutations cause these diseases. Using versatile stem cells derived from patients’ skin cells with genetic mutations in cell-cell junctional proteins, we have made a significant breakthrough and successfully modeled one of these inherited heart diseases within a few months in cell cultures. These disease-specific stem cells can give rise to heart cells, which allow us to discover novel abnormalities in heart energy consumption that causes dysfunction and death of these diseased heart cells. Currently, there is no disease-slowing therapy to these inherited heart diseases except implanting a shocking device to prevent sudden death. We propose here to generate more patient-specific stem cell lines in a dish from skin cells of patients with similar clinical presentations but with different mutations. With these new patient-specific stem cell lines, we will be able to understand more about the malfunctioned networks and elucidate common disease-causing mechanisms as well as to develop better and safer therapies for treating these diseases. We will also test our new therapeutic agents in a mouse model for their efficacy and safety before applying to human patients.
Statement of Benefit to California: 
Heart conditions leading to sudden death or impaired pumping functions in the young people (<35 years old) frequently are the results of genetic mutations inherited from parents. Currently, there is no disease-slowing therapy to these diseases. It is difficult to find curative therapy for these diseases due to late diagnosis. Many cell culture and animal models of human inherited heart diseases have been established but with significant limitation in their application to invent novel therapy for human patients. Recent progress in cellular reprogramming of skin cells to patient-specific induced pluripotent stem cells (iPSCs) enables modeling human genetic disorders in cell cultures. We have successfully modeled one of the inherited heart diseases within a few months in cell cultures using iPSCs derived from patients’ skin cells with genetic mutations in cell-cell junctional proteins. Heart cells derived from these disease-specific iPSCs enable us to discover novel disease-causing abnormalities and develop new therapeutic strategies. We plan to generate more iPSCs with the same disease to find common pathogenic pathways, identify new therapeutic strategies and conduct preclinical testing in a mouse model of this disease. Successful accomplishment of proposed research will make California the epicenter of heart disease modeling in vitro, which very likely will lead to human clinical trials and benefit its young citizens who have inherited heart diseases.
Progress Report: 
  • Most heart conditions leading to sudden death or impaired cardiac pumping functions in the young people (<35 years old) are the results of genetic mutations inherited from parents. It is very difficult to find curative therapy for these inherited heart diseases due to late diagnosis and lack of understanding in how genetic mutations cause these diseases. One of these inherited heart diseases is named arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C). The signature features of sick ARVD/C hearts are progressive heart muscle loss and their replacement by fat and scare tissues, which can lead to lethal irregular heart rhythms and/or heart failure. We have made a significant breakthrough and successfully modeled the sick ARVD/C heart muscles within two months in cell cultures using versatile stem cells derived from ARVD/C patients’ skin cells with genetic mutations in one of the desmosomal (a specific type of cell-cell junctions in hearts) proteins, named plakophilin-2. These disease-specific stem cells can give rise to heart cells, which allow us to discover specific abnormalities in heart energy consumption of ARVD/C heart muscles that causes dysfunction and death of these diseased heart cells. In the Year 1 of this grant support, we have made and characterized additional stem cells lines from ARVD/C patients with different desmosomal mutations. We are in the process to determine if heart muscles derived from these new ARVD/C patient-specific stem cells have common disease-causing mechanisms as we had published. We found two proposed therapeutic agents are ineffective in suppressing ARVD/C disease in culture but we have identified one potential drug that suppressed the loss of ARVD/C heart cells in culture. We also started to establish a known ARVD/C mouse model for future preclinical drug testing.

VEGF signaling in adventitial stem cells in vascular physiology and disease

Funding Type: 
New Faculty II
Grant Number: 
RN2-00909
ICOC Funds Committed: 
$3 155 931
Disease Focus: 
Heart Disease
Stem Cell Use: 
Adult Stem Cell
oldStatus: 
Active
Public Abstract: 
Coronary heart disease is the leading cause of death in the developed world. This disease results from atherosclerosis or fatty deposits in the vessel wall that causes blockage of coronary arteries. Blockage of these arteries cut off supplies of nutrients and oxygen to the heart muscle, causing heart attacks, heart failure or sudden death. To restore coronary blood supply, physicians use guide-wires to position an inflatable balloon at the blockage site of the artery, where the balloon is inflated to open up the artery. This procedure is called percutaneous transluminal coronary angioplasty or PTCA, which is usually accompanied by the placement of a metal tube (or stent) at the diseased site to maintain vessel opening. PTCA is the dominant procedure to restore blood flow in coronary arteries- in the United States alone nearly 1.3 million PTCA procedures were performed in 2004. However, as a response to PTCA-related vessel wall damage, cells from the vessel wall are activated to divide and grow into the vessel lumen, causing re-narrowing or restenosis of the artery. Restenosis of the vessel lumen is the major hurdle limiting the success of PTCA. It occurs in 20-50% of cases within six months of the initial PTCA procedure and requires repeated PTCA to open up the re-narrowed artery, leading to tremendous human and social expenses. Stents which contain drug inhibitors of cell growth (drug eluting stents, or DES) reduce restenosis; however, considerable concerns have emerged regarding the safety of DES due to an increased risk of sudden stent occlusion by platelet aggregates (or thrombosis). This sudden occlusion is caused by a concomitant drug inhibition of cells that cover the raw surface of metal stents to prevent platelet aggregation. This complication is frequently lethal, resulting in death or heart attack in 85% of cases. The safety concerns over DES have created an urgent need to define the mechanisms underlying the biology of restenosis. A population of cells resident in the vessel wall consists of progenitor cells that divide and grow into the vessel lumen when vessels are injured. The repair process mediated by these cells directly contributes to vessel restenosis. Our goal is to understand the biology of these stem cells in the repair of injured arteries- how vessel injury signals these cells to divide and invade the vessel lumen, what molecular effectors control the cellular responses, and how to intercept these signals and effectors to prevent vessel restenosis. This will provide a solid scientific basis for new therapeutic targets and strategies for vessel restenosis after PTCA. The proposal is a targeted response to CIRM New Faculty Awards II. It seeks to extend my research expertise into the field of stem cell biology related to clinically important vascular diseases. We are confident that our proposed studies will generate significant progress in this field, in both scientific knowledge and useful therapies.
Statement of Benefit to California: 
Coronary heart disease is the leading cause of death in California. This disease results from atherosclerosis or fatty deposits in the vessel wall that causes blockage of coronary arteries of the heart, causing heart attacks, heart failure or sudden death. Physicians use wires and balloons to open up the blocked artery (angioplasty) and a metal tube (stent) to keep the artery open and restore blood flow. Although effective, angioplasty and stenting cause some damages to the blood vessel, which leads to a recurrent blockage (or restenosis) of the vessel in 20-50% of patients within 6 months of the procedure. This vessel restenosis requires repeated angioplasties and stenting for restoration of blood flow. Given the large number of patients with coronary heart disease in California, the need for repeated surgical procedures has resulted in tremendous human, social and economic costs in our state. An attempt to reduce vessel restenosis is the placement of drug-eluting stents (or DES) in angioplastied vessels. Although drugs released from the stents reduce vessel restenosis, this approach creates a new and frequently fatal complication- sudden occlusion of the stented arteries. This complication is because drugs in the stents delay the repair of inner lining of the artery, whose function is to prevent platelet aggregation within the lumen of the artery. Sudden platelet aggregation (or thrombosis) within the vessel lumen causes instantaneous obstruction of the artery, leading to acute heart attacks or death. Thus, the safety concerns over DES have created an urgent need to define the mechanisms underlying the biology of restenosis. A population of cells present at the vessel wall possess stem cell characteristics. After vessel injury, these cells increase in number and turn into different kinds of cells, which then migrate from the vessel wall into the lumen, causing blockage of the vessel. Thus, understanding how these cells behave will inspire new ideas for treating recurrent vessel blockage or restenosis. We propose to study how and what molecular signals activate these cells when vessels are injured. Our goal is to provide a scientific strategy of intercepting these signals for the treatment of vessel restenosis. We believe that understanding the biology of vascular stem cells will lead to significant advances in the research and novel therapies of vessel injury and restenosis. Given the scope of this problem , an improved therapy of vessel restenosis will have a significant economic and social impact. We have proposed to use modern methods in genetics, cell biology, and molecular biology to attack the challenges of this project. At the same time, we will train a new generation of bright students and junior scientists in the areas of stem cell biology highly relevant to human disease. This ensures that an essential knowledge base will be preserved, passed on and expanded in California for the foreseeable future.
Progress Report: 
  • Coronary heart disease is the leading cause of death in the developed world. This disease results from atherosclerosis or fatty deposits in the vessel wall that causes blockage of coronary arteries. Blockage of these arteries cut off supplies of nutrients and oxygen to the heart muscle, causing heart attacks, heart failure or sudden death. To restore coronary blood supply, physicians use guide-wires to position an inflatable balloon at the blockage site of the artery, where the balloon is inflated to open up the artery. This procedure is called percutaneous transluminal coronary angioplasty or PTCA, which is usually accompanied by the placement of a metal tube (or stent) at the diseased site to maintain vessel opening. However, as a response to PTCA, cells from the vessel wall are mobilized to divide and grow into the vessel lumen, causing re-narrowing of the artery. Renarrowing of the vessel lumen is the major hurdle limiting the success of PTCA. Mental stents which contain drug inhibitors of cell growth (drug eluting stents, or DES) reduce re-narrowing; however, considerable concerns have emerged regarding the safety of DES due to an increased risk of sudden stent occlusion by platelet aggregates (or thrombosis). This sudden occlusion is caused by a concomitant drug inhibition of cells that cover the raw surface of metal stents to prevent platelet aggregation. This complication is frequently lethal, resulting in death or heart attack in 85% of cases. The safety concerns over DES have created an urgent need to define the mechanisms underlying the biology of vascular re-narrowing.
  • A population of cells resident in the vessel wall consists of stem cells that divide and grow into the vessel lumen when vessels are injured. The repair process mediated by these cells directly contributes to vessel re-narrowing. Our goal is to understand the biology of these stem cells in the repair of injured arteries- how vessel injury signals these cells to divide and invade the vessel lumen, what molecular effectors control the cellular responses, and how to intercept these signals and effectors to prevent vessel re-narrowing. This will provide a solid scientific basis for new therapeutic targets and strategies for vessel re-narrowing after PTCA.
  • In the past year, we have successfully developed in the laboratory a more efficient method of isolating the vessel wall stem cells (or adventitial stem cells) and growing these cells in test tubes. The ability to isolate and grow these stem cells has allowed us to study the effects of many biologically active molecules on these cells critical for vascular repair and re-narrowing. We are now using this method to study molecular pathways that can modify the biological behavior of the vessel wall stem cells. Furthermore, we have developed a different method of injuring the blood vessels to study how the vessel wall stem cells respond to different types of vessel injury. This method allows us to track the mobilization of vessel wall stem cells more precisely in the vascular repair process. We are using this method to study the activity of vessel wall stem cells following injury.
  • Coronary heart disease is the leading cause of death in the developed world. This disease results from atherosclerosis or fatty deposits in the vessel wall that causes blockage of coronary arteries, causing shortage of blood supply with consequent heart attacks, sudden death, or heart failure. To restore coronary blood supply, physicians use guide-wires to position an inflatable balloon at the blockage site of the artery, where the balloon is inflated to open the artery. This angioplasty procedure is usually accompanied by the placement of a metal stent at the diseased site to maintain vessel opening. Such percutaneous coronary intervention (PCI) with angioplasty and stenting is the dominant procedure for opening obstructed coronary arteries. However, PCI activates a population of cells in the vessel wall to grow into the vessel lumen, causing re-narrowing of the artery. This vessel re-narrowing (restenosis) is the major hurdle limiting the success of PCI. Mental stents coated with drug inhibitors of cell growth (drug eluting stents, or DES) reduce re-narrowing; however, considerable concerns have emerged regarding the safety of DES due to an increased risk of sudden stent occlusion by platelet aggregates (or thrombosis) and the need for prolonged anti-platelet therapy, which poses bleeding risks especially to older patients or patients who need surgery. These concerns call for defining mechanisms that control re-narrowing of injured arteries.
  • A population of cells resident in the vessel wall consists of stem cells that are activated when vessels are injured. Activation of these cells directly contributes to vessel re-narrowing. Our goal is to understand how these cells are activated by vessel injury, how injury signals these cells to divide and invade the vessel lumen, what molecular effectors control the cellular responses, and how to intercept these signals and effectors to prevent vessel re-narrowing. In the past year, we successfully developed new methods for isolating and growing these vascular stem cells in test tubes. These new methods allowed us to determine how these stem cells turn into other types of vessel cells after injury and how they contribute to re-narrowing of injured vessels. We are using this method to define molecular pathways that control vessel wall stem cells to respond to vessel injury.
  • Coronary heart disease is a leading cause of morbidity and mortality. This disease results from blockage of coronary arteries that supply blood to the heart muscle. To restore blood supply, physicians use angioplasty to open the obstructed artery and apply stenting to maintain the arterial patency. Approximately 1.3 million angioplasty and stenting procedures are performed every year in the US to relieve coronary obstruction. However, these procedures activate a population of vascular cells to grow into the arterial lumen, causing re-narrowing of the artery. This re-narrowing (restenosis) is the major hurdle limiting the success of angioplasty and stenting. Mental stents coated with drug inhibitors of cell growth (drug eluting stents, or DES) reduce re-narrowing; however, considerable concerns have emerged regarding the safety of DES due to an increased risk of sudden stent occlusion by platelet aggregates (or thrombosis) and the need for prolonged anti-platelet therapy, which poses bleeding risks. These concerns call for defining mechanisms that control re-narrowing of injured arteries.
  • A population of stem cells resides in the arterial wall. These cells are activated when arteries are injured by mechanical stress such as angioplasty and stenting. Activation of these cells directly contributes to arterial re-narrowing. Our goal is to understand how these stem cells are activated by vessel injury, how injury signals these cells to divide and invade the vessel lumen, what molecular effectors control the cellular responses, and how to intercept these signals and effectors to prevent vessel re-narrowing. We developed new methods for isolating and growing these vascular stem cells in test tubes. In the past year, we successfully used these methods to determine how arterial injury or mechanical stress signals the stem cells to produce different types of cells which grow into the arterial lumen, causing narrowing of the artery. We are using these methods and also developing new methods to define molecular pathways that control the reaction of stem cells to arterial injury. This will help identify drug targets for therapeutic intervention.
  • Coronary heart disease, the major cause of morbidity and mortality in our society, results from blockage of the coronary arteries that supply blood to the heart muscle. Blockage of the coronary arteries causes heart attack. Angioplasty and stenting are used to open the obstructed coronary artery and maintain the arterial patency. ~1.3 million angioplasty and stenting procedures are performed in the US every year to treat coronary artery disease. However, these procedures activate a population of vascular cells to grow into the arterial lumen, causing re-narrowing of the artery. This re-narrowing (restenosis) is the major hurdle limiting the success of angioplasty and stenting. Mental stents coated with drug inhibitors of cell growth (drug eluting stents, or DES) reduce re-narrowing; however, considerable concerns have emerged regarding the safety of DES due to an increased risk of sudden stent occlusion by platelet aggregates (or thrombosis) and the need for prolonged anti-platelet therapy, which poses bleeding risks. Defining the mechanisms that control re-narrowing of injured arteries is therefore important for treating coronary artery disease.
  • The arterial wall contains a population of stem cells. These stem cells are activated when arteries are injured by mechanical stress such as angioplasty and stenting. Activation of these cells directly contributes to arterial re-narrowing. Our goal is to understand how these stem cells are activated by vessel injury, how injury signals these cells to divide and invade the vessel lumen, what molecular effectors control the cellular responses, and how to intercept these signals and effectors to prevent vessel re-narrowing. We developed new methods for isolating and growing these vascular stem cells in test tubes, and we have successfully used these methods to determine how arterial injury or mechanical stress signals the stem cells to produce different types of cells which grow into the arterial lumen, causing narrowing of the artery. In the past year, we developed new genetic tools to further understand the mechanism of vascular injury and repair. We are using the new genetic tool to define molecular and cellular pathways that control the reaction of stem cells to arterial injury.
  • Blockage of coronary arteries that supply blood to the heart muscle is the major cause of morbidity and mortality in our society. Angioplasty and stenting are used to open the obstructed coronary artery and maintain the arterial patency. In US, ~1.3 million angioplasty and stenting procedures are performed every year to treat coronary artery disease. Although effective in restoring the blood flow, these procedures activate a population of vascular cells resident in the arterial wall to grow into the vesslel lumen, causing re-narrowing (restenosis) of the treated artery months or years later. This arterial re-narrowing is a major hurdle limiting the success of angioplasty and stenting. Mental stents coated with drug inhibitors of cell growth (drug eluting stents, or DES) reduce re-narrowing; however, the safety of DES has raised considerable concerns due to an increased risk of sudden stent occlusion by platelet aggregates (or thrombosis) as well as the need for prolonged anti-platelet therapy, which poses bleeding risks, especially in the elderly population. It is therefore important to define the underlying mechanisms of re-narrowing of injured arteries in order to design new therapies for coronary artery disease.
  • A population of stem cells resides in the arterial wall. These stem cells are activated when arteries are injured by angioplasty and stenting. Once activated, these cells grow and differentiate into cells that invade the vascular luman and contribute to arterial re-narrowing. We developed new genetic tools to further understand the mechanism of vascular injury and repair. We are using the new genetic tool to define molecular and cellular pathways that control the reaction of stem cells to arterial injury. The goal is to understand how these stem cells are activated by vessel injury, how injury signals these cells to divide and invade the vessel lumen, what molecular effectors control the cellular responses, and how to intercept these signals and effectors to prevent vessel re-narrowing.

Molecular Mechanisms Underlying Human Cardiac Cell Junction Maturation and Disease Using Human iPSC

Funding Type: 
Basic Biology III
Grant Number: 
RB3-05103
ICOC Funds Committed: 
$1 341 955
Disease Focus: 
Heart Disease
Pediatrics
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
Heart disease is the number one cause of death and disability in California and in the United States. Especially devastating is Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC), an inherited form of heart disease associated with a high frequency of arrhythmias and sudden cardiac death in young people, including young athletes, who despite their appearance of health are struck down by this type of heart disease. Even though it is inherited, early detection is hindered because people carrying the genetic code have highly variable clinical symptoms, making ARVC and catastrophic cardiac events very hard to predict and avoid. Evidence suggests that this heart disease is caused by mistakes in the genetic code essential for holding the mechanical integrity of heart muscle cells together or cell junctions. What is missing is an understanding of the basic biology of these heart muscle cell junctions in humans and appropriate human model systems to study their dynamics in heart disease, which is important since other heart diseases also share some of these same heart cell defects. Our goal is to understand the basic biology of how human heart muscle cell junctions mature and what happens in disease, by studying ARVC. Human iPS cells are a unique population of stem cells from our own tissues, such as skin, that have the same genetic information as the rest of our bodies. Thus, hiPS from people who carry the ARVC heart disease mistakes can be used in our laboratory to provide a true human model of that disease. We will generate heart muscle cells from hiPS from normal and ARVC donors that carry mistakes in the genetic code for cell junction components. We have identified new pathways that may be important causes of ARVC, thus we will also use our hiPS lines, to confirm whether these new pathways are truly important in human ARVC disease progression and if our approaches reverse disease progression. Characterization of our hiPS derived heart cells can also be exploited for translational medicine to predict an individual's heart cell response to drug treatment and provides a promising platform to identify new drugs for heart diseases, such as ARVC, which are currently lacking in the field. Recent advances in stem cell biology have highlighted the unique potential of hiPS to be used in the future as a source of cells for cell-based therapies for heart disease. However, prior to clinical application, a detailed understanding of the basic biology and maturation of these hiPS into heart muscle cells is required. Our studies seek to advance our understanding of how cell-cell junctions mature in hiPS and highlight tools that influence the microenvironment of the hiPS in a dish, to accelerate this process. This knowledge can also be exploited in regenerative medicine to achieve proper electromechanical integration of cardiac stem cells when using stem cells for heart repair, to improve longterm successful clinical outcomes of cardiac stem cell therapies.
Statement of Benefit to California: 
Heart disease is the number one cause of death and disability within the United States and the rates are calculated to be even higher for citizens of the State of California when compared to the rest of the nation. These diseases place tremendous financial burdens on the people and communities of California, which highlights an urgency to understand the underlying molecular basis of heart diseases as well as find more effective therapies to alleviate these growing burdens. Our goal is to improve heart health and quality of life of Californians by generating human stem cell models from people with an especially devastating form of genetic heart disease that affects young people and results in sudden cardiac death, to improve our molecular and medical understanding of how cardiac cells go wrong in the early stages of heart disease in humans. We will also test current drugs used to treat heart disease and new candidate pathways, that we have uncovered, to determine if and how they reverse and intervene with these defects. We believe that our model systems have tremendous potential in being used to diagnose, test an individual's heart cell's response to drug treatment, as well as predict severity of symptoms in heart diseases at an early stage, to monitor drug treatment strategies for the heart. We believe our studies also have a direct impact on regenerative medicine as a therapy for Californians suffering from heart disease, since data from our studies can identify ways to improve cardiac stem cell integration into the diseased heart when used for repair, as a way to improve long-term successful clinical outcomes of cardiac stem cell therapies. We also believe that our development of multiple human heart disease stem cells lines with unique genetic characteristics could be of tremendous value to biotechnology companies and academic researchers interested in large scale drug screening strategies to identify more effective compounds to rescue defects and treat Californians with heart disease, as well as provide important economic revenue and resources to California, which is stimulated by the development of businesses interested in developing these therapies further.
Progress Report: 
  • Heart disease is the number one cause of death and disability in California and in the United States. Especially devastating is Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC), an inherited form of heart disease associated with a high frequency of arrhythmias and sudden cardiac death in young people, including young athletes, who despite their appearance of health are struck down by this type of heart disease. Even though it is inherited, early detection is hindered because people carrying the genetic code have highly variable clinical symptoms, making ARVC and catastrophic cardiac events very hard to predict and avoid. Evidence suggests that this heart disease is caused by mistakes in the genetic code essential for holding the mechanical integrity of heart muscle cells together or cell junctions. What is missing is an understanding of the basic biology of these heart muscle cell junctions in humans and appropriate human model systems to study their dynamics in heart disease, which is important since other heart diseases also share some of these same heart cell defects. Our goal is to understand the basic biology of how human heart muscle cell junctions mature and what happens in disease, by studying ARVC. Human iPS cells are a unique population of stem cells from our own tissues, such as skin, that have the same genetic information as the rest of our bodies. Thus, hiPS from people who carry the ARVC heart disease mistakes can be used in our laboratory to provide a true human model of that disease. During the first year of our grant, we have enrolled sufficient numbers of normal and ARVC donors into our study. We have collected skin biopsy tissues from donors as means to generate hiPS cells. Our results show that hiPS cell lines can be efficiently generated from both normal and ARVC donors and we have extensively characterized their profiles, such that we know they are bona fide stem cell lines and can be used as a model system to dissect defects in cardiac cell junction biology between these various different hiPS lines. We have also developed efficient and robust methodologies to generate heart muscle cells from hiPS from normal and ARVC donors that carry mistakes in the genetic code for cell junction components and are now in the midst of characterizing their molecular, genetic, biochemical and functional profiles to identify features in these cells that are unique for ARVC. Through our previous studies, we identified new pathways that may be important causes of ARVC, thus we will also use our hiPS lines, to confirm whether these new pathways are truly important in human ARVC disease progression and if our approaches reverse disease progression. Towards this goal, we have generated novel tools to increase and decrease a component of this pathway in order to test these approaches and have preliminary data to show that these tools are efficient in altering levels of this component in heart muscle cells, which we are now applying towards understanding these pathways in hiPS derived heart muscle cells and reversing defects in heart muscle cells from ARVC hiPS derived lines. Based on our progress, we have met all of the milestones stated in our grant proposal and in some cases, surpassed some milestones. We believe progress over the next year, will allow us to define some of the key cellular defects in ARVC and advance our understanding of how cell-cell junctions mature in hiPS and highlight tools that influence the microenvironment of the hiPS in a dish, to accelerate this process.
  • Overall, we have been able to achieve the milestones proposed for Year 2 of the grant. We have generated a panel of control and ARVC hiPSC lines using integration-free based methods. We provide evidence of our method to generate robust numbers of hiPSC-derived cardiac cells that express desmosomal cell-cell junction proteins. We show ARVC lines that display disease symptom-specific features (adipogenic or arrhythmic), which phenocopy the striking and differential symptoms found in respective individual ARVC-patients as tools to study human ARVC. We also uncover desmosomal defects in hiPSC-derived cardiac muscle cells that underlie the disease features found in ARVC cells. We have also published two reviews in the field of cell-cell junctional remodeling and stem cell approaches that helps to further our understanding of this field in cardiomyocytes, that is relevant to human disease and our research using hiPS.
  • Overall, we have been able to complete the milestones proposed for our grant. We have generated a unique panel of control and ARVC hiPSC lines using integration-free methods. We provide evidence of our method to generate robust numbers of hiPSC derived cardiac cells that express key components of the cardiac muscle cell-cell junction include mechanical junctions and electrical junctions. We show that our ARVC hiPSC lines display disease symptom-specific features (adipogenic and arrhythmic), which phenocopy the striking and differential diagnosis observed in our ARVC donor hearts and provide a platform to study the varying disease features underlying ARVC. We uncover novel and classic molecular and ultrastructural defects underlying the arrhythmogenic defects in our ARVC hiPSC lines that mimic the gradation in disease severity observed in ARVC donor hearts. We exploit conventional ARVC drugs to determine their impact on arrhythmogenic behavior and reversibility of phenotypes in our cells. We have published 4 articles in the field of cell-cell junction remodeling, protein turnover and stem cell approaches that further our understanding of this field in cardiac muscle cells as well as filed a provisional patent application on the use of a novel drug discovery system for fat arrhythmogenic disorders that exploit the genetic diversity and clinical features observed in our ARVC lines.

Mechanisms of Direct Cardiac Reprogramming

Funding Type: 
Basic Biology III
Grant Number: 
RB3-05174
ICOC Funds Committed: 
$1 708 560
Disease Focus: 
Heart Disease
oldStatus: 
Active
Public Abstract: 
Heart disease is a leading cause of adult and childhood mortality. The underlying pathology is typically loss of heart muscle cells that leads to heart failure, or improper development of specialized cardiac muscle cells called cardiomyocytes during embryonic development that leads to congenital heart malformations. Because cardiomyocytes have little or no regenerative capacity after birth, current therapeutic approaches are limited for the over 5 million Americans who suffer from heart failure. Embryonic stem cells possess clear potential for regenerating heart tissue, but efficiency of cardiac differentiation, risk of tumor formation, and issues of cellular rejection must be overcome. Our recent findings regarding direct reprogramming of a type of structural cell of the heart or skin called fibroblasts into cardiomyocyte-like cells using just three genes offer a potential alternative approach to achieving cardiac regeneration. The human heart is composed of muscle cells, blood vessel cells, and fibroblasts, with the fibroblasts comprising over 50% of all cardiac cells. The large population of cardiac fibroblasts that exists within the heart is a potential source of new heart muscle cells for regenerative therapy if it were possible to directly reprogram the resident fibroblasts into muscle cells. We simulated a heart attack in mice by blocking the coronary artery, and have been able to reprogram existing mouse cardiac fibroblasts after this simulated heart attack by delivering three genes into the heart. We found a significant reduction in scar size and an improvement in cardiac function that persists after injury. The reprogramming process starts quickly but is progressive over several weeks; however, how this actually occurs is unknown. Because this finding represents a new approach that could have clinical benefit, we propose to reveal the mechanism by which fibroblast cells become reprogrammed into heart muscle cells, which will be critical to refine the process for therapeutic use. We will do this by analyzing the changes in how the genome is interpreted and expressed at a genome-wide level at different time points during the process of fibroblast to muscle conversion, which represents the fundamental process that leads to reprogramming. The findings from this proposal will reveal approaches to refine and improve human cardiac reprogramming and will aid in translation of this technology for human cardiac regenerative purposes.
Statement of Benefit to California: 
This research will benefit the state of California and its citizens by helping develop a new approach to cardiac regeneration that would have a lower risk of tumor formation and cellular rejection. In addition, the approach could remove some of the hurdles of cell-based therapy including delivery challenges and incorporation challenges. The mechanisms revealed by this research will enable refinement of the method that could potentially then be used to treat the hundreds of thousands of Californians with heart failure.
Progress Report: 
  • Heart disease is a leading cause of adult and childhood mortality. The underlying pathology is typically loss of heart muscle cells that leads to heart failure, or improper development of specialized cardiac muscle cells called cardiomyocytes during embryonic development that leads to congenital heart malformations. Because cardiomyocytes have little or no regenerative capacity after birth, current therapeutic approaches are limited for the over 5 million Americans who suffer from heart failure. Embryonic stem cells possess clear potential for regenerating heart tissue, but efficiency of cardiac differentiation, risk of tumor formation, and issues of cellular rejection must be overcome.
  • Our recent findings regarding direct reprogramming of a type of structural cell of the heart or skin called fibroblasts into cardiac muscle-like cells using just three genes offer a potential route to achieve cardiac regeneration after cardiac injury. The large population of cardiac fibroblasts that exists within the heart is a potential source of new heart muscle cells for regenerative therapy if it were possible to directly reprogram the resident fibroblasts into muscle cells. In the last year, we simulated a heart attack in mice by blocking the coronary artery, and have been able to reprogram existing mouse cardiac fibroblasts after this simulated heart attack by delivering three genes into the heart. We found a significant reduction in scar size and an improvement in cardiac function that persists after injury. The reprogramming process starts quickly but is progressive over several weeks; however, how this actually occurs is unknown. Because this finding represents a new approach that could have clinical benefit, we are investigating the mechanism by which fibroblast cells become reprogrammed into heart muscle cells, which will be critical to refine the process for therapeutic use. During the last year, we have analyzed the changes in how the genome is interpreted and expressed at a genome-wide level at different time points during the process of fibroblast to muscle conversion, which represents the fundamental process that leads to reprogramming. We have also generated many reagents that will allow us to identify how the reprogramming factors interact with DNA to alter the interpretation. These reagents will be used in the coming year to more thoroughly investigate the epigenetic changes that induce changes in interpretation of the DNA, leading to the cardiac muscle phenotype. The findings from this proposal will reveal approaches to refine and improve human cardiac reprogramming and will aid in translation of this technology for human cardiac regenerative purposes.
  • Heart disease is a leading cause of adult and childhood mortality. The underlying pathology is typically loss of heart muscle cells that leads to heart failure, or improper development of specialized cardiac muscle cells called cardiomyocytes during embryonic development that leads to congenital heart malformations. Because cardiomyocytes have little or no regenerative capacity after birth, current therapeutic approaches are limited for the over 5 million Americans who suffer from heart failure. Embryonic stem cells possess clear potential for regenerating heart tissue, but efficiency of cardiac differentiation, risk of tumor formation, and issues of cellular rejection must be overcome.
  • Our recent findings regarding direct reprogramming of a type of structural cell of the heart or skin called fibroblasts into cardiac muscle-like cells using just three genes offer a potential route to achieve cardiac regeneration after cardiac injury. The large population of cardiac fibroblasts that exists within the heart is a potential source of new heart muscle cells for regenerative therapy if it were possible to directly reprogram the resident fibroblasts into muscle cells. We have simulated a heart attack in mice by blocking the coronary artery, and have been able to reprogram existing mouse cardiac fibroblasts after this simulated heart attack by delivering three genes into the heart. We found a significant reduction in scar size and an improvement in cardiac function that persists after injury. The reprogramming process starts quickly but is progressive over several weeks; however, how this actually occurs is unknown. Because this finding represents a new approach that could have clinical benefit, we are investigating the mechanism by which fibroblast cells become reprogrammed into heart muscle cells, which will be critical to refine the process for therapeutic use. During the last year, we have analyzed the changes in how the genome is interpreted and expressed at a genome-wide level at different time points during the process of fibroblast to muscle conversion, which represents the fundamental process that leads to reprogramming. We have mapped the dynamic and sequential changes that are occurring on the DNA during reprogramming of cells. In the coming year, we will be integrating data from studies of epigenetic changes, DNA-binding of reprogramming factors, and the resulting alterations in activation or repression of genes that are responsible for changing a fibroblast into a cardiac muscle cell. The findings from this proposal will reveal approaches to refine and improve human cardiac reprogramming and will aid in translation of this technology for human cardiac regenerative purposes.

Building Cardiac Tissue from Stem Cells and Natural Matrices

Funding Type: 
New Faculty II
Grant Number: 
RN2-00921
ICOC Funds Committed: 
$1 706 255
Disease Focus: 
Heart Disease
Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Active
Public Abstract: 
Congestive heart failure afflicts 4.8 million people, with 400,000 new cases each year. Myocardial infarction (MI), also known as a "heart attack", leads to a loss of cardiac tissue and impairment of left ventricular function. Because the heart does not contain a significant number of multiplying stem, precursor, or reserve cells, it is unable to effectively heal itself after injury and the heart tissue eventually becomes scar tissue. The subsequent changes in the workload of the heart may, if the scar is large enough, deteriorate further leading to congestive heart failure. Many stem cell strategies are being explored for the regeneration of heart tissue, however; full cardiac tissue repair will only become possible when two critical areas of tissue regeneration are addressed: 1) the generation of a sustainable, purified source of functional cardiac progenitors and 2) employment of cell delivery methods leading to functional integration with host tissue. This proposal will explore both of these 2 critical areas towards the development of a living cardiac patch material that will enable the regeneration of scarred hearts.
Statement of Benefit to California: 
The research proposed in expected to result in new techniques and methodology for the differentiation of stem cell-derived cardiomyocytes and delivery methods optimal for therapeutic repair of scarred heart tissue after a heart attack. The citizens of California could benefit from this research in three ways. The most significant impact would be in the potential potential for new medical therapies to treat a large medical problem. The second benefit is in the potential for these technologies to bring new usiness ventures to the state of California. The third benefit is the stem cell training of the students and postdocs involved in this study.
Progress Report: 
  • The proposed project aims to develop cardiac tissue for enhancing the regeneration of damaged heart. The progress in the first year involved generation of cardiac cells from stem cells, developing fabrication techniques for stem cell differentiation, and exporing cell interactions with various biodegradable materials.
  • Progress towards developing heart tissue for repairing damaged/diseaesed hearts includes stem cell differentiation towards cells that make up heart tissue and blood vessels, optimization of methods for cell expansion and cell-cell integration to generate functional tissues, and preliminary investigations of delivery materials fabrication.
  • We have optimized cardiac cell numbers from embyronic stem cells and generated a cardiac patch for delivery of these cardiac cells into damaged myocardium.
  • The aims for this study are to 1) develop methods for generating highly efficient numbers of cardiovascular cells from stem cells, and then 2) develop methods for packaging the cells into tissue-like implantable materials for repair of dead tissue following a heart attack. The final aim 3) was to examine the repair/restorative ability of the developed product in a damaged animal heart.
  • This year (4th year of the grant) was very productive. We have highly efficient methods for generating both heart (70% purity) and blood vessel cells (90% purity) and have developed a sophisticated design for packaging these into heart tissue-like materials. The animal studies are underway and initial data is promising.
  • The aim of this research proposal was to develop cardiac tissue for heart repair. Aim 1 focused on the generation of cardiac cells from stem cells. Aim 2 looks at biomaterials and patterning for building the complex multicellular integrated tissue. Aim 3 examined the ability of these tissues to repair a damaged heart. During this last year of the grant, we have successfully generate large numbers of cardiac cells from stem cells and have generated "sheets" of these cardiac cells. The animal studies on the cell injections and material injection show some success in the repair of heart tissue, but expect that the fully integrated heart tissue, once implanted, will be superior to cells or material alone.

Enhancing healing via Wnt-protein mediated activation of endogenous stem cells

Funding Type: 
Early Translational I
Grant Number: 
TR1-01249
ICOC Funds Committed: 
$6 762 954
Disease Focus: 
Bone or Cartilage Disease
Stroke
Neurological Disorders
Heart Disease
Neurological Disorders
Skin Disease
Stem Cell Use: 
Adult Stem Cell
oldStatus: 
Active
Public Abstract: 
All adult tissues contain stem cells. Some tissues, like bone marrow and skin, harbor more adult stem cells; other tissues, like muscle, have fewer. When a tissue or organ is injured these stem cells possess a remarkable ability to divide and multiply. In the end, the ability of a tissue to repair itself seems to depend on how many stem cells reside in a particular tissue, and the state of those stem cells. For example, stress, disease, and aging all diminish the capacity of adult stem cells to self-renew and to proliferate, which in turn hinders tissue regeneration. Our strategy is to commandeer the molecular machinery responsible for adult stem cell self-renewal and proliferation and by doing so, stimulate the endogenous program of tissue regeneration. This approach takes advantage of the solution that Nature itself developed for repairing damaged or diseased tissues, and controls adult stem cell proliferation in a localized, highly controlled fashion. This strategy circumvents the immunological, medical, and ethical hurdles that exist when exogenous stem cells are introduced into a human. When utilizing this strategy the goal of reaching clinical trials in human patients within 5 years becomes realistic. Specifically, we will target the growing problem of neurologic, musculoskeletal, cardiovascular, and wound healing diseases by local delivery of a protein that promotes the body’s inherent ability to repair and regenerate tissues. We have evidence that this class of proteins, when delivered locally to an injury site, is able to stimulate adult tissue stem cells to grow and repair/replace the deficient tissue following injury. We have developed technologies to package the protein in a specialized manner that preserves its biological activity but simultaneously restricts its diffusion to unintended regions of the body. For example, when we treat a skeletal injury with this packaged protein we augment the natural ability to heal bone by 350%; and when this protein is delivered to the heart immediately after an infarction cardiac output is improved and complications related to scarring are reduced. This remarkable capacity to augment tissue healing is not limited to bones and the heart: the same powerful effect can be elicited in the brain, and skin injuries. The disease targets of stroke, bone fractures, heart attacks, and skin wounds and ulcers represent an enormous health care burden now, but this burden is expected to skyrocket because our population is quickly aging. Thus, our proposal addresses a present and ongoing challenge to healthcare for the majority of Californians, with a novel therapeutic strategy that mimics the body’s inherent repair mechanisms.
Statement of Benefit to California: 
Californians represent 1 in 7 Americans, and make up the single largest healthcare market in the United States. The diseases and injuries that affect Californians affect the rest of the US, and the world. For example, stroke is the third leading cause of death, with more than 700,000 people affected every year. It is a leading cause of serious long-term disability, with an estimated 5.4 million stroke survivors currently alive today. Symptoms of musculoskeletal disease are the number two most cited reasons for visit to a physician. Musculoskeletal disease is the leading cause of work-related and physical disability in the United States, with arthritis being the leading chronic condition reported by the elderly. In adults over the age of 70, 40% suffer from osteoarthritis of the knee and of these nearly 80% have limitation of movement. By 2030, nearly 67 million US adults will be diagnosed with arthritis. Cardiovascular disease is the leading cause of death, and is a major cause of disability worldwide. The annual socioeconomic burden posed by cardiovascular disease is estimated to exceed $400 billion annually and remains a major cause of health disparities and rising health care costs. Skin wounds from burns, trauma, or surgery, and chronic wounds associated with diabetes or pressure ulcer, exact a staggering toll on our healthcare system: Burns alone affect 1.25M Americans each year, and the economic global burden of these injuries approaches $50B/yr. In California alone, the annual healthcare expenditures for stroke, skeletal repair, heart attacks, and skin wound healing are staggering and exceed 700,000 cases, 3.5M hospital days, and $34B. We have developed a novel, protein-based therapeutic platform to accelerate and enhance tissue regeneration through activation of adult stem cells. This technology takes advantage of a powerful stem cell factor that is essential for the development and repair of most of the body’s tissues. We have generated the first stable, biologically active recombinant Wnt pathway agonist, and showed that this protein has the ability to activate adult stem cells after tissue injury. Thus, our developmental candidate leverages the body’s natural response to injury. We have generated exciting preclinical results in a variety of animals models including stroke, skeletal repair, heart attack, and skin wounding. If successful, this early translational award would have enormous benefits for the citizens of California and beyond.
Progress Report: 
  • In the first year of CIRM funding our objectives were to optimize the activity of the Wnt protein for use in the body and then to test, in a variety of injury models, the effects of this lipid-packaged form of Wnt. We have made considerable progress on both of these fronts. For example, in Roel Nusse and Jill Helms’ groups, we have been able to generate large amounts of the mouse form of Wnt3a protein and package it into liposomal vesicles, which can then be used by all investigators in their studies of injury and repair. Also, Roel Nusse succeeded in generating human Wnt3a protein. This is a major accomplishment since our ultimate goal is to develop this regenerative medicine tool for use in humans. In Jill Helms’ lab we made steady progress in standardizing the activity of the liposomal Wnt3a formulation, and this is critically important for all subsequent studies that will compare the efficacy of this treatment across multiple injury repair scenarios.
  • Each group began testing the effects of liposomal Wnt3a treatment for their particular application. For example, in Theo Palmer’s group, the investigators tested how liposomal Wnt3a affected cells in the brain following a stroke. We previously found that Wnt3A promotes the growth of neural stem cells in a petri dish and we are now trying to determine if delivery of Wnt3A can enhance the activity of endogenous stem cells in the brain and improve the level of recovery following stroke. Research in the first year examined toxicity of a liposome formulation used to deliver Wnt3a and we found it to be well tolerated after injection into the brains of mice. We also find that liposomal Wnt3a can promote the production of new neurons following stroke. The ongoing research involves experiments to determine if these changes in stem cell activity are accompanied by improved neurological function. In Jill Helms’ group, the investigators tested how liposomal Wnt3a affected cells in a bone injury site. We made a significant discovery this year, by demonstrating that liposomal Wnt3a stimulates the proliferation of skeletal progenitor cells and accelerates their differentiation into osteoblasts (published in Science Translational Medicine 2010). We also started testing liposomal Wnt3a for safety and toxicity issues, both of which are important prerequisites for use of liposomal Wnt3a in humans. Following a heart attack (i.e., myocardial infarction) we found that endogenous Wnt signaling peaks between post-infarct day 5-7. We also found that small aggregates of cardiac cells called cardiospheres respond to Wnt in a dose-responsive manner. In skin wounds, we tested the effect of boosting Wnt signaling during skin wound healing. We found that the injection of Wnt liposomes into wounds enhanced the regeneration of hair follicles, which would otherwise not regenerate and make a scar instead. The speed and strength of wound closure are now being measured.
  • In aggregate, our work on this project continues to move forward with a number of great successes, and encouraging data to support our hypothesis that augmenting Wnt signaling following tissue injury will provide beneficial effects.
  • In the second year of CIRM funding our objectives were to optimize packaging of the developmental candidate, Wnt3a protein, and then to continue to test its efficacy to enhance tissue healing. We continue to make considerable progress on the stated objectives. In Roel Nusse’s laboratory, human Wnt3a protein is now being produced using an FDA-approved cell line, and Jill Helms’ lab the protein is effectively packaged into lipid particles that delay degradation of the protein when it is introduced into the body.
  • Each group has continued to test the effects of liposomal Wnt3a treatment for their particular application. In Theo Palmer’s group we have studied how liposomal Wnt3a affects neurogenesis following stroke. We now know that liposomal Wnt3a transiently stimulates neural progenitor cell proliferation. We don’t see any functional improvement after stroke, though, which is our primary objective.
  • In Jill Helms’ group we’ve now shown that liposomal Wnt3a enhances fracture healing and osseointegration of dental and orthopedic implants and now we demonstrate that liposomal Wnt3a also can improve the bone-forming capacity of bone marrow grafts, especially when they are taken from aged animals.
  • We’ve also tested the ability of liposomal Wnt3a to improve heart function after a heart attack (i.e., myocardial infarction). Small aggregates of cardiac progenitor cells called cardiospheres proliferate to Wnt3a in a dose-responsive manner, and we see an initial improvement in cardiac function after treatment of cells with liposomal Wnt3a. the long-term improvements, however, are not significant and this remains our ultimate goal. In skin wounds, we tested the effect of boosting Wnt signaling during wound healing. We found that the injection of liposomal Wnt3a into wounds enhanced the regeneration of hair follicles, which would otherwise not regenerate and make a scar instead. The speed of wound closure is also enhanced in regions of the skin where there are hair follicles.
  • In aggregate, our work continues to move forward with a number of critical successes, and encouraging data to support our hypothesis that augmenting Wnt signaling following tissue injury will provide beneficial effects.
  • Every adult tissue harbors stem cells. Some tissues, like bone marrow and skin, have more adult stem cells and other tissues, like muscle or brain, have fewer. When a tissue is injured, these stem cells divide and multiply but only to a limited extent. In the end, the ability of a tissue to repair itself seems to depend on how many stem cells reside in a particular tissue, and the state of those stem cells. For example, stress, disease, and aging all diminish the capacity of adult stem cells to respond to injury, which in turn hinders tissue healing. One of the great unmet challenges for regenerative medicine is to devise ways to increase the numbers of these “endogenous” stem cells, and revive their ability to self-renew and proliferate.
  • The scientific basis for our work rests upon our demonstration that a naturally occurring stem cell growth factor, Wnt3a, can be packaged and delivered in such a way that it is robustly stimulates stem cells within an injured tissue to divide and self-renew. This, in turn, leads to unprecedented tissue healing in a wide array of bone injuries especially in aged animals. As California’s population ages, the cost to treat such skeletal injuries in the elderly will skyrocket. Thus, our work addresses a present and ongoing challenge to healthcare for the majority of Californians and the world, and we do it by mimicking the body’s natural response to injury and repair.
  • To our knowledge, there is no existing technology that displays such effectiveness, or that holds such potential for the stem cell-based treatment of skeletal injuries, as does a L-Wnt3a strategy. Because this approach directly activates the body’s own stem cells, it avoids many of the pitfalls associated with the introduction of foreign stem cells or virally reprogrammed autologous stem cells into the human body. In summary, our data show that L-Wnt3a constitutes a viable therapeutic approach for the treatment of skeletal injuries, especially those in individuals with diminished healing potential.
  • This progress report covers the period between Sep 01 2012through Aug 31 2013, and summarizes the work accomplished under ET funding TR1-01249. Under this award we developed a Wnt protein-based platform for activating a patient’s own stem cells for the purpose of tissue regeneration.
  • At the beginning of our grant period we generated research grade human WNT3A protein in quantities sufficient for all our discovery experiments. We then tested the ability of this WNT protein therapeutic to improve the healing response in animal models of stroke, heart attack, skin wounding, and bone fracture. These experimental models recapitulated some of the most prevalent and debilitating human diseases that collectively, affect millions of Californians.
  • At the end of year 2, we assembled an external review panel to select the promising clinical indication. The scientific advisory board unanimously selected skeletal repair as the leading indication. The WNT protein is notoriously difficult to purify; consequently in year 3 we developed new methods to streamline the purification of WNT proteins, and the packaging of the WNT protein into liposomal vesicles that stabilized the protein for in vivo use.
  • In years 3 and 4 we continued to accrue strong scientific evidence in both large and small animal models that a WNT protein therapeutic accelerates bone regeneration in critical size bony non-unions, in fractures, and in cases of implant osseointegration. In this last year of funding, we clarified and characterized the mechanism of action of the WNT protein, by showing that it activates endogenous stem cells, which in turn leads to faster healing of a range of different skeletal defects.
  • In this last year we also identified a therapeutic dose range for the WNT protein, and developed a route and method of delivery that was simultaneously effective and yet limited the body’s exposure to this potent stem cell factor. We initiated preliminary safety studies to identify potential risks, and compared the effects of WNT treatment with other commercially available bone growth factors. In sum, we succeeded in moving our early translational candidate from exploratory studies to validation, and are now ready to enter into the IND-enabling phase of therapeutic candidate development.
  • This progress report covers the period between Sep 01 2013 through April 30 2014, and summarizes the work accomplished under ET funding TR101249. Under this award we developed a Wnt protein-based platform for activating a patient’s own stem cells for purposes of tissue regeneration.
  • At the beginning of our grant period we generated research grade human WNT3A protein in quantities sufficient for all our discovery experiments. We then tested the ability of this WNT protein therapeutic to improve the healing response in animal models of stroke, heart attack, skin wounding, and bone fracture. These experimental models recapitulated some of the most prevalent and debilitating human diseases that collectively, affect millions of Californians. At the conclusion of Year 2 an external review panel was assembled and charged with the selection of a single lead indication for further development. The scientific advisory board unanimously selected skeletal repair as the lead indication.
  • In year 3 we accrued addition scientific evidence, using both large and small animal models, demonstrating that a WNT protein therapeutic accelerated bone healing. Also, we developed new methods to streamline the purification of WNT proteins, and improved our method of packaging of the WNT protein into liposomal vesicles (e.g., L-WNT3A) for in vivo use.
  • In year 4 we clarified the mechanism of action of L-WNT3A, by demonstrating that it activates endogenous stem cells and therefore leads to accelerated bone healing. We also continued our development studies, by identifying a therapeutic dose range for L-WNT3A, as well as a route and method of delivery that is both effective and safe. We initiated preliminary safety studies to identify potential risks, and compared the effects of L-WNT3A with other, commercially available bone growth factors.
  • In year 5 we initiated two new preclinical studies aimed at demonstrating the disease-modifying activity of L-WNT3A in spinal fusion and osteonecrosis. These two new indications were chosen by a CIRM review panel because they represent an unmet need in California and the nation. We also initiated development of a scalable manufacturing and formulation process for both the WNT3A protein and L-WNT3A formulation. These two milestones were emphasized by the CIRM review panel to represent major challenges to commercialization of L-WNT3A; consequently, accomplishment of these milestones is a critical yardstick by which progress towards an IND filing can be assessed.

Derivation and analysis of pluripotent stem cell lines with inherited TGF-b mediated disorders from donated IVF embryos and reprogrammed adult skin fibroblasts

Funding Type: 
New Cell Lines
Grant Number: 
RL1-00662
ICOC Funds Committed: 
$1 424 412
Disease Focus: 
Heart Disease
Stem Cell Use: 
Embryonic Stem Cell
iPS Cell
Cell Line Generation: 
Embryonic Stem Cell
iPS Cell
oldStatus: 
Closed
Public Abstract: 
The field of regenerative medicine revolves around the capacity of a subset of cells, called stem cells, to become the mature tissues of the adult human body. By studying stem cells, we hope to develop methods and reagents for treating disease. For instance, we hope to develop methods for making stem cells become cardiovascular cells in the lab which could then be used to rapidly screen large numbers drugs that may be used to treat cardiovascular disease. In another example, if we are able to create bone in the lab from stem cells, we may be able to help treat people with catastrophic skeletal injuries such as wounded soldiers. Until recently, the most flexible type of stem cell known was the embryonic stem cell. Embryonic stem cells are pluripotent, meaning they can give rise to all of the adult tissues. In contrast, stem cells found in the adult are considered only multipotent, in that they can only become a limited number of mature cells. For example, bone marrow stem cells can give rise to all of the components of the blood, but cannot make nerves for a spinal chord. Breakthroughs in the past couple of months have indicated that it is possible to "reprogram" adult skin cells and make them become pluripotent, like stem cells from an embryo. These new kind of cells ares called "induced pluripotent cells" or iPS cells for short. This has lead to great excitement within the scientific community because it raises the possibility that we may use this technology to rapidly create pluripotent stem cells from a large host of human diseases using skin from affected individuals. However, whether the new iPS cells made from skin cells and embryonic stem cells are functionally the same in all applications remains to be seen. Our lab is in the unique position to test this hypothesis. We have derived several normal embryonic stem cell lines and are in the process of deriving iPS cells from normal skin. Furthermore, we are fortunate enough to have begun deriving a new embryonic stem cell line harboring an inherited mutation that results in severe cardiovascular and bone disease that affects more than 7,500 Californians. What's more, one of our collaborators has over the past ten years assembled a cell bank of more that 50 unique adult skin cell lines with the same inherited disease. Therefore, for our proposal, we will make new normal and disease specific iPS and embryonic stem cell lines. We will use these new stem cell lines to test whether the iPS and embryonic stem cells are truly functionally the same, by comparing them after we make them become cardiovascular and bone cells. This work will allow us to advance the field of regenerative medicine on two fronts. 1. We will perform an important comparison of iPS and embryonic stem cell lines. 2. We will compare the disease specific cells with normal cells which will help us better understand cardiovascular and bone disease and pave the way for the development of new therapies.
Statement of Benefit to California: 
Our proposal compares normal and disease specific pluripotent stem cells derived from embryonic and adult skin sources. This proposal will benefit the state of California and its citizens in several specific ways. First, the specific inherited disease we are studying affects approximately one in every 5,000 people worldwide. That translates into over 7,500 Californians and over 60,000 men, women and children of every race and ethnic group in the United States. By examining the characteristics of the disease specific lines, we hope to better understand the mechanisms of the disease and create assays for screening new drugs that can be used to treat people with the disease. Second, this disease is one of a broad class of cardiovascular disease, called thoracic aortic disease. An estimated 3,700 Californians are treated for thoracic aortic disease every year. Our findings may provide insight into the mechanisms underlying these diseases and other cardiovascular diseases. Third, this disease also results in skeletal defects. By studying the mechanisms of the skeletal defects, we will better understand the mechanisms of bone development, which will lead to improved applications of stem cell therapies for individuals with bone injury and disease. Finally, by providing detailed comparisons of iPS and embryonic stem cells, our work will have important ramifications for the future direction of the entire field of stem cell research and regenerative medicine.
Progress Report: 
  • During the past year, we have used the funds from this grant to derive a new embryonic stem cell line with an inherited mutation that results in a severe cardiovascular and bone disease called Marfan syndrome that affects more than 7,500 Californians. In addition, using adult skin cell lines with the same inherited disease, we have made significant progress deriving iPS cells with Marfan syndrome. During the next year we also hope to expand our studies by recruiting patients with a disease very similar to Marfan syndrome called Loeys-Dietz syndrome, to donate skin biopsies so that we can make iPS cells to study that disease as well. Using these new stem cell lines, we are testing whether the iPS and embryonic stem cells are truly functionally the same, by comparing them after we make them become cardiovascular and bone cells.
  • One of the biggest challenges in stem cell biology is figuring out how to make the stem cells become the adult cells we want to study and not some other random adult cells. Over the past year, we have made great strides in turning our stem cells into the cell types most severely affected in people with Marfan syndrome, namely bone and cardiovascular cells. What is most exciting to us is that even with these preliminary studies, it looks like we might be seeing differences between the stem cells with Marfan syndrome and normal stem cells after they are coaxed into become the bone and cardiovascular cells. These results are still very preliminary though, and we need to take great care during the next year to rigorously repeat our experiments before we can be certain of those results. If we can reproduce the differences, these differences may be the basis for screening for new drugs to treat people with Marfan syndrome or lead to a better understanding as to what exactly is the sequence of cellular events that leads to the patient’s symptoms. What’s more, by studying how to efficiently make bone and cardiovascular cells from human embryonic stem cells and iPS cells in the dish, we hope to provide important data that could be beneficial in a wide variety of applications such as tissue engineering or cellular replacement therapies using bone or blood vessels.
  • Marfan Syndrome (MFS) is a genetic disorder that affects more than 7,500 Californians. Patients develop severe complications, affecting several parts of the body (eyes, limbs, aorta). During the last two years, we have used the funds from this grant to develop new cell lines aimed at studying MFS in a dish. These cell lines, are called pluripotent stem cells, and have been generated from: (i) an embryo that was donated for research and was known to have inherited the MFS disease (these cell lines are named human embryonic stem cells (hESCs)); and (ii) from skin biopsies of adult patients (these cell lines are named induced pluripotent stem cells (iPSCs)). These stem cell lines allow us to study MFS by differentiating the cells to adult cells (mainly bone and cardiovascular cells) and not other random adult cells. Using these new stem cell lines, we can test whether hESCs and iPSCs are functionally the same, by comparing them after we make them become cardiovascular and bone cells. We have observed that when the cells form bone or muscle cells, the stem cells with MFS are different and do not behave the same as those made with normal stem cells. We also started to use reagents that can force MFS cells to resemble and behave like normal bone cells. This is called “rescuing the disease phenotype”. For the first time, we are close to describing a stem cell-based technology not only to understand the mechanism(s) of the MFS but also to develop a screen for new drugs to treat people with MFS. However, we still need to confirm our results by repeating the experiments. Our results are very promising for understanding the bone issues in MFS, but continued efforts are also required to understand the cardiovascular issue. It is important to point out that the most important health risk associated with the disease is an aortic aneurysm that, if untreated, leads to death around 35 years old. In conclusion, we are continuing to generate data that will provide the foundation for improving our knowledge of the disease, and also will potentially assist us in developing new therapies for improving MFS patient lives.
  • The field of regenerative medicine revolves around the capacity of a subset of cells, called stem cells, to become the mature tissues of the adult human body. By studying stem cells, we hope to develop methods for treating a wide variety of diseases. For instance, we hope to develop methods for making stem cells become cardiovascular cells in the lab, which could then be used to rapidly screen large numbers of drugs that may be used to treat cardiovascular disease. We are also trying to create skeletal tissue from stem cells so that we may be able to help treat people with catastrophic skeletal injuries such as wounded soldiers.
  • Until recently, the most flexible type of stem cell known was the embryonic stem cell. Embryonic stem cells are pluripotent, meaning they can give rise to all cell types in the body. In contrast, stem cells found in the adult are considered only multipotent, in that they can only become a limited number of mature cells. Breakthroughs in the past five years have indicated that it is possible to "reprogram" adult skin cells and make them become pluripotent, like stem cells from an embryo. These new kinds of cells are called "induced pluripotent cells" or iPS cells. This has lead to great excitement within the scientific community because it raises the possibility that we may use this technology to rapidly create pluripotent stem cells from a large host of human diseases using easy to obtain tissue like skin and fat from affected individuals.
  • Our laboratory is in the unique position to test this hypothesis. We have derived several normal embryonic stem cell lines and iPS cells from normal skin. Furthermore, we have derived a new embryonic stem cell line and induced pluripotent stem cells from fibroblasts harboring an inherited mutation that results in severe cardiovascular and bone disease that affects more than 7,500 Californians, called Marfan's Syndrome.
  • We have created stem cells lines, both embryonic and induced pluripotent stem cells from cells having this disease. We have compared these cells to normal embryonic and induced pluripotent stem cells to examine exactly what makes these diseased cells behave in a way to have impaired bone formation. In addition, we have completed the differentiation, banking and full characterization of vascular cells derived from Marfan's Syndrome embryonic stem cells and Marfan’s syndrome induced pluripotent stem cells. We have seen that the cells with Marfan’s syndrome have a particular signaling pathway that has functional disregulation compared to normal, healthy cells. We have been able to explore how this disease process manipulates this pathway to cause this specific disease. Through this kind of modeling, we can use these cells to screen for treatment as well as model the disease in a way to manipulate the specific pathways this disease impacts to hopefully bring clinical treatments to patients who suffer from this disease.

Induced Pluripotent Stem Cells for Cardiovascular Diagnostics

Funding Type: 
New Cell Lines
Grant Number: 
RL1-00639
ICOC Funds Committed: 
$1 708 560
Disease Focus: 
Heart Disease
Toxicity
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Closed
Public Abstract: 
Our objective is to use induced pluripotent stem (iPS) cell technology to produce a cell-based test for long QT syndrome (LQTS), a major form of sudden cardiac death. Nearly 500,000 people in the US die of sudden cardiac death each year. LQTS can be triggered by drug exposure or stresses. Drug-induced LQTS is the single most common reason for drugs to be withdrawn from clinical trials, causing major setbacks to drug discovery efforts and exposing people to dangerous drugs. In most cases, the mechanism of drug-induced LQTS is unknown. However, there are genetic forms of LQTS that should allow us to make iPS cell–derived heart cells that have the key features of LQTS. Despite the critical need, current tests for drug-induced LQTS are far from perfect. As a result, potentially unsafe drugs enter clinical trials, endangering people and wasting millions of dollars in research funds. When drugs causing LQTS such as terfenadine (Seldane) enter the market, millions of people are put at serious risk. Unfortunately it is very difficult to know when a drug will cause LQTS, since most people who develop LQTS have no known genetic risk factors. The standard tests for LQTS use animal models or hamster cells that express human heart genes at high levels. Unfortunately, cardiac physiology in animal models (rabbits and dogs) differs from that in humans, and hamster cells lack many key features of human heart cells. Human embryonic stem cells (hESCs) can be differentiated into heart cells, but we do not know the culture conditions that would make the assay most similar to LQTS in a living person. These problems could be solved if we had a method to grow human heart cells from people with genetic LQTS mutations, so that we know the exact test conditions that would reflect the human disease. This test would be much more accurate than currently available tests and would help enable the development of safer human pharmaceuticals. Our long-term goal is to develop a panel of iPS cell lines that better represent the genetic diversity of the human population. Susceptibility to LQTS varies, and most people who have life-threatening LQTS have no known genetic risk factors. We will characterize iPS cells that have well-defined mutations that have clinically proven responses to drugs that cause LQTS. These iPS cell lines will be used to refine testing conditions. To validate the iPS cell–based test, the results will be directly compared to the responses in people. These studies will provide the foundation for an expanded panel of iPS cell lines from people with other genetic mutations and from people who have no genetically defined risk factor but still have potentially fatal drug-induced LQTS. This growing panel of iPS cell lines should allow for testing drugs for LQTS more effectively and accurately than any current test.
Statement of Benefit to California: 
Heart disease is the leading killer of adults in the Western world. Nearly 500,000 people in the US die of sudden cardiac death each year. Our goal is to develop a cell-based test to screen for drugs that can cause sudden cardiac death. Drug-induced cardiac side effects are the most common reason for withdrawal of drugs from clinical trials, causing major setbacks to drug discovery efforts. Therefore our test we will improve the safety of pharmaceuticals. Our test will also reduce the change that a drug in development will fail during clinical trials, thereby decreasing the financial risk for pharmaceutical companies. The results of our studies will help develop new technology that is likely to contribute to the California biotechnology industry. Our studies will develop multiple lines of iPS cells with unique genetic characteristics. These cell lines could be valuable for biotechnology companies and researchers who are screening for drug compounds. We are working closely with California companies to develop new microscopes, assay devices, and analytical software that could be the basis for new product lines or new businesses. If therapies do come to fruition, we anticipate that California medical centers will be leading the way. The most important contribution of this study will be to improve the health of Californians. Heart disease is a major cause of mortality and morbidity, resulting in billions of dollars in health care costs and lost days at work. Our goal is to contribute research that would ultimately improve the quality of life and increase productivity for millions of people who suffer from heart disease.
Progress Report: 
  • Nearly 500,000 people in the US die of sudden cardiac death each year, and long QT syndrome (LQTS) is a major form of sudden cardiac death. LQTS can be triggered by drug exposure or stresses. Drug-induced LQTS is the single most common reason for drugs to be withdrawn from clinical trials, causing major setbacks to drug discovery efforts and exposing people to dangerous drugs. In most cases, the mechanism of drug-induced LQTS is unknown. However, there are genetic forms of LQTS that should allow us to make iPS cell–derived heart cells that have the key features of LQTS. Our objective is to produce a cell-based test for LQTS with induced pluripotent stem (iPS) cell technology, which allows adult cells to be “reprogrammed” to be stem cell–like cells.
  • Despite the critical need, current tests for drug-induced LQTS are far from perfect. As a result, potentially unsafe drugs enter clinical trials, endangering people and wasting millions of dollars in research funds. When drugs that cause LQTS, such as terfenadine (Seldane), enter the market, millions of people are put at serious risk. Unfortunately, it is very difficult to know when a drug will cause LQTS, since most people who develop LQTS have no known genetic risk factors. The standard tests for LQTS use animal models or hamster cells that express human heart genes at high levels. Unfortunately, cardiac physiology in animal models (rabbits and dogs) differs from that in humans, and hamster cells lack many key features of human heart cells. Human embryonic stem cells (hESCs) can be differentiated into heart cells, but we do not know the culture conditions that would make the assay most similar to LQTS in a living person. These problems could be solved if we had a method to grow human heart cells from people with genetic LQTS mutations, so that we know the exact test conditions that would reflect the human disease. This test would be much more accurate than currently available tests and would help enable the development of safer human pharmaceuticals.
  • Our long-term goal is to develop a panel of iPS cell lines that better represent the genetic diversity of the human population. Susceptibility to LQTS varies, and most people who have life-threatening LQTS have no known genetic risk factors. We will characterize iPS cells with well-defined mutations that have clinically proven responses to drugs that cause LQTS. These iPS cell lines will be used to refine testing conditions. To validate the iPS cell–based test, the results will be directly compared to the responses in people. These studies will provide the foundation for an expanded panel of iPS cell lines from people with other genetic mutations and from people who have no genetically defined risk factor but still have potentially fatal drug-induced LQTS. This growing panel of iPS cell lines should allow for testing drugs for LQTS more effectively and accurately than any current test.
  • To meet these goals, we made a series of iPS cells that harbor different LQTS mutations. These iPS cells differentiate into beating cardiomyocytes. We are now evaluating these LQTS cell lines in cellular assays. We are hopeful that our studies will meet or exceed all the aims of our original proposal.
  • Nearly 500,000 people in the US die of sudden cardiac death each year, and long QT syndrome (LQTS) is a major form of sudden cardiac death. LQTS can be triggered by drug exposure or stresses. Drug-induced LQTS is the single most common reason for drugs to be withdrawn from clinical trials, causing major setbacks to drug discovery efforts and exposing people to dangerous drugs. In most cases, the mechanism of drug-induced LQTS is unknown. However, there are genetic forms of LQTS that should allow us to make iPS cell–derived heart cells that have the key features of LQTS. Our objective is to produce a cell-based test for LQTS with induced pluripotent stem (iPS) cell technology, which allows adult cells to be “reprogrammed” to be stem cell–like cells.
  • Despite the critical need, current tests for drug-induced LQTS are far from perfect. As a result, potentially unsafe drugs enter clinical trials, endangering people and wasting millions of dollars in research funds. When drugs that cause LQTS, such as terfenadine (Seldane), enter the market, millions of people are put at serious risk. Unfortunately, it is very difficult to know when a drug will cause LQTS, since most people who develop LQTS have no known genetic risk factors. The standard tests for LQTS use animal models or hamster cells that express human heart genes at high levels. Unfortunately, cardiac physiology in animal models (rabbits and dogs) differs from that in humans, and hamster cells lack many key features of human heart cells. Human embryonic stem cells (hESCs) can be differentiated into heart cells, but we do not know the culture conditions that would make the assay most similar to LQTS in a living person. These problems could be solved if we had a method to grow human heart cells from people with genetic LQTS mutations, so that we know the exact test conditions that would reflect the human disease. This test would be much more accurate than currently available tests and would help enable the development of safer human pharmaceuticals.
  • Our long-term goal is to develop a panel of iPS cell lines that better represent the genetic diversity of the human population. Susceptibility to LQTS varies, and most people who have life-threatening LQTS have no known genetic risk factors. We will characterize iPS cells with well-defined mutations that have clinically proven responses to drugs that cause LQTS. These iPS cell lines will be used to refine testing conditions. To validate the iPS cell–based test, the results will be directly compared to the responses in people. These studies will provide the foundation for an expanded panel of iPS cell lines from people with other genetic mutations and from people who have no genetically defined risk factor but still have potentially fatal drug-induced LQTS. This growing panel of iPS cell lines should allow for testing drugs for LQTS more effectively and accurately than any current test.
  • To meet these goals, we have made a series of iPS cells that harbor different LQTS mutations. These iPS cells differentiate into beating cardiomyocytes. We are now evaluating these LQTS cell lines in cellular assays. We are hopeful that our studies will meet or exceed all the aims of our original proposal.
  • Cardiac arrhythmias are a major cause of morbidity and mortality. Yet we lack appropriate human tissue models to develop new therapies of this deadly disease. Despite the importance of this disease, the current in vitro models utilize overexpressed channels in fibroblasts that do not accurately recapitulate human cardiac myocytes. With our CIRM funding, we greatly improved our in vitro models by using cardiomyocytes derived from human induced pluripotent stem cells (iPS cells) from donors who harbor cardiac arrhythmia mutations. We enrolled a series of research subjects with genetic forms of LQTS. All participants in our study signed a consent form that was approved by the UCSF human subjects committee. We found that iPS cell–derived cardiomyocytes developed disease-related phenotypes in vitro that could be readily demonstrated by electrophysiological techniques. Such measurements enabled the pharmacological characterization of underlying mechanisms of disease and may point to potential novel therapies. The CIRM funding has allowed our laboratory develop new methods for human disease modeling in iPS cell–derived tissues. This project served as a critical catalyst for human disease research that would otherwise be impossible.

Prospective isolation of hESC-derived hematopoietic and cardiomyocyte stem cells

Funding Type: 
Comprehensive Grant
Grant Number: 
RC1-00354
ICOC Funds Committed: 
$2 636 900
Disease Focus: 
Blood Disorders
Heart Disease
Immune Disease
Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Closed
Public Abstract: 
The capacity of human embryonic stem cells (hESCs) to perpetuate themselves indefinitely in culture and to differentiate to all cell types of the body has lead to numerous studies that aim to isolate therapeutically relevant cells for the benefit of patients, and also to study how genetic diseases develop. However, hESCs can cause tumors called teratomas when placed in the body and therefore, we need to separate potentially beneficial cells from hazardous hESCs. Thus, potential therapeutics cannot advance until the development of methodologies that eliminate undifferentiated cells and enrich tissue stem cells. In our proposal we hope to define the cell surface markers that are differentially expressed by committed hESC-derived stem cells and others that are expressed by teratogenic hESCs. To do this we will carry out a large screen of cell subsets that form during differentiation using a collection of unique reagents called monoclonal antibodies, many already obtained or made by us, to define the cell-surface markers that are expressed by teratogenic cells and others that detect valuable tissue stem cells. This collection, after filing for IP protection, would be available for CIRM investigators in California. We were the first to isolate mouse and human adult blood-forming stem cells, human brain stem cells, and mouse muscle stem cells, all by antibody mediated cell-sorting approaches. Antibody mediated identification of cell subsets that arise during early hESC differentiation will allow separation and characterization of defined subpopulations; we would isolate cells that are committed to the earliest lineage known to form multiple cell types in the body including bone, blood, heart and muscle. These cells would be induced to differentiate further to the blood forming and heart muscle forming lineages. Enriched, and eventually purified hESC-derived blood-forming stem cells and heart muscle stem cells will be tested for their potential capacity to engraft and improve function in animal models. Blood stem cells will be transplanted into immunodeficient mice to test their capacity to give rise to all blood cell types; and heart muscle stem cells will be transferred to mouse hearts that had an artificial coronary artery blockage, a model for heart attack damage. Finally, we will test the capacity of blood stem cell transplantation to induce transplantation tolerance towards heart muscle stem cells from the same donor cell line. Transplantation tolerance in this case means that the heart cells would be accepted as ‘self’ by the mouse that had it’s unrelated donor immune system replaced wholly or in part by blood forming stem cells from the same hESC line that gave rise to the transplantable heart stem cells, and therefore would not be rejected by it’s own immune system. This procedure would allow transplantation of beneficial tissues such as heart, insulin-producing cells, etc., without the use of immunosuppressive drugs.
Statement of Benefit to California: 
The principle objective of this proposal is to develop reagents which, in combinations, can identify and isolate tissue-regenerating stem cells derived from hESC lines. The undifferentiated hESCs are dangerous for transplantation into humans, as they cause tumors. We propose to prepare reagents that identify and can be used to delete or prospectively isolate these tumor-causing undifferentiated hESCs. HESC-derived tissue stem cells have the potential to regenerate damaged tissues and organs, and don’t cause tumors. We propose to develop reagents that can be used to identify and prospectively isolate pure human blood-forming stem cells derived from hESCs, and separately other reagents that can be used to identify and prospectively isolate pure heart-forming stem or progenitor cells. These “decontaminated” hESC-derived tissue stem cells may eventually be used to treat human tissue degenerative diseases. These reagents could also be used to isolate the same cells from somatic cell nuclear transfer (SCNT)-derived pluripotent stem cell lines from patients with genetic diseases. This procedure would enable us to analyze the effects of the genetic abnormalities on blood stem and progenitor cells in patients with genetic blood and immune system disorders, and on heart stem and progenitor cells in patients with heart disorders. The antibodies and stem cells (hESCs, tissue regenerating, etc) that will be isolated from patients with specific diseases will be invaluable tools that can be used to create model(s) for understanding the diseases and their progression. In addition, the antibodies and the stem cells generated in these studies are entities that could be patented or protected by copyright, forming an intellectual property portfolio shared by the state and the state institutions wherein the research was carried out. The funds generated from the licensing of these technologies will help pay back the state, will help support increasing faculty and staff (many of whom bring in other, out of state funds for their research), and could be used to ameliorate the costs of clinical trials. Only California businesses are likely to be able to license these antibodies and cells, to develop them into diagnostic and therapeutic entities; such businesses are the heart of the CIRM strategy to enhance the California economy. Most importantly, however, is that this research will lead to tissue stem cell therapies. Such therapies will address chronic diseases that cause considerable disability and misery, currently have no cure, and therefore lead to huge medical expenses. Because tissue stem cells renew themselves for life, stem cell therapies are one-time therapies with curative intent. We expect that California hospitals and health care entities will be first in line for trials and therapies, and for CIRM to negotiate discounts on such therapies for California taxpayers, thus California will benefit both economically and with advanced novel medical care.
Progress Report: 
  • The objectives of our proposal are the isolations of blood-forming and heart-forming stem cells from human embryonic stem cell (hESCs) cultures, and the generation of monoclonal antibodies (mAbs) that eliminate residual teratogenic cells from transplantable populations of differentiated hESCs. For isolation of progenitors, we hypothesized that precursors derived from hESCs could be identified and isolated using mAbs that label unique combinations of lineage-specific cell surface molecules. We used hundreds of defined mAbs, generated hundreds of novel anti-hESC mAbs, and used these to isolate and characterize dozens of hESC-derived populations. We discovered four precursor types from early stages of differentiating cells, each expressing genes indicative of commitment to either embryonic or extraembryonic tissues. Together, these progenitors are candidates to give rise to meso-endodermal lineages (heart, blood, pancreas, etc), and yolk sac, umbilical cord and placental tissues, respectively. Importantly, we have found that cells of the meso-endodermal population give rise to beating cardiomyocytes. We are currently enriching cardiomyocyte precursors from this population using cardiac-specific genetic markers, and are assaying the putative progenitors using electrophysiological assays and by transplantation into animal hearts (a test for restoration of heart function). In addition, we established in vitro conditions that effectively promote hESC-differentiation towards the hematopoietic (blood) lineages and isolated populations that resemble hematopoietic stem cells (HSCs) in both surface phenotype as well as lineage potentials, as determined by assays in vitro. We have generated hESC-lines that express the anti-apoptotic gene BCL2, and have found that these cells produce significantly greater amounts of hematopoietic and cardiac cells, because of their increased survival during culturing and sorting. We are currently isolating hematopoietic precursors from BCL2-hESCs and will test their ability to engraft in immunodeficient mice, to examine the capacity of hESC-derived HSCs to regenerate the blood system. Finally, we have utilized the novel mAbs that we prepared against undifferentiated hESCs, to deplete residual teratogenic cells from differentiated cultures that were transplanted into animal models. We discovered that following depletion teratoma rarely formed, and we expect to determine a final cocktail of mAbs for removal of teratogenic cells from transplantation products this year.
  • The main objective of our proposal is to isolate therapeutic stem cells and progenitors from human embryonic stem cells (hESCs) that give rise to blood and heart cells. Our approach involves isolation of differentiated precursor subset of cells using monoclonal antibodies (mAbs) and cell sorting instruments, and subsequent characterization of their respective hematopoietic and cardiomyogenic potential in culture as well as following engraftment into mouse models of disease. In addition, we aim to develop mAbs that specifically bind to undifferentiated hESCs for removal of residual teratoma-initiating cells from therapeutic cell preparations, to ensure transplantation safety.
  • We have made substantial advancement towards achieving these goals. First, we discovered that the initial differentiation of hESCs occurs through only 4-5 different progenitor types, of which one is destined to give rise to heart lineages. We purified this population using three novel cell surface markers, and found a significant enrichment of cardiomyocyte clones in colony formation assays that we developed. This subset also expressed particularly high levels of cardiac genes and was receptive to further differentiation into beating cardiomyocytes or vascular endothelial cells. When transplanted into immunodeficient mice these progenitors differentiated into ventricular myocytes and vascular endothelial cells. In the coming year we will perform transplantation experiments to evaluate whether they improve the functional outcome of heart infarction in hearts of mice. Second, we have optimized cell culture conditions and cell surface markers to sort hematopoietic progenitors derived from hESCs. We have also begun to transplant these populations into immunodeficient mouse recipients to identify blood-reconstituting hematopoietic populations. Third, we identified 5 commercial and 1 custom mAbs that are specific to human pluripotent cells (hESCs and induced pluripotent cells). We are currently testing the capacity of combinations of 3 pluripotency surface markers to remove all teratoma-initiating cells from transplanted differentiated cell populations. In summary, we expect provide functional validation of the blood and heart precursor populations that we identified from hESCs by the end term of this grant.
  • The main objective of our proposal is to isolate therapeutic stem and progenitor cells derived from human embryonic stem cells (hESCs) that can give rise to blood and heart cells. Our approach involves developing differentiation protocols to drive hematopoietic (blood) and cardiac (heart) development of hESCs, then to identify and isolate stem/progenitor cells using monoclonal antibodies (mAbs) specific to surface markers expressed on blood and heart stem/progenitor cells, and finally to characterize their functional properties in vitro and in vivo. In addition, we sought to develop mAbs that specifically bind to undifferentiated hESCs for removal of residual teratoma (tumor)-initiating cells from therapeutic preparations, to ensure transplantation safety.
  • We have made substantial progress toward achieving these goals. First, we discovered that the initial differentiation of hESCs occurs through only 4-5 different progenitor types, of which one is destined to give rise to heart lineages. We purified this population using four novel cell surface markers (ROR2, PDGFRα, KDR, and CD13), and found a significant enrichment of cardiomyocyte clones in colony formation assays that we developed. This subset also expressed particularly high levels of cardiac genes and was receptive to further differentiation into beating cardiomyocytes or vascular endothelial cells. When transplanted into immunodeficient mice these progenitors differentiated into ventricular myocytes and vascular endothelial cells. We have also successfully developed a human fetal heart xenograft model to test hESC-derived cardiomyocyte stem/progenitor cells in human heart tissue for engraftment and function.
  • Second, we have optimized cell culture conditions and cell surface markers to sort hematopoietic progenitors derived from hESCs. In doing so, we have mapped the earliest stages of hematopoietic specification and commitment from a bipotent hematoendothelial precursor. Our culture conditions drive robust hematopoietic differentiation in vitro but these hESC-derived hematopoietic progenitors do not achieve hematopoietic engraftment when transplanted in mouse models. Furthermore, we overexpressed the anti-apoptotic protein BCL2 in hESCs, and discovered a significant improvement in viability upon single cell sorting, embryoid body formation, and in cultures lacking serum replacement. Moving forward, we feel the survival advantages exhibited by this BCL2-expressing hESC line will improve our chances of engrafting hESC-derived hematopoietic stem/progenitor cells.
  • Third, we identified a cocktail of 5 commercial and 1 novel mAbs that enable specific identification of human pluripotent cells (hESCs and induced pluripotent cells). We have found combinations of 3 pluripotency surface markers that can remove all teratoma-initiating cells from differentiated hESC and induced pluripotent stem cell (iPSC) populations prior to transplant. While these combinations can vary depending on the differentiation culture, we have generated a simple, easy-to-follow protocol to remove all teratogenic cells from large-scale differentiation cultures.
  • In summary, we accomplished most of the goals stated in our original proposal. We successfully achieved cardiac engraftment of an hESC-derived cardiomyocyte progenitor using a novel human heart model of engraftment. While we unfortunately did not attain hematopoietic engraftment of hESC-derived cells, we are exploring a strategy to address this. Our research has led to four manuscripts: one on the protective effects of BCL2 expression on hESC viability and pluripotency (published in PNAS, 2011), another describing markers of pluripotency and their use in depleting teratogenic potential in differentiated PSCs (accepted for publication in Nature Biotechnology), and two submitted manuscripts, one describing a novel xenograft assay to test PSC-derived cardiomyocytes for functional engraftment and the other describing the earliest fate decisions downstream of a PSC.

Engineering a Cardiovascular Tissue Graft from Human Embryonic Stem Cells

Funding Type: 
Comprehensive Grant
Grant Number: 
RC1-00151
ICOC Funds Committed: 
$2 618 704
Disease Focus: 
Heart Disease
Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Closed
Public Abstract: 
Cardiovascular disease (CVD) affects more than 71 million Americans and 1.7 million Californians. Recently, engineered cardiovascular tissue grafts, or “patches”, including one made from mouse embryonic stem cells (ESC), have shown promising results as a future therapy for CVD. Our overall goal is to extend these recent results to human ESC as follows. Aim 1: Apply mechanical stretch and electrical pacemaker-like stimulation to hESC-derived heart cells in order to make them stronger and beat at the same time. Current methods to turn hESC into heart cells do not result in the organization required to generate enough strength to support a weak heart and to avoid irregular heart beats. We will use specially engineered devices to apply mechanical stretch and electrical pacemaker-like stimulation to hESC-derived heart cells in order to strengthen them and make them beat in unison. Aim 2: Engineer a cardiovascular patch from hESC-derived heart cells in order to make a potential new therapy for heart disease. Recently, heart cells from mouse ESC, supporting structures called scaffolds, and mechanical stretch have successfully been combined to engineer a cardiovascular patch. We will combine the hESC-derived heart cells from Aim 1, scaffolds, and the same stretch and pacemaker-like stimulation as in Aim 1 to engineer a cardiovascular patch. In addition, we will add a specialized substance called VEGF to our patch so that, potentially, a blood supply will form around it after it is implanted on a diseased heart. We believe a blood supply will be necessary to keep our patch healthy, and in turn, this will allow our patch to help a damaged heart pump better. Aim 3: Assess whether our patch can remain healthy and also strengthen the heart of a rat after it has undergone a heart attack. We will first implant our cardiovascular patch in the rat aorta, the main blood vessel that supplies blood to the body, to test whether the patch remains healthy and whether it can contract and beat on its own. We will first use the aortic position because we feel it will allow us to assess the inherent function of the patch, thus facilitating our efforts to improve its design. After testing in the aortic position, we will implant the patch over damaged heart tissue in a rat that has undergone an experimentally created heart attack. Over a period of several weeks, we will use novel imaging techniques, ultrasonography, echocardiography, and electrocardiography to non-invasively test whether the patch remains healthy and whether the patch helps the damaged heart pump better. We believe the above aims will address questions relevant to hESC-based cardiovascular therapies and will provide vital information needed for safe and effective future clinical translation. As we will evaluate both federally and non-federally approved cell lines, and thus unlikely to receive federal funding, we will need to rely on the support provided by CIRM to carry out our objectives.
Statement of Benefit to California: 
Cardiovascular disease (CVD) affects more than 1.7 million Californians and 71 million Americans. The societal and financial impacts are tremendous, with CVD accounting annually for an estimated $8 billion in CA and nearly $400 billion in US health care costs. In the case of chronic illness such as CVD, the state and national health care systems may not be able to meet the needs of patients or control spiraling costs, unless the focus of therapy switches away from maintenance and toward cures. Fortunately, the passage of Proposition 71 in 2004, and the subsequent creation of the California Institute for Regenerative Medicine (CIRM), has created the funding needed to advance human embryonic stem cell (hESC) research that could lead to curative therapies that would benefit both millions of Californians and Americans. Recently, engineered cardiovascular tissue grafts, made from rat neonatal cardiomyocytes (CM) and cardiomyocytes derived from mouse ESC, have shown promising results as a future therapy for CVD. The overall goal of our proposed research is to extend these recent studies to hESC and engineer a hESC-CM based cardiovascular tissue graft as a regenerative therapy for CVD. We believe the objectives of our research will benefit the people and the state of California by addressing questions relevant to hESC-based cardiovascular regenerative therapies and will provide vital information needed for safe and efficacious future clinical translation. Development of cures for diseases such as CVD could potentially improve the California health care system by reducing the long-term health care cost burden on California. In addition, the results of our research may provide an opportunity for California to benefit from royalties, patents, and licensing fees and benefit the California economy by creating projects, jobs, and therapies that will generate millions of dollars in new tax revenues in our state. Finally, stem cell research such as ours could further advance the biotech industry in California, serving as an engine for California’s economic future. We have assembled a multidisciplinary team of experienced investigators to attack the objectives of our proposed research. At the same time, we will train and mentor a new generation of bright students and junior scientists in the areas of hESC biology, regenerative medicine, and technology development. This ensures that an essential knowledge base will be preserved and passed on to both investigators and patients within and beyond California.
Progress Report: 
  • Specific Aim 1: To electromechanically condition hESC-derived cardiomyocytes.
  • Progress: Over the past year, we have designed and constructed a computer controlled integrated stretch system and electrical pacing system for applying mechanical and electrical stimulation. This system was used in conjunction with a stretchable microelectrode array (sMEA) and shown to successfully support, stretch, and pace primary murine cardiomyocytes (CM). We also have developed a strain array device for cell culture that effectively interfaces the desirable properties of high-throughput microscale fluidic devices with macroscale user-friendly features. One challenge we have encountered with our sMEAs is maintaining electrical continuity of electrodes as cells are stretched. As an alternative to traditional electrical stimulation we have created a system that optically induces electrical activity in hESC-CM. We are now able to optically and non-invasively pace cardiomyocytes differentiated from our modified hESC line.
  • Specific Aim 2: To engineer a hESC-CM based cardiovascular tissue graft.
  • Progress: From our first attempt at engineering a cardiovascular tissue graft as we reported in Year 1, we learned that our grafts would require large populatoins of relatively pure hESC-CMs. As a result, we concentrated our efforts over the past year in developing a more efficient differentiation method for producing larger yields and quantities of hESC-CM. Our method produces hESC-CM in a directed manner under feeder-free and serum-free conditions by controlling multiple cardiomyogenic developmental pathways. Also, in a collaborative effort, we are engineering a novel method for sorting cardiomyocytes. In order to promote improved viability of hESC-CM in our tissue grafts, co-transplantation with hESC-derived endothelial cells (hESC-EC), as opposed to VEGF alone, will likely be needed as shown recently by others. Over the past year, we have shown that we can produce hESC-EC and that their survival in the heart is enhanced by activation of acetylcholine receptors that lead to activation of pro-survival and anti-apoptosis pathways. Finally, in order to control spatial orientation of hESC-CM within our tissue grafts, we have demonstrated on-demand micropatterning of matrix proteins for cell localization and stem cell fate determination. We have illustrated the utility of a cantilever-based nano-contact printing technology for cellular patterning, mESC renewal, and mESC fate specification. We are currently extending our results to undifferentiated hESC and hESC-CM.
  • Specific Aim 3: To assess tissue graft viability and function in a small animal model.
  • Progress: Over the past year, we created hESC-CM based tissue grafts in linear form. In order to quantify the loss of cardiac function between healthy and diseased hearts, we have recently developed a novel in vitro hybrid experimental/computational system to measure active force generation in ventricular slices of rodent hearts. Quantification of the loss of cardiac function will guide us in determining the numbers of hESC-CM needed for producing grafts with varying force generating capacity. Finally, as outlined in our original proposal, we will first implant our tissue grafts in rat aortas as a novel test-bed to assess the graft’s inherent function while minimizing the confounding effects of underlying cardiac contractions. Over the past year we have successfully implanted decellularized aortic patches in rat aortas and are currently working on adding hESC-CM and hESC-EC to the patches to assess their viability and function.
  • In summary, in the second year of our project we have made strong progress on all three of our specific aims. Based on our current results, we anticipate we will continue to make significant progress in engineering a robust and functional cardiovascular tissue graft.
  • Specific Aim 1: To electromechanically condition hESC-derived cardiomyocyte(CM).
  • Progress: Over the past year, we tested, validated, and published an integrated strain and electrical pacing system that we designed and constructed. As mentioned in our previous reports, one challenge we encountered with our electromechanical devices is maintaining electrical continuity of electrodes as cells are stretched. As an alternative to traditional electrical stimulation, with collaborators at Stanford, we have created a system that optically induces electrical activity in hESC-CM by introducing light activated channelrhodopsin-2 (ChR2), a cationic channel, into undifferentiated hESC. In our initial manuscript we have also demonstrated the effects of light stimulation on a whole heart computational model in which we have virtually injected light-responsive hESC-CM in various areas of the simulated heart.
  • Specific Aim 2: To engineer a hESC-CM based cardiovascular tissue graft.
  • Progress: From our first attempt at engineering a cardiovascular tissue graft as we reported in Years 1, 2, and 3 we learned that our grafts would require large populations of relatively pure hESC-CMs. As a result, we’ve continued our efforts in developing a more efficient differentiation method for producing larger yields and quantities of hESC-CM. Our method produces hESC-CM and iPSC-CM in a directed manner under feeder-free, serum-free, and monolayer conditions by controlling TGF-beta/Activin, BMP, Wnt, and FGF pathways. We have used our differentiation protocols to contribute cardiomyocytes to our collaborators, which has resulted in one published manuscript and two submitted publications. Also, with our collaborator at UC Berkeley, we have engineered a novel method for identifying CMs based on their electrical signals and have reported our technology in one accepted manuscript and one under review.
  • Specific Aim 3: To assess tissue graft viability and function in a small animal model.
  • Progress: Over the past two years, we created hESC-CM based tissue grafts in linear and circular forms and our now creating grafts that can be optically controlled (see Aim 1 above). As described in our last progress report, in order to quantify the loss of cardiac function between healthy and diseased hearts, we have reported a novel in vitro hybrid experimental/computational system to measure active force generation in healthy ventricular slices of rodent hearts. Quantification of the loss of cardiac function will guide us in determining the numbers of hESC-CM needed for producing grafts with varying force generating capacity. We have also modeled eccentric and concentric cardiac growth through sarcomerogenesis in order to give us insight into how we might terminally mature our hESC-CM grafts. Finally, we have differentiated hESC into CM for one of our collaborators at Stanford and have performed detailed calcium imaging to show engraftment of hESC-CM with human heart tissue. This has given us great insight into how 3D tissue grafts might integrate with human heart tissue.
  • In summary, in the fourth year of our project we made good progress on all three of our specific aims. Based on our current results, we anticipate we will continue to make significant progress in engineering a robust and functional cardiovascular tissue graft as we originally proposed and we will continue our efforts. Undoubtedly, with the support of the CIRM grant over the past four years, we have made great strides towards creating a 3D tissue graft and believe we will demonstrate functional integration, not only with rodent hearts, but with human tissue, all within the coming year.

Pages

Subscribe to RSS - Heart Disease

© 2013 California Institute for Regenerative Medicine