Bone or Cartilage Disease

Coding Dimension ID: 
279
Coding Dimension path name: 
Bone or Cartilage Disease

Harnessing native fat-residing stem cells for bone regeneration

Funding Type: 
Early Translational II
Grant Number: 
TR2-01821
ICOC Funds Committed: 
$5 391 560
Disease Focus: 
Bone or Cartilage Disease
Stem Cell Use: 
Adult Stem Cell
Cell Line Generation: 
Other
oldStatus: 
Active
Public Abstract: 
Like most tissues of the body, bone possesses a natural regenerative system aimed at restoring cells and tissues lost to natural cell aging, disease or injury. These natural regenerative systems are complex combinations of cell growth factors and support structures that guide and control the development of specialized bone stem cells. However, the regeneration process may still fail, for multiple reasons. For instance, the degree of skeletal injury may be so great that it overwhelms the natural regenerative capacity. Alternatively, the natural regenerative capacity may be defective; this is exemplified by osteoporosis, a frequent condition affecting post-menopausal females and elderly males and females. Osteoporotic individuals have severe declines in stem cell numbers (10-fold decrease from age 30 to 80) and stem cell function (tendency of stem cells to turn into fat rather than bone cells with age), leading to bone loss and “fragility fractures” that typically would not occur in persons with normal stem cell number and function. Thus, there is a tremendous need for therapies to increase the number and function of endogenous adult stem cells with the potential to build new bone. One option is to introduce so called mesenchymal stem cells (MSC) from the patient to bone repair sites. However, significant hurdles to autologous MSC use include the need for 2-3 week culture times to isolate MSC before application. Moreover culturing introduces infectious and immunogenic risks from prolonged exposure to animal products and cancerous risks from cellular gene changes in culture. In addition, once isolated, MSC require appropriate growth factor stimulation to form bone. Finally, MSC isolated from patient tissues such as fat or bone marrow are heterogenous and of undetermined composition—making growth factor dosing and conformance with FDA regulations for defining target product identity, purity, and potency more difficult. To circumvent these problems, we have identified and purified the cells at the origin of human MSC. We have termed these perivascular stem cells (PSC) because they are natively localized around all arteries and veins, forming the key cellular component of the natural regenerative system. In a significant breakthrough, we are able to isolate these cells within hours from adipose tissues in sufficient numbers for therapy without the need for culture. This realizes the possibility of harvesting and implanting stem cells during the same operative period. In another breakthrough, we have identified a potent growth factor NELL-1 that potently amplifies the ability of PSC to form bone and vascular structures. This has led to the development of our target PSC+NELL-1 product, which effectively stimulates and augments the body’s natural bone regenerative system by providing all the components (stem cells, growth factor, and allograft bone support structure) necessary to “jump start” as well as maintain the function of bone stem cells.
Statement of Benefit to California: 
This FDA oriented proposal focuses on crucial preparatory work required before IND-enabling preclinical studies on our Developmental Candidate for bone formation and regeneration. Our Developmental Candidate provides a complete package of stem cells, bone growth factors, and scaffold to build an optimized microenvironment to “jump start” bone formation in normal and impaired bone healing conditions. We have generated very promising preclinical data on our Developmental Candidate’s superior bone formation and regeneration efficacy. In addition to its significant impact on health care, this highly multi-disciplinary project by our team has many near-term and long-term benefits to the State of California. 1. Besides direct health costs, musculoskeletal injuries and diseases are the leading cause of work-related and physical disability in the United States. Hard working Californians are responsible for California’s annual gross domestic product of $1.8 trillion, which rank our state among the top eight largest economies in the world. By promoting the repair of both normal and healing-impaired bone in a safe and effective manner, our mature technology will reduce the loss of work productivity at the front end, reduce work disability costs, and reduce the loss of state income tax. 2. Local osteogenic stem cells decline with age (from 1/10,000 in newborns to 1/250,000 by age 30 and 1/2,000,000 by age 80), leading to osteoporosis, poor bone quality, and fragility fractures. In 1998, the health care burden for osteoporosis exceeded $2.4 billion in California alone. A whopping 64% of the $2.4 billion was caused by hip fracture. If our Development Candidate is successful in healing existing fractures in impaired bone, it may also translate to therapies to prevent fractures in impaired bone. This will significantly reduce the long-term health care burden for California’s public health insurance program. 3. This project directly adds jobs at [REDACTED] and at the California-based companies that are involved in this project. 4. This project will produce intellectual property that is owned by t [REDACTED]. Our team has a track record of attracting out of state private investment to invest in California and of procuring supplies and equipment from strategic California-based companies. 5. This mature project is precisely the type of cutting-edge, multi-disciplinary stem cell project that Californians imagined when they approved proposition 71 in 2004. The establishment of CIRM has transformed the research infrastructure at [REDACTED], increased our ability to recruit world class stem cell scientists, and attracted the attention of superb scientists from other disciplines to this new field. Working together, our team has compiled an impressive list of accomplishments and we are confident in our abilities to take this project to IND submission in a timely fashion. Funding of this project will fulfill the promise of proposition 71.
Progress Report: 
  • Background: unsuccessful bone repair
  • Most organs can regenerate cells lost to ageing, exposure to adverse conditions, ephemeral lifespan, disease or injury. Regenerative systems are complex combinations of growth factors and anchorage molecules which support, guide and control the maturation of specialized stem cells. The regenerative process may still fail, for multiple reasons. Bone fractures will sometimes not heal spontaneously because parts of the broken bone do not join anymore, or because bone regeneration itself is impaired, like in osteoporosis, a frequent condition that affects post-menopause females and elderly people of both genders.
  • A novel class of bone-healing stem cells
  • Since specialized bone-forming cells have not been identified, which stem cells could be used for the cell therapy of bone fractures? We have identified and purified novel stem cells, localized around blood vessels and therefore named perivascular stem cells (PSCs). We have also demonstrated that Nell-1, a potent osteogenic growth factor we have developed, efficiently turns PSCs into bone cells. In 2011, we have been granted support by the California Institute for Regenerative Medicine to develop a product to heal critically fractured bones in osteoporotic – or not – patients or to perform spine fusion in order to correct skeletal defects. PSCs will be purified from the patient’s own fat tissue, a well-documented, rich source of these cells, and embedded in a biocompatible scaffold in the presence of the bone forming growth factor. The resulting compound, inserted at the site of the fracture, will provide bone-forming stem cells 1-precisely characterized in terms of origin and identity; 2- derived from the patient, hence not rejected; 3- not cultured, therefore similar to their natural counterparts.
  • Progress after one year of research supported by CIRM
  • We are now close to the end of the first year of our CIRM supported studies. In this initial period we have, first, validated the stem cells of use with regard to stringent biologic criteria: how many of these cells can be purified from fat tissue? How viable and pure are these cells after the sorting process? Do stem cell numbers and quality depend on the age, sex and corpulence of the donor? Following analysis of about 80 distinct fat harvests (lipoaspirates) we have determined that robust bone forming PSC can be reliably purified, in sufficient numbers, from male and female donors in all age and weight ranges. We have also shown that PSC are at least as good, in terms of bone forming potential, than conventional mesenchymal stem cells (the candidate stem cells, so far, to be used for cell therapies of bone defects amd injuries), while being significantly superior regarding purity and safety.
  • Transplantation experiments in mice and rats have revealed that the combination of PSC and the Nell-1 growth factor ensures the most efficient bone regeneration, but that PSC do not give rise to tumors, an important verification in any protocol involving transplantation. These experiments have also demonstrated that PSC stimulate the formation of new blood vessels, an essential requisite for efficient wound healing and tissue repair.
  • Finally, we have embarked on the development of a larger animal model of bone regeneration, that will be used in the second and third years of the projects.
  • In summary, we have reached all the milestones and met the deadlines planned in the original project. The next year will see the further validation of the protocol and the beginning of the development of a stem cell/scaffold/growth factor combination product in the perspective of trials in human patients.
  • Our research group has identified in the human body a novel class of stem cells endowed with strong osteogenic potential, which means capacity to produce bone. These stem cells are attached to the outer aspect of blood vessels, and therefore present in all organs. Our ultimate goal is to use these stem cells in human beings, to perform for instance spine fusion, a procedure used to treat spine deformities (scoliosis) or faulty vertebrae, or to heal complicated bone fractures, especially in patients suffering from osteoporosis, a condition where spontaneous bone repair is compromised. We shall harvest stem cells from the patient’s own abdominal adipose (fat) tissue, a rich source of these cells which is also easy and safe to collect. Stem cells will be purified on an automated machine, named fluorescence activated cell sorter, and immobilized on an engineered biocompatible scaffold in the presence of a novel osteogenic growth factor, that is a sort of hormone which stimulates stem cell development into bone. We have won an Early Translational grant (2011-2014) from the California Institute for Regenerative Medicine to develop this project to the stage where the first clinical trials can be engaged into. In the first year, we had fully validated the stem cell population of use on a large number of human adipose samples and clearly documented the availability, efficiency and safety of these cells independently of the age, sex and weight of the donor. We had also initiated experiments in mice and rats which have been pursued during the second year, finally demonstrating unequivocally the outstanding bone forming ability of these cells in the presence of the appropriate scaffold and osteogenic hormone. We have also, during this 2nd year, developed a large animal model of stem cell mediated bone regeneration which will be indispensable prior to the inception of human treatments. Finally, we have refined the physicochemical properties of the scaffold for optimal osteogenic factor availability and bone growth. In conclusion, all milestones and deadlines included in this grant have been met and our team is steadily progressing toward the medical “translation” of these novel stem cells.

Stem Cell-Based Therapy for Cartilage Regeneration and Osteoarthritis

Funding Type: 
Early Translational I
Grant Number: 
TR1-01216
Investigator: 
ICOC Funds Committed: 
$3 118 431
Disease Focus: 
Arthritis
Bone or Cartilage Disease
Stem Cell Use: 
Embryonic Stem Cell
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Closed
Public Abstract: 
Arthritis is the result of degeneration of cartilage (the tissue lining the joints) and leads to pain and limitation of function. Arthritis and other rheumatic diseases are among the most common of all health conditions and are the number one cause of disability in the United States. The annual economic impact of arthritis in the U.S. is estimated at over $120 billion, representing more than 2% of the gross domestic product. The prevalence of arthritic conditions is also expected to increase as the population increases and ages in the coming decades. Current treatment options for osteoarthritis is limited to pain reduction and joint replacement surgery. Stem cells have tremendous potential for treating disease and replacing or regenerating the diseased tissue. This grant proposal will be valuable in weighing options for using stems cells in arthritis. It is very important to know the effect of aging on stems cells and how stem cell replacement might effectively treat the causes of osteoarthritis. We will establish conditions for stem cells to repair a surgical defect in laboratory models and test efficacy in animal models of cartilage defects. We will demonstrate that stem cells have anti-arthritic effects, establish optimal conditions for stem cells to migrate into the diseased tissue and initiate tissue repair, and test efficacy in animal models of arthritis. We will plan safety and efficacy studies for the preclinical phase, identify collaborators with the facilities to obtain, process, and provide cell-based therapies, and identify clinical collaborators in anticipation of clinical trials. If necessary we will also identify commercialization partners. Stem cells fight disease and repair tissues in the body. We anticipate that stem cells implanted in arthritic cartilage will treat the arthritis in addition to producing tissue to heal the defect in the cartilage. An approach that heals cartilage defects as well as treats the underlying arthritis would be very valuable. If our research is successful, this could lead to first ever treatment of osteoarthritis with or without stem cells. This treatment would have a huge impact on the large numbers of patients who suffer from arthritis as well as in reducing the economic burden created by arthritis.
Statement of Benefit to California: 
California has been at the forefront of biomedical research for more than 40 years and is internationally recognized as the biotechnology center of the world. The recent debate over the moral and the ethical issues of stem cell research has hampered the progress of scientific discoveries in this field, especially in the US. The CIRM is a unique institute that fosters ethical stem cell research in California. The CIRM also serves as an exemplary model for similar programs in other states and countries. This grant proposal falls under the mission statement of the CIRM for funding innovative research. The proposal will generate highly innovative and effective therapies for cartilage degeneration and osteoarthritis and will explore the potential use of tissue-engineered products from stem cells. If successful, this will further validate the significance of the CIRM program and will help maintain California's leading position at the cutting edge of biomedical research. Reducing the medical and economic burden of large numbers of patients who suffer from arthritis would is of significant benefit.
Progress Report: 
  • Arthritis is the result of degeneration of cartilage (the tissue lining the joints) and leads to pain and limitation of function. The annual economic impact of arthritis in the U.S. is estimated at over $120 billion, representing more than 2% of the gross domestic product. The prevalence of arthritic conditions is also expected to increase as the population increases and ages in the coming decades. Current treatment options for osteoarthritis are limited to pain reduction and joint replacement surgery.
  • Stem cells have tremendous potential for treating disease and replacing or regenerating the diseased tissue. In this grant we proposed a series of experiments to develop stems cells for use in arthritis.
  • We have met all the milestones we proposed in the first year of the grant application. We have differentiated embryonic stem cells into cells that can generate cartilage tissue similar to that generated by normal cartilage cells. We have induced pluripotency in adult human cells obtained from skin. Inducing pluripotency means transforming adult cells into cells that function very similar to embryonic stem cells. The advantage of this approach is that it removes the need for embryos as source of cells and greatly reduces the risk of rejection by the patient. We have also induced pluripotency in adult human cells obtained from joint cartilage. We believe that the original source of the cells may make a significant difference in the quality of the tissue being regenerated. For example, pluripotent cells generated from cartilage cells will likely produce a better quality of cartilage tissue than pluripotent cells generated from skin cells.
  • We have established conditions for successful repair of surgical defects using stem cells in laboratory models. We are currently working on an appropriate surgical technique for the in vivo experiments, which will involve implanting these cells in cartilage defects in live animals.
  • We have completed our experiments as outlined in our grant submission, which was the goal to enhance the development of cartilage by testing of various stem cells lines. The next phase of our project will be to prepare for the animal experiments to test the viability of our laboratory experiments that would result in cartilage repair.
  • Our initial application established the goals of our project and the reasons for our study. Arthritis is the result of degeneration of cartilage (the tissue lining the joints) and leads to pain and limitation of function. Arthritis and other rheumatic diseases are among the most common of all health conditions and are the number one cause of disability in the United States. The annual economic impact of arthritis in the U.S. is estimated at over $120 billion, representing more than 2% of the gross domestic product. The prevalence of arthritic conditions is also expected to increase as the population increases and ages in the coming decades. Current treatment options for osteoarthritis are limited to pain reduction and joint replacement surgery.
  • Stem cells have tremendous potential for treating disease and replacing or regenerating the diseased tissue. In this project our objective is to use cells derived from stems cells to treat arthritis. We have completed our experiments as per our proposed timeline and have met milestones outlined in our grant submission.
  • We have established conditions for converting stem cells into cartilage tissue cells that can repair bone and cartilage defects in laboratory models. We have identified several cell lines with the highest potential for tissue repair. We optimized culture conditions to generate the highest quality of tissue. In our initial experiments we found no evidence of cell rejection response in animals. We are now in the process of testing efficacy of the three most promising cell lines in regenerating healthy tissue in animals with cartilage defects.
  • In the next phase of our project we will plan safety and efficacy studies for the preclinical phase, identify collaborators with the facilities to obtain, process, and provide cell-based therapies, and identify clinical collaborators in anticipation of clinical trials. If necessary we will also identify commercialization partners.
  • We anticipate that stem cells implanted in arthritic cartilage will treat the arthritis in addition to producing tissue to heal the defect in the cartilage. An approach that heals cartilage defects as well as treats the underlying arthritis would be very valuable. If our research is successful, this could lead to first ever treatment of osteoarthritis with or without stem cells. This treatment would have a huge impact on the large numbers of patients who suffer from arthritis as well as in reducing the economic burden created by arthritis.
  • Our initial application established the goals of our project and the reasons for our study. Arthritis is the result of degeneration of cartilage (the tissue lining the joints) and leads to pain and limitation of function. Arthritis and other rheumatic diseases are among the most common of all health conditions and are the number one cause of disability in the United States. The annual economic impact of arthritis in the U.S. is estimated at over $120 billion, representing more than 2% of the gross domestic product. The prevalence of arthritic conditions is also expected to increase as the population increases and ages in the coming decades. Current treatment options for osteoarthritis are limited to pain reduction and joint replacement surgery.
  • Stem cells have tremendous potential for treating disease and replacing or regenerating the diseased tissue. In this project our objective is to use cells derived from stems cells to treat arthritis. We have completed our experiments as per our proposed timeline and have met milestones outlined in our grant submission.
  • We have established conditions for converting stem cells into cartilage tissue cells that can repair bone and cartilage defects in laboratory models. We have identified several cell lines with the highest potential for tissue repair. We optimized culture conditions to generate the highest quality of tissue. In our initial experiments we found no evidence of cell rejection response in animals. We are now in the process of testing efficacy of the three most promising cell lines in regenerating healthy tissue in animals with cartilage defects.
  • In the next phase of our project we will plan safety and efficacy studies for the preclinical phase, identify collaborators with the facilities to obtain, process, and provide cell-based therapies, and identify clinical collaborators in anticipation of clinical trials. If necessary we will also identify commercialization partners.
  • We anticipate that stem cells implanted in arthritic cartilage will treat the arthritis in addition to producing tissue to heal the defect in the cartilage. An approach that heals cartilage defects as well as treats the underlying arthritis would be very valuable. If our research is successful, this could lead to first ever treatment of osteoarthritis with or without stem cells. This treatment would have a huge impact on the large numbers of patients who suffer from arthritis as well as in reducing the economic burden created by arthritis.
  • Our initial application established the goals of our project and the reasons for our study. Arthritis is the result of degeneration of cartilage (the tissue lining the joints) and leads to pain and limitation of function. Arthritis and other rheumatic diseases are among the most common of all health conditions and are the number one cause of disability in the United States. The annual economic impact of arthritis in the U.S. is estimated at over $120 billion, representing more than 2% of the gross domestic product. The prevalence of arthritic conditions is also expected to increase as the population increases and ages in the coming decades. Current treatment options for osteoarthritis are limited to pain reduction and joint replacement surgery.
  • Stem cells have tremendous potential for treating disease and replacing or regenerating the diseased tissue. In this project our objective is to use cells derived from stems cells to treat arthritis. We have completed our experiments as per our proposed timeline and have met milestones outlined in our grant submission.
  • We have established conditions for converting stem cells into cartilage tissue cells that can repair bone and cartilage defects in laboratory models. We have identified several cell lines with the highest potential for tissue repair. We optimized culture conditions to generate the highest quality of tissue. In our initial experiments we found no evidence of cell rejection response in vivo. We have testing efficacy of the most promising cell lines in regenerating healthy repair tissue in cartilage defects and have selected a preclinical candidate.
  • The next step is to plan safety and efficacy studies for the preclinical phase, identify collaborators with the facilities to obtain, process, and provide cell-based therapies, and identify clinical collaborators in anticipation of clinical trials. If necessary we will also identify commercialization partners.
  • We also anticipate that stem cells implanted in arthritic cartilage will treat the arthritis in addition to producing tissue to heal the defect in the cartilage. An approach that heals cartilage defects as well as treats the underlying arthritis would be very valuable. If our research is successful, this could lead to first treatment of osteoarthritis that alters the progression of the disease. This treatment would have a huge impact on the large numbers of patients who suffer from arthritis as well as in reducing the significant economic burden created by arthritis.

Skeletogenic Neural Crest Cells in Embryonic Development and Adult Regeneration of the Jaw

Funding Type: 
New Faculty II
Grant Number: 
RN2-00916
ICOC Funds Committed: 
$2 396 871
Disease Focus: 
Bone or Cartilage Disease
Trauma
Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Active
Public Abstract: 
The goal of this proposal is to develop cell-based therapies that lead to the better healing of traumatic head injuries. Our first strategy will be to use genetics and embryology in zebrafish to identify factors that can convert human embryonic stem cells into replacement skeleton for the head and face. Remarkably, the genes and mechanisms that control the development of the head are nearly identical between fish and man. As zebrafish develop rapidly and can be grown in large numbers, a growing number of researchers are using zebrafish to study how and when cells decide to make a specific type of tissue – such as muscle, neurons, and skeleton - in the vertebrate embryo. Recently, we have isolated two new zebrafish mutants that completely lack the head skeleton. By studying these mutants, we hope to identify the cellular origins and genes that make head skeletal precursors in the embryo. These genes will then be tested for their ability to drive human embryonic stem cells along a head skeletal lineage. Our second strategy will be to test whether a population of cells, similar to the one that makes the head skeleton in the embryo, exists in the adult face. We have found that adult zebrafish have the extraordinary ability to regenerate most of their lower jaw following amputation. In this proposal, we use sophisticated imaging and transgenic approaches to identify potential adult stem cells that can give rise to new head skeleton in response to injury. Traumatic injuries to the face are common, and treatment typically involves grafting skeleton from other parts of the patient to the injury site. Unfortunately, the amount of skeleton available for grafts is in short supply, and surgeries often result in facial disfigurement that causes psychological suffering for the patient for years to come. Here we propose two better treatments that would lead to more efficient healing and less scarring. The first treatment would be to differentiate human embryonic stem cells, a potentially limitless resource, into skeletal precursors that can be grafted into the head injury site. By understanding the common pathways by which head skeletal cells are specified in the zebrafish embryo and human embryonic stem cells, we will be able to generate skeletal replacement cells in large quantities in cell culture. The second treatment would be to stimulate adult stem cells already in the face to regenerate the injured head skeleton. If successful, our experiments on zebrafish jaw regeneration will allow us to devise strategies to augment the natural skeletal repair mechanisms of humans.
Statement of Benefit to California: 
Traumatic injuries to the head, such as those caused by car accidents and gunshot wounds, are commonly seen in emergency rooms throughout California. Current treatments for severe injuries of the head skeleton involve either grafting skeleton from another part of the body to the injury site or, in cases where there is not sufficient skeleton available for grafts, implanting metal plates. Although these operations save lives, they often result in facial disfigurement that causes psychological suffering for the patient for years to come. For this reason, there is enormous interest in cell-based skeletal replacement therapies that will heal the face without leaving disfiguring scars. Remarkably, the genes and mechanisms that control the development of the head are nearly identical between fish and man. Thus, we are using the zebrafish embryo to rapidly identify factors that can make head skeletal precursors, and then asking if these same factors can instruct human embryonic stem cells to form skeletal replacement cells. In addition, we have found that adult zebrafish have the extraordinary ability to regenerate most of their lower jaw following amputation, and we will use sophisticated imaging and transgenic approaches to identify potential adult stem cells that can regenerate the face. The successful completion of these experiments would allow us to both generate unlimited amounts of head skeletal precursors for facial repair and stimulate latent skeletal repair mechanisms. The combination of these approaches will lead to therapies that promote a more natural healing of the face, thus allowing Californians to eventually resume normal lives after catastrophic accidents.
Progress Report: 
  • A major aim of this grant is to investigate the developmental origin of the skeleton-forming cells in the head. An understanding of how these skeletal cells form in the embryo will aid in our long-term goal of producing skeletal replacement cells in culture and stimulating new skeleton to form after traumatic head injuries.
  • In the first year of this award, we have made a landmark discovery concerning how the skeletal-forming cells arise in the head. The head skeleton arises from an unusual cell population called the neural crest, which is characterized by its ability to form a very wide diversity of cell types in the embryo. We had previously described the isolation of two mutant lines of zebrafish that completely and specifically lack the head skeleton. We have now identified a mutation in a variant histone protein as the genetic basis for the lack of head skeleton in one of these lines. Histone proteins play a central role in not only wrapping our DNA but also controlling which genes are active in different cell types. Despite the fact that histones are expressed in every cell in the body, we have found that variant histones are uniquely required for neural crest cells to acquire skeleton-forming potential. In particular, our findings indicate that the head skeleton forms by a process of developmental reprogramming, in which precursor cells with a limited potential undergo large-scale changes in their DNA packaging such that they are able to form a much wider array of cell types.
  • Controlled cell reprogramming is becoming one of the most promising directions of regenerative medicine. For example, there is enormous therapeutic potential in being able to take cells from a patient, reprogram these cells back to a naïve state with defined factors, and then induce these cells to form replacement cells of any type that can be introduced back into the patient. Our discovery that the vertebrate embryo uses a similar process of reprogramming to generate head skeletal cells during development provides us an opportunity to better understand how reprogramming works at a molecular level. In addition, our finding that head skeletal cells form by developmental reprogramming suggests that adult patient-specific cells can be directly reprogrammed to form head skeletal precursors. Moreover, as the variant histone we have identified is identical at the protein level between zebrafish and humans, it is likely that the reprogramming process we have discovered operates in humans as well. Thus, in the coming years of this grant we are excited to develop methods of reprogramming adult patient-specific cells to a head skeletal fate, such that we can generate large quantities of replacement cells to repair the face and skull.
  • A major aim of this grant is to investigate the developmental origin of the skeleton-forming cells in the head. An understanding of how these skeletal cells form in the embryo will aid in our long-term goal of producing skeletal replacement cells in culture and stimulating new skeleton to form after traumatic head injuries.
  • In the second year of this award, we have extended our initial findings that variant histones play an essential role in the generation of head skeletal cells. Skeletal cells usually arise from a cell population called the mesoderm. However, in the head a unique population of ectoderm cells, which normally forms derivatives such as neurons and skin, has an added ability to form skeletal cells. How these cranial neural crest cells acquire this extra potential remains unclear. Here we show that variant histones function within the ectoderm to give cranial neural crest cells skeletal-forming ability. In addition, we have used biochemical analysis in a human cell line to demonstrate how mutations in a particular H3.3 type of variant histone disrupt the association of histones with DNA. Furthermore, we have developed tools which allow us to analyze how variant histone changes throughout the genome endow neural crest ectoderm cells with mesoderm-like skeletal-forming potential.
  • Variant histones have been implicated in cell reprogramming, whereby a mature cell regains the ability to form many more cells that can repair a damaged tissue. As we find that variant histones are required for reprogramming of the ectoderm to form neural crest during early development, we believe that we can use this pathway to convert patient-specific cells to neural crest and skeletal cells that can be used for facial repair. To test this, we have developed a mouse model in which we can detect the ability of neural crest genes to convert mature cells to neural crest and skeletal fates. In parallel, we have developed a model of jaw regeneration in zebrafish that will allow us to test whether adult cells within the animal can be reprogrammed to repair the skeleton in response to injury. During this period, the generation of transgenic tools has allowed us to begin to address which cell types can give rise to new skeleton in response to injury. In the coming years, we hope that our work in model systems will lead to therapies for head skeletal injuries on two fronts: the generation of large amount of head skeletal precursors from patient-specific cells and the induction of increased regenerative ability of cells within the patient.
  • A major aim of this grant is to investigate the developmental origin of the skeleton-forming cells in the head, as well as their ability to regenerate craniofacial skeleton in adults after injury. The head skeleton derives from a special population of cells, the neural crest, which has the remarkable ability to form not only neurons but also skeletal tissues. We have previously described that zebrafish with a mutant form of a variant histone H3.3 protein have very specific defects in the ability of neural crest cells to form skeleton. As histone H3.3 is a core component of the chromatin around which DNA is wrapped, our findings suggest a novel mechanism by which changes in chromatin structure endow the neural crest with the ability to form a wide array of derivatives. In the third year of this award, we have expanded our analysis to examine how the incorporation of histone H3.3 is regulated specifically in the neural crest population. Our data suggest that such H3.3 incorporation may depend on a novel chaperone protein as reducing the function of several known H3.3 chaperone proteins does not lead to specific neural crest or head skeletal defects. A clue to what regulates H3.3 activity comes from a second zebrafish mutant – called myx - that we are studying, which has head skeletal defects similar to what we see in our H3.3 mutant. We have mapped the myx mutant interval to a very small region that contains a putative H3.3 chaperone protein. We are currently establishing whether loss-of-function of this chaperone accounts for myx defects. Together, our studies of H3.3 and myx mutants will shed light on how to generate cells with the ability to form replacement head skeleton in patients. To this aim, we have also begun experiments to use our findings in zebrafish to directly convert mammalian cells (initially mouse but then in humans) to a neural crest and skeletal fate.
  • A parallel strategy that we are taking towards regenerative strategies for facial skeleton is to stimulate endogenous neural crest cells to make replacement skeleton. We have a limited ability to repair defects in our skeleton, for example after bone fracture. However, we have found that adult zebrafish have the remarkable ability to regenerate nearly their entire lower jaw following amputation. By studying why zebrafish regenerate facial skeleton to a much greater extent than humans, we hope to devise molecular strategies to augment skeletal repair/regeneration in patients. In particular, we have found that the zebrafish lower jaw bone regenerates through a cartilage intermediate, in contrast to the direct differentiation to bone during development. Hence, our findings indicate that bone regeneration in zebrafish is a cellularly distinct mechanism than bone development. Furthermore, we have found that the FGF signaling pathway is greatly upregulated during early jaw regeneration. FGF signaling also mediates the regeneration of the heart and other organs in zebrafish, and thus jaw regeneration may rely on a common regenerative program throughout the zebrafish. In the coming period, we plan to test the functional requirements of FGF signaling in mediating jaw regeneration, as well as identifying the stem cell populations that are the FGF-dependent source of new bone.
  • A major aim of this grant is to investigate the developmental origin of the skeleton-forming cells in the head, as well as their ability to regenerate craniofacial skeleton in adults after injury. The head skeleton derives from a special population of cells, the neural crest, which has the remarkable ability to form not only neurons but also skeletal tissues. In the previous grant cycle, we published a manuscript in PLoS Genetics describing the role of a variant histone H3.3 protein in controlling the ability of neural crest cells to form the head skeleton of zebrafish. As histone H3.3 is a core component of the chromatin around which DNA is wrapped, our findings suggest a novel mechanism by which changes in chromatin structure endow the neural crest with the ability to form a wide array of derivatives. In addition, we published a separate study in PLoS Genetics that showed a critical role of Twist1 in guiding these neural crest cells to make head skeleton at the expense of other cell types such as neurons. Together, our studies of H3.3 and Twist1 in zebrafish will shed light on how to generate cells with the ability to form replacement head skeleton in patients. In ongoing experiments, we are using principles from our zebrafish system to directly convert mammalian cells (initially in mouse but then in humans) to a neural crest and skeletal fate.
  • A parallel strategy that we are taking towards regenerative strategies for facial skeleton is to stimulate endogenous neural crest cells to make replacement skeleton. We have a limited ability to repair defects in our skeleton, for example after bone fracture. However, we have found that adult zebrafish have the remarkable ability to regenerate nearly their entire lower jaw following amputation. By studying why zebrafish regenerate facial skeleton to a much greater extent than humans, we hope to devise molecular strategies to augment skeletal repair/regeneration in patients. In particular, we have found that during zebrafish lower jawbone regeneration, an unusual cartilage intermediate is able to directly make replacement bone, which is in marked contrast to the way bone is made during development. Furthermore, we have found a potentially critical role of the Ihh signaling pathway in allowing regenerating cartilage cells to directly make replacement bone. In the coming period, we plan to test the functional requirements of Ihh signaling in mediating jaw regeneration, as well as identifying the cellular source of bone-producing cartilage cells during jaw regeneration. As similar bone-producing cartilage cells may also be present in human fractures, lessons learned from zebrafish may allow us to stimulate these cells and hence augment bone repair in patients.
  • A major aim of this grant is to investigate the developmental origin of the skeleton-forming cells in the head, as well as their ability to regenerate craniofacial skeleton in adults after injury. The head skeleton derives from a special population of cells, the neural crest, which has the remarkable ability to form not only neurons but also skeletal tissues. We had previously identified a unique role of histone replacement within the neural plate precursor cells that allows neural crest to make skeletal derivatives. In the current grant cycle, we now find that misexpression of groups of neural plate transcription factors is able to convert cells to a neural crest fate, and we are currently exploring whether this occurs by stimulating the histone replacement program we found to be so important for neural crest development. We are also testing whether similar neural plate transcription factors can convert mammalian cells to a neural crest fate, with the eventual goal to use this technique to generate an unlimited supply of patient-specific bone and cartilage replacement cells for skeletal repair.
  • A parallel strategy that we are taking towards regenerative strategies for facial skeleton is to stimulate endogenous neural crest cells to make replacement skeleton. While we have a limited ability to repair defects in our skeleton, for example after bone fracture, we have found that adult zebrafish have the remarkable ability to regenerate nearly their entire lower jawbone following amputation. By studying why zebrafish regenerate facial skeleton to a much greater extent than humans, we hope to devise molecular strategies to augment skeletal repair/regeneration in patients. In particular, we have found that during zebrafish lower jawbone regeneration, cartilage cells are able to change their fate to directly make replacement bone, which is in marked contrast to the way bone is made during development. We have also identified a critical role of the Ihh signaling pathway in bone regeneration and in particular the generation of the critical cartilage intermediate. In adults lacking the Ihha protein, no cartilage forms after jawbone amputation and the jawbone fails to heal properly. Moreover, in collaborative work we find that such bone-producing cartilage cells may also be present in a mammalian model of bone healing. We are therefore excited by the prospects of using similar bone-producing cartilage cells to repair large skeletal wounds in patients.

Pages

Subscribe to RSS - Bone or Cartilage Disease

© 2013 California Institute for Regenerative Medicine