Blood Disorders

Coding Dimension ID: 
278
Coding Dimension path name: 
Blood Disorders

Beta-Globin Gene Correction of Sickle Cell Disease in Hematopoietic Stem Cells

Funding Type: 
Early Translational IV
Grant Number: 
TR4-06823
ICOC Funds Committed: 
$1 815 308
Disease Focus: 
Blood Disorders
Pediatrics
Stem Cell Use: 
Adult Stem Cell
Cell Line Generation: 
Adult Stem Cell
oldStatus: 
Active
Public Abstract: 
Disorders affecting the blood, including Sickle Cell Disease (SCD), are the most common genetic disorders in the world. SCD causes significant suffering and early death, despite major improvements in medical management and advances in understanding the complex disease-related biology. A bone marrow transplant (BMT) can greatly benefit patients with SCD, by providing a life-long source of normal red blood cells. However, BMT is limited by the availability of suitable donors and immune complications, especially for the more than 80% of patients who lack a matched sibling donor. An alternative treatment approach for SCD is to isolate some of the patient’s own bone marrow and then use gene therapy methods to correct the sickle gene defect in the blood stem cells before transplanting them back into the patient. The gene-corrected stem cells could make normal blood cells for the life of the patient, essentially eliminating the SCD. Such an approach would avoid the complications typically associated with transplants from non-matched donors. We will define the optimal techniques to correct the sickle gene mutation in the bone marrow stem cells to develop as a therapy for patients with SCD.
Statement of Benefit to California: 
Development of methods for regenerative medicine using stem cells will have widespread applications to improve the health and to provide novel, effective therapies for millions of Californians and tens of millions of people worldwide. Many severe medical conditions can be cured or improved by transplantation of blood-forming hematopoietic stem cells (HSC), including genetic diseases of blood cells, such as sickle cell disease and inborn errors of metabolism, cancer and leukemia, and HIV/AIDS. Precise genetic engineering of stem cells to repair inherited mutation may be the best way to correct genetic defects affecting the mature cells they produce. This project will advance methods to precisely repair the genetic defect that underlies sickle cell disease in hematopoietic stem cells, which can then be transplanted to ameliorate the disease. These advances will have direct and immediate applications to enhance current medical therapies of sickle cell disease and will more broadly help to advance the capacities for regenerative medicine. All scientific findings and biomedical materials produced from our studies will be publicly available to non-profit and academic organizations in California, and any intellectual property developed by this Project will be developed under the guidelines of CIRM to benefit the people of the State of California.

A Phase 1/2, Open Label Study Evaluating the Safety and Efficacy of Gene Therapy in Subjects with β-Thalassemia by Transplantation of Autologous Hematopoietic Stem Cells [REDACTED]

Funding Type: 
Strategic Partnership I
Grant Number: 
SP1-06477
Investigator: 
ICOC Funds Committed: 
$9 363 335
Disease Focus: 
Blood Disorders
Stem Cell Use: 
Adult Stem Cell
Cell Line Generation: 
Adult Stem Cell
oldStatus: 
Closed
Public Abstract: 
[REDACTED] plans to carry out a Phase 1/2 study to evaluate the safety and efficacy of [REDACTED] for the treatment of β-Thalassemia Major(BTM). [REDACTED] consists of autologous patient hematopoietic stem cells(HSC) that have been genetically modified ex vivo with a lentiviral vector that encodes a therapeutic form of the β-globin gene. [REDACTED] is administered through autologous hematopoietic cell transplant(HCT), with the goal of restoring normal levels of hemoglobin and red blood cell(RBC) production in BTM patients who are dependent on RBC transfusions for survival. Because they cannot produce functional hemoglobin, BTM patients require lifelong RBC transfusions that cause widespread organ damage from iron overload. While hemosiderosis can be mitigated with chelation therapy, poor compliance, efficacy and tolerability remain key challenges, and a majority BTM patients die in their 3rd-5th decade. The only cure for BTM is allogeneic HCT, which carries a significant risk of mortality and morbidity from immune-incompatibility between the donor and recipient, and is hampered by the limited availability of HLA matched sibling donors. By stably inserting functional copies of β-globin into the genome of a patient’s own HSC, treatment with [REDACTED] promises to be a one-time transformative therapy for BTM. The β-globin gene in the [REDACTED] vector carries a single codon mutation [REDACTED] that allows for quantitative monitoring of therapeutic globin production but that does not alter oxygen carrying capacity. Treatment with an earlier version of the vector has been shown to correct β-thalassemia in mice [REDACTED]. In a clinical trial [REDACTED], 3 BTM patients were treated–one of whom became transfusion independent 1 year after treatment and remains so 4 years later. Given the prevalence of patients with a common BTM genotype in California, [REDACTED] plans to open at least 2, and up to 4, clinical sites in California. Development activities are on track to initiate the trial in 1H 2013, and to complete the trial with 2 years of follow-up within the award window. [REDACTED] has completed a pre-IND meeting with the FDA and successfully manufactured a GMP lot of [REDACTED] vector that is available for clinical use. The Company expects to complete all IND enabling activities by Q4 2012. In the last year, the company has made scientific advances that have allowed for a significant improvement in the efficiency of HSC genetic modification that will be help ensure clinical efficacy in BTM. Moreover, through collaborations with contract manufacturers, [REDACTED] is now producing large scale GMP lots of vector, and is on track to qualify a GMP cell processing facility with commercial capabilities prior to study initiation. [REDACTED].
Statement of Benefit to California: 
The company expects to spend a major component of its financial resources conducting business within the state of California during the period of this CIRM award. Specifically: 1) we will have at least two clinical sites in California, and more likely up to 4 sites, 2) our viral vector manufacturing will occur in California, 3) our cell processing will occur in California, 4) we will hire several consultants and full-time employees within California to support the program. Overall, several million dollars will be spent employing the services of people, academic institutions, and other companies within the state of California. Moreover, the disease we aim to treat occurs at a substantially greater rate of in California than other parts of the United States. As such, it is a significant public health concern, for which our therapy could provide a dramatically improved outcome and significant reduction in the lifetime cost of treatment, along with increased productivity. Due to the prevalence of the disease in California, if brought to the market, the pharmacoeconomic and social benefit of our therapy will accrue disproportionately to the state of California.

Pages

Subscribe to RSS - Blood Disorders

© 2013 California Institute for Regenerative Medicine