Blood Disorders

Coding Dimension ID: 
278
Coding Dimension path name: 
Blood Disorders

Improving microenvironments to promote hematopoietic stem cell development from human embryonic stem cells

Funding Type: 
SEED Grant
Grant Number: 
RS1-00420
ICOC Funds Committed: 
$577 037
Disease Focus: 
Blood Disorders
Stem Cell Use: 
Embryonic Stem Cell
Public Abstract: 
Statement of Benefit to California: 
Progress Report: 
  • Our goal has been to improve the microenvironment where human embryonic stem cells (hESC) differentiate in order to generate functional hematopoietic stem/progenitor cells (HS/PC) in culture, with the ultimate goal to use these HS/PCs for the treatment of leukemias and other blood diseases. We have tested various human and mouse stroma lines for their ability to support expansion of multipotential human HS/PCs as well as hematopoietic specification from hESCs. So far mouse mesenchymal stem cells (MSC) have proven to provide the best supportive ability for human hematopoiesis. By combining embryoid body differentiation and co-culture on mouse MSC stroma, we have succesfully generated HS/PCs that phenotypically resemble bona fide human HSCs (CD34+CD38-CD90+CD45+). However, so far their differentiation ability has been biased toward myeloerythroid cells, with poor ability to generate B-cells in culture. Based on microarray data that we obtained from a related project supported by the CIRM New Faculty Award, we have identified molecular programs that are defective in hES derived HS/PCs. Future efforts will be directed in modifying the culture microenvironment as well as the cell intrinsic regulatory machinery in hES derived HS/PCs in order to improve their differentiation and self-renewal potential.
  • Our goal has been to improve the microenvironment where human embryonic stem cells (hESC) differentiate in order to generate functional hematopoietic stem/progenitor cells (HS/PC) in culture, with the ultimate goal to use these HS/PCs for the treatment of leukemias and other blood diseases. We have optimized a two step differentiation protocol that combines embryoid body differentiation and subsequent stroma co-culture to generate HS/PCs that exhibit the same phenotype as HSCs obtained from human hematopoietic tissues (CD34+CD38-CD90+CD45+). However, our findings indicate that the hESC derived HS/PCs have restricted developmental potential as compared to fetal liver or cord blood derived HS/PCs, and they senesce prematurely in culture, and are unable to generate B-cells . Our functional and molecular studies suggest that hES-derived HS/PCs resemble closely lineage-restricted progenitors found early in development in human hematopoietic tissues. Our recent studies have focused on exploring the possibility that another precursor that develops in the embryoid bodies could have lymphoid potential when placed in an appropriate microenvironment. Our preliminary data suggests that development of T-lymphocytes from hESCs in vitro may be feasible. Our future work will continue to focus on generating fully functional HSCs by improving the in vitro microenvironment where HS/PCs develop, and/or programming HSC transcriptional program using inducible lentiviral vectors.

Niche-Focused Research: Discovery & Development of Hematopoietic Regenerative Factors

Funding Type: 
Research Leadership 14
Grant Number: 
LA1_C14-08014
ICOC Funds Committed: 
$5 174 715
Disease Focus: 
Blood Disorders
Stem Cell Use: 
Adult Stem Cell
Public Abstract: 
Bone marrow and peripheral blood transplantation utilizing blood stem cells can provide curative treatment for patients with cancers and non-cancerous diseases of the blood and immune systems. Such treatments can be curative because the stem cells contained within the bone marrow or peripheral blood of healthy donors are capable of replacing the entirety of the patient’s blood system and providing a new immune system which can eradicate the patient’s cancer cells. The application of blood stem cell transplantation could be applied to a much larger population of patients if methods could be developed to expand blood stem cells in vitro or in vivo. This would be particularly beneficial for the broadened application of human cord blood transplantation for the many patients who lack an immune-matched sibling or unrelated donor. Furthermore, a method to expand human blood stem cells in vivo could be highly beneficial for the thousands of patients with cancer who require toxic chemotherapy which frequently results in decreased blood counts, infections and bleeding complications. A systemic treatment (i.e. a shot) which could cause blood stem cells to grow and produce more blood cells in patients could markedly improve patient’s outcomes after they receive such chemotherapy in the curative treatment of cancer. However, the development of treatments capable of inducing human blood stem cells to grow in the body has been very slow, in part due to a lack of understanding of the processes which govern blood stem cell growth in general. In my laboratory, we have developed mouse genetic models which allow us to discover new proteins produced in the bone marrow (the “soil” where blood stem cells reside) which make blood stem cells grow. We have recently discovered that 2 proteins, pleiotrophin and epidermal growth factor, are secreted by blood vessels within the bone marrow and cause blood stem cells to grow rapidly following damage with radiation. We are currently in the process of developing pleiotrophin into a growth factor that we can deliver to patients via injection as a means to cause their blood stem cells to grow after cord blood transplantation or following chemotherapy treatment for cancer. In this proposal, we will utilize our unique mouse models to discover the additional growth factors that make blood stem cells grow and we will perform pre-clinical studies to test whether these newly discovered growth factors can cause human blood stem cells to grow in vitro and in vivo. This proposal has the potential to generate new understanding of how human stem cells grow in vivo and to facilitate the development of new therapies which can regenerate human blood stem cells and the blood system as a whole in patients.
Statement of Benefit to California: 
My research program has both basic science and pre-clinical components which I believe will benefit California in several important ways: First, my basic research program will contribute new fundamental knowledge in stem cell biology which will benefit students, fellows and faculty. My research will also synergize with other campus laboratories and other centers in California and will lead to collaborations and accelerated translation of these discoveries for regenerative medicine. Second, my research program has the potential to directly benefit patients in California. We have already discovered two niche-derived proteins which promote hematopoietic stem cell regeneration in vivo and are focusing substantial efforts now to develop these proteins as therapeutics for Phase I clinical trials. For example, we are developing one of the HSC regenerative factors which we discovered, pleiotrophin, for a Phase I clinical trial to test its efficacy as a systemic therapy to accelerate cord blood engraftment and hematologic recovery in adult cord blood transplant patients. This has literal potential benefit for patients since approximately 10% of cord blood transplant patients die from complications of graft failure or delayed hematologic recovery. In addition, patients with cancer who receive myelosuppressive chemotherapy can potentially benefit from systemic administration of pleiotrophin or other HSC regenerative factors that we discover to accelerate hematologic recovery after chemotherapy. If we are able to show that administration of such regenerative factors can accelerate hematologic recovery in patients after chemotherapy, then remission rates for cancer patients may increase via more effective delivery of curative chemotherapy on time and to completion. Third, my research will provide new intellectual property. These inventions from my laboratory will be available for licensure to biotech or pharmaceutical companies in California. I have experience with licensing inventions from my laboratory to biotech companies and am eager to see my future inventions licensed to accelerate development for regenerative medicine. Fourth, my research program will provide new jobs and professional opportunities. At present, my research program provides partial or complete funding for more than 30 employees internally and more than 30 employees at our partner institutions in academia and biotechnology. I will also bring substantial federal research funding with me to California and will be hiring new fellows, technicians and faculty promptly upon my arrival. Taken together, I am hopeful that my research program will have a major benefit for the scientific community of California, for patients who may benefit from treatments we are developing, for the biotechnology community via the development of new intellectual property and for the larger economy via the creation of many new jobs. I sincerely look forward to the opportunity to bring my program to California.

Role of intracytoplasmic pattern recognition receptors in HSC engraftment

Funding Type: 
Basic Biology V
Grant Number: 
RB5-07379
ICOC Funds Committed: 
$615 639
Disease Focus: 
Blood Disorders
oldStatus: 
Closed
Public Abstract: 
The research performed through this project is very important for the fields of solid organ and bone marrow transplantation because it focuses on a potential new target to increase engraftment of stem cells. Currently, patients that receive stem cell transplants from a non-identical donor must take medications to suppress their immune system; otherwise the stem cells will be rejected. Stem cell trials have been extended to solid organ transplantation, where it has been shown that kidney transplants can be managed with little or no immunosuppressive medications when stem cells are given to the patient at the time of transplantation. In many cases though the stem cells are rejected and the patient must resume toxic medications. Our laboratory has been very interested in understanding ways to prevent the rejection of stem cells and has focused on a phylogenetically conserved group of cellular receptors called pattern recognition receptors. This project is focused on understanding how to prevent rejection of stem cells through modifications of these receptors. We hope to identify novel targets to prevent the rejection of stem cells in order to decrease the occurrence of graft versus host disease after bone marrow transplantation and also improve the opportunities for long-term transplant survival without the use of toxic immunosuppressive medications.
Statement of Benefit to California: 
The research we will undertake will benefit the State of California and its residents in two major ways. First it promises to define a novel targets to prevent rejection of stem cells that are transplanted into their new host. This is very important because rejection of hematopoietic stem cells is a major impediment to successful efforts at both bone marrow and solid organ transplantation. Patients needed life-saving solid organ transplants and patients that receive bone marrow transplants from donors that are not perfectly matched to them reject their grafts unless they take powerful medications to suppress their immune system. This project is focused on finding a way to help prevent the rejection of these grafts without the need for immunosuppressive medications. The second way the project will benefit the State of California is to provide new employment opportunities within the State at a large University that conducts biomedical research. This project will not only directly support the employment of three California citizens devoted to biomedical research, but the work it generates will support California-based biomedical science companies, California University personal and other local companies that employ California citizens that produce the reagents and the supplies used in the proposed studies.

Differentiation of Human Hematopoietic Stem Cells into iNKT Cells

Funding Type: 
Basic Biology V
Grant Number: 
RB5-07089
ICOC Funds Committed: 
$614 400
Disease Focus: 
Blood Disorders
oldStatus: 
Active
Public Abstract: 
Blood stem cells living in the bone marrow of adult humans give rise to all of the cells in our blood, including the red blood cells that carry oxygen to supply our body, and the white blood cells such as T and B lymphocytes that fight infections and keep us healthy. Among the T lymphocytes there is a small population called invariant natural killer T (iNKT) cells. Despite their low frequency in humans (~0.001-1% in blood), iNKT cells have the remarkable capacity to mount immediate and potent responses when stimulated, and have been suggested to play important roles in regulating multiple human diseases including infections, allergies, cancer, and autoimmunity (such as Type I diabetes and multiple sclerosis). However, successful clinical interventions with iNKT cells have been greatly hindered by our limited knowledge on how these cells are produced by blood stem cells, largely due to the lack of tools to track these cells in humans. We therefore propose a novel model system to overcome this research bottleneck by transplanting human blood stem cells into a mouse and genetically programming these cells to develop into iNKT cells. This “humanized” mouse model will allow us to directly track the differentiation of human blood stem cells into iNKT cells in a living animal. From this study, we will address some critical unanswered questions for iNKT cell development, and shed light on developing stem-cell based iNKT cell therapies.
Statement of Benefit to California: 
Allergies, cancer and autoimmunity are leading health hazards in California. These diseases affect millions of Californians, impairing their life quality and creating huge economic burdens for the State of California. This proposal intends to study invariant natural killer (iNKT) T cells, a special population of T lymphocytes that have been suggested to play important roles in regulating these diseases. To date, clinical applications of iNKT cells have been greatly limited by their low frequency in humans and their high variability between individuals (~0.001-1% in blood). Thus, an improved understanding of how these cells are naturally generated is important for their use clinically. Like all other cells in blood, iNKT cells are descendants of the blood stem cells that live in the bone marrow of adult humans. Our goal is to study how human blood stem cells give rise to iNKT cells. If successful, our results can be exploited to develop stem cell-based iNKT cell therapies to treat allergies, cancer and autoimmunity, and therefore may benefit the millions of Californians currently suffering from these diseases. In addition, the knowledge and reagents generated from this proposed study will be shared freely with non-profit and academic organizations in California, and any new intellectual property derived from this study will be developed under the guidance of CIRM to benefit the State of California.

Generation of functional cells and organs from iPSCs

Funding Type: 
Research Leadership 12
Grant Number: 
LA1_C12-06917
ICOC Funds Committed: 
$6 152 065
Disease Focus: 
Blood Disorders
Stem Cell Use: 
iPS Cell
oldStatus: 
Closed
Public Abstract: 
The development of induced pluripotent stem cell (iPSC) technology may be the most important advance in stem cell biology for the future of medicine. This technology allows one to generate a patient’s own pluripotent stem cells (PSCs) from skin or blood cells. iPSCs can then be reprogrammed to multiply and produce high quality mature cells for cell therapy. Because iPSCs are derived from a patient's own cells, therapies that use them will not stimulate unwanted immune reactions or necessitate lifelong immunosuppression. If organs can be generated from iPSCs, many patients with organ failure awaiting transplants will be helped. The goal of this project is to further develop iPSC technology to bring about personalized regenerative medicine for treating intractable diseases such as cancers, viral infections, genetic blood disorders, and organ failure. Specifically, we would like to establish three major core programs for generating from iPSCs: personalized immune cells; an unlimited supply of blood stem cells; and functional organs. First, we will generate iPSC-derived immune cells that kill viruses and cancer cells. Current immunotherapy uses immune cells that are exhausted (have limited ability to function and proliferate) after they multiply in a test tube. To supply active nonexhausted immune cells, iPSCs will be generated from a patient’s immune cells that target tumor cells and infections and then redifferentiated to mature immune cells with the same targets. Second, we aim to develop iPSC technology to generate blood stem cells that replenish all blood cells throughout life. Harvesting blood stem cells from a leukemia patient for transplantation back to the patient after chemotherapy and radiation has been challenging because few blood stem cells can be harvested and may be contaminated with cancer cells. Alternatively, transplanting blood stem cells from cord blood or another person requires genetic matching to prevent immune reactions. However, generating blood stem cells from a patient’s iPSCs may avoid contamination with cancer cells, immune reactions, and the need to find a matched donor. Furthermore, we aim to generate iPSCs from a patient with a genetic blood disease, correct the genetic defect in the iPSCs, and generate from these corrected iPSCs healthy blood stem cells that may be curative when transplanted back into the patient. Lastly, we will try to generate from iPSCs not just mature cells, but organs for transplantation, to potentially address the tremendous shortage of donated organs. We aim to generate these organs in livestock. In a preliminary study, we generated pig embryos that could not develop pancreases. When we injected pig stem cells into these embryos, they developed functional pancreases derived from the injected cells and survived to adulthood. We hope that within 10 years, we will be able to provide a needed organ to a patient by growing it from the patient’s own PSCs in a compatible animal.
Statement of Benefit to California: 
Cancer is the second leading cause of death, accounting for 24% of all deaths in the U.S. Nearly 55,000 people will die of the disease--about 150 people each day or one of every four deaths in California. In 2012, nearly 144,800 Californians will be diagnosed with cancer. We need effective treatment to cure cancer. End-stage organ failure is another difficult disease to treat. Transplantation of kidneys, liver, heart, lungs, pancreas, and small intestine has become an accepted treatment for organ failure. In California, more than 21,000 people are on the waiting lists at transplant centers. However, one in three of these people will die waiting for transplants because of the shortage of donated organs. While end-stage renal failure patients can survive for decades with hemodialysis treatment, they suffer from high morbidity and mortality. In addition, the high medical costs for increasing numbers of dialysis patients is a social issue. We need to find a way to increase organs that can be used for transplantation. In our proposed projects, we aim to use iPSC technology and recent discoveries to develop new methods for treating cancers, viral infections, and organ failure. More specifically, we will pursue our recent discoveries using iPSCs to: (1) multiply person’s T cells that specifically target cancers and viral infections; (2) generate normal blood-forming stem cells that can be transplanted back into a patient to correct a blood disease (3) regenerate tissues and organs from a patient’s cells for transplantation back into that patient. These projects are likely to benefit the state of California in several ways. Many of the methods, cells, and reagents generated by this research will be patentable, forming an intellectual property portfolio shared by the state and the institutions where the research is performed. The funds generated from the licensing of these technologies will provide revenue for the state, will help increase hiring of faculty and staff (many of whom will bring in other, out-of-state funds to support their research), and could be used to ameliorate the costs of clinical trials--the final step in translation of basic science research to clinical use. Most importantly, this research will set the platform for stem cell-based therapies. Because tissue stem cells are capable of lifelong self-renewal, these therapies have the potential to provide a single, curative treatment. Such therapies will address chronic diseases that have no cure and cause considerable disability, leading to substantial medical expenses and loss of work. We expect that California hospitals and health care entities will be first in line for trials and therapies. Thus, California will benefit economically and the project will help advance novel medical care.

A Treatment For Beta-thalassemia via High-Efficiency Targeted Genome Editing of Hematopoietic Stem Cells

Funding Type: 
Strategic Partnership II
Grant Number: 
SP2-06902
ICOC Funds Committed: 
$6 374 150
Disease Focus: 
Blood Disorders
Pediatrics
Stem Cell Use: 
Adult Stem Cell
oldStatus: 
Active
Public Abstract: 
β-thalassemia is a genetic disease caused by diverse mutations of the β-globin gene that lead to profoundly reduced red blood cell (RBC) development. The unmet medical need in transfusion-dependent β-thalassemia is significant, with life expectancy of only ~30-50 years despite standard of care treatment of chronic blood transfusions and iron chelation therapy. Cardiomyopathy due to iron overload is the major cause of mortality, but iron-overload induced multiorgan dysfunction, blood-borne infections, and other disease complications impose a significant physical, psychosocial and economic impact on patients and families. An allogeneic bone marrow transplant (BMT) is curative. However, this therapy is limited due to the scarcity of HLA-matched related donors (<20%) combined with the significant risk of graft-versus-host disease (GvHD) after successful transplantation of allogeneic cells. During infancy, gamma-globin-containing fetal hemoglobin protects β-thalassemia patients from developing disease symptoms until gamma globin is replaced by adult-type β-globin chains. The proposed therapeutic intervention combines the benefits of re-activating the gamma globin gene with the curative potential of BMT, but without the toxicities associated with acute and chronic immunosuppression and GvHD. We hypothesize that harvesting hematopoietic stem and progenitor cells (HSPCs) from a patient with β-thalassemia, using genome editing to permanently re-activate the gamma globin gene, and returning these edited HSPCs to the patient could provide transfusion independence or greatly reduce the need for chronic blood transfusions, thus decreasing the morbidity and mortality associated with iron overload. The use of a patient’s own cells avoids the need for acute and chronic immunosuppression, as there would be no risk of GvHD. Moreover, due to the self-renewing capacity of HSPCs, we anticipate a lifelong correction of this severe monogenic disease.
Statement of Benefit to California: 
Our proposed treatment for transfusion dependent β-thalassemia will benefit patients in the state by offering them a significant improvement over current standard of care. β-thalassemia is a genetic disease caused by diverse mutations of the β-globin gene that lead to profoundly reduced red blood cell (RBC) development and survival resulting in the need for chronic lifelong blood transfusions, iron chelation therapy, and important pathological sequelae (e.g., endocrinopathies, cardiomyopathies, multiorgan dysfunction, bloodborne infections, and psychosocial/economic impact). Incidence is estimated at 1 in 100,000 in the US, but is more common in the state of California (incidence estimated at 1 in 55,000 births) due to immigration patterns within the State. While there are estimated to be about 1,000-2,000 β-thalassemia patients in the US, the Children’s Hospital and Research Center, Oakland (one of our proposed clinical trial sites) has the largest thalassemia program in the Western United States, with a population approaching 300 patients. Thus, the state of California stands to benefit disproportionately compared to other states from our proposed treatment for transfusion dependent β-thalassemia. An allogeneic bone marrow transplant (BMT) is curative for β-thalassemia, but limited by the scarcity of HLA-matched related donors (<20%) combined with the significant risk of graft-versus-host disease (GvHD) after successful transplantation of allogeneic cells. Our approach is to genetically engineer the patient’s own stem cells and thus (i) solve the logistical challenge of finding an appropriate donor, as the patient now becomes his/her own donor; and (ii) make use of autologous cells abrogating the risk of GvHD and need for acute and chronic immunosuppression. Our approach offers a compelling pharmacoeconomic benefit to the State of California and its citizens. A lifetime of chronic blood transfusions and iron chelation therapy leads to a significant cost burden; despite this, the prognosis for a transfusion dependent β-thalassemia patient is still dire, with life expectancy of only ~30-50 years. Our proposed one-time treatment aims to reduce or eliminate the need for costly chronic blood transfusions and iron chelation therapy, while potentially improving the clinical benefit to patients, including the morbidity and mortality associated with transfusion-induced iron overload.

Development of a cell and gene based therapy for hemophilia

Funding Type: 
Early Translational IV
Grant Number: 
TR4-06809
ICOC Funds Committed: 
$2 322 440
Disease Focus: 
Blood Disorders
Liver Disease
Pediatrics
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Closed
Public Abstract: 
Hemophilia B is a bleeding disorder caused by the lack of FIX in the plasma and affects 1/30,000 males. Patients suffer from recurrent bleeds in soft tissues leading to physical disability in addition to life threatening bleeds. Current treatment (based on FIX infusion) is transient and plagued by increased risk for blood-borne infections (HCV, HIV), high costs and limited availability. This has fueled a search for gene/cell therapy based alternatives. Being the natural site of FIX synthesis, the liver is expected to provide immune-tolerance and easy circulatory access. Liver transplantation is a successful, long-term therapeutic option but is limited by scarcity of donor livers and chronic immunosuppression; making iPSC-based cell therapy an attractive prospect. As part of this project, we plan to generate iPSCs from hemophilic patients that will then be genetically corrected by inserting DNA capable of making FIX. After validation for correction, we will then differentiate these iPSCs into liver cells that can be transplanted into our mouse model of hemophilia that is capable of accepting human hepatocytes and allowing their proliferation. These mice exhibit disease symptoms similar to human patients and we propose that by injecting our corrected liver cells they will exhibit normal clotting as measured by various biochemical and physiological assays. If successful, this will provide a long-term cure for hemophilia and other liver diseases.
Statement of Benefit to California: 
Generation of iPSCs from adult cells unlocked the potential of tissue engineering, replacement and cell transplant therapies to cure a host of debilitating diseases without the ethical concerns of working with embryos or the practical problems of immune-rejection. We aim to develop a POC for a novel cell- and gene-therapy based approach towards the treatment of hemophilia B. In addition to the obvious and direct benefit to the affected patients and families by providing a potential long-term cure; the successful development of our proposal will serve as a POC for moving other iPSC-based therapies to the clinic. Our proposal also has the potential to treat a host of other hepatic diseases like alpha-1-antitrypsin deficiency, Wilson’s disease, hereditary hypercholesterolemia, etc. These diseases have devastating effects on the patients in addition to the huge financial drain on the State in terms of the healthcare costs. There is a pressing need to find effective solutions to such chronic health problems in the current socio-economic climate. The work proposed here seeks to redress this by developing cures for diseases that, if left untreated, require substantial, prolonged medical expenditures and cause increased suffering to patients. Being global leaders in these technologies, we are ideally suited to this task, which will establish the state of California at the forefront of medical breakthroughs and strengthen its biomedical/biotechnology industries.

Beta-Globin Gene Correction of Sickle Cell Disease in Hematopoietic Stem Cells

Funding Type: 
Early Translational IV
Grant Number: 
TR4-06823
ICOC Funds Committed: 
$1 815 308
Disease Focus: 
Blood Disorders
Pediatrics
Stem Cell Use: 
Adult Stem Cell
Cell Line Generation: 
Adult Stem Cell
oldStatus: 
Active
Public Abstract: 
Disorders affecting the blood, including Sickle Cell Disease (SCD), are the most common genetic disorders in the world. SCD causes significant suffering and early death, despite major improvements in medical management and advances in understanding the complex disease-related biology. A bone marrow transplant (BMT) can greatly benefit patients with SCD, by providing a life-long source of normal red blood cells. However, BMT is limited by the availability of suitable donors and immune complications, especially for the more than 80% of patients who lack a matched sibling donor. An alternative treatment approach for SCD is to isolate some of the patient’s own bone marrow and then use gene therapy methods to correct the sickle gene defect in the blood stem cells before transplanting them back into the patient. The gene-corrected stem cells could make normal blood cells for the life of the patient, essentially eliminating the SCD. Such an approach would avoid the complications typically associated with transplants from non-matched donors. We will define the optimal techniques to correct the sickle gene mutation in the bone marrow stem cells to develop as a therapy for patients with SCD.
Statement of Benefit to California: 
Development of methods for regenerative medicine using stem cells will have widespread applications to improve the health and to provide novel, effective therapies for millions of Californians and tens of millions of people worldwide. Many severe medical conditions can be cured or improved by transplantation of blood-forming hematopoietic stem cells (HSC), including genetic diseases of blood cells, such as sickle cell disease and inborn errors of metabolism, cancer and leukemia, and HIV/AIDS. Precise genetic engineering of stem cells to repair inherited mutation may be the best way to correct genetic defects affecting the mature cells they produce. This project will advance methods to precisely repair the genetic defect that underlies sickle cell disease in hematopoietic stem cells, which can then be transplanted to ameliorate the disease. These advances will have direct and immediate applications to enhance current medical therapies of sickle cell disease and will more broadly help to advance the capacities for regenerative medicine. All scientific findings and biomedical materials produced from our studies will be publicly available to non-profit and academic organizations in California, and any intellectual property developed by this Project will be developed under the guidelines of CIRM to benefit the people of the State of California.

A Phase 1/2, Open Label Study Evaluating the Safety and Efficacy of Gene Therapy in Subjects with β-Thalassemia by Transplantation of Autologous Hematopoietic Stem Cells Transduced with the Lentiviral Vector LentiGlobin® Encoding the Human β-A-T87Q-glo

Funding Type: 
Strategic Partnership I
Grant Number: 
SP1-06477
Investigator: 
ICOC Funds Committed: 
$9 363 335
Disease Focus: 
Blood Disorders
Stem Cell Use: 
Adult Stem Cell
Cell Line Generation: 
Adult Stem Cell
oldStatus: 
Closed
Public Abstract: 
bluebird bio plans to carry out a Phase 1/2 study to evaluate the safety and efficacy of LentiGlobin for the treatment of β-Thalassemia Major(BTM). LentiGlobin drug product(LDP) consists of autologous patient hematopoietic stem cells(HSC) that have been genetically modified ex vivo with a lentiviral vector that encodes a therapeutic form of the β-globin gene. LDP is administered through autologous hematopoietic cell transplant(HCT), with the goal of restoring normal levels of hemoglobin and red blood cell(RBC) production in BTM patients who are dependent on RBC transfusions for survival. Because they cannot produce functional hemoglobin, BTM patients require lifelong RBC transfusions that cause widespread organ damage from iron overload. While hemosiderosis can be mitigated with chelation therapy, poor compliance, efficacy and tolerability remain key challenges, and a majority BTM patients die in their 3rd-5th decade. The only cure for BTM is allogeneic HCT, which carries a significant risk of mortality and morbidity from immune-incompatibility between the donor and recipient, and is hampered by the limited availability of HLA matched sibling donors. By stably inserting functional copies of β-globin into the genome of a patient’s own HSC, treatment with LDP promises to be a one-time transformative therapy for BTM. The β-globin gene in the LentiGlobin vector carries a single codon mutation (T87Q) that allows for quantitative monitoring of therapeutic globin production but that does not alter oxygen carrying capacity. Treatment with an earlier version of the vector has been shown to correct β-thalassemia in mice (Imren et. al., PNAS, 2002) and in humans (Cavazzana-Calvo et. al., 2010, Nature). In a clinical trial in France, 3 BTM patients were treated–one of whom became transfusion independent 1 year after treatment and remains so 4 years later. Given the prevalence of patients with a common BTM genotype in California, bluebird plans to open at least 2, and up to 4, clinical sites in California. Development activities are on track to initiate the trial in 1H 2013, and to complete the trial with 2 years of follow-up within the award window. bluebird has completed a pre-IND meeting with the FDA and successfully manufactured a GMP lot of LentiGlobin vector that is available for clinical use. The Company expects to complete all IND enabling activities by Q4 2012. In the last year, the company has made scientific advances that have allowed for a significant improvement in the efficiency of HSC genetic modification that will be help ensure clinical efficacy in BTM. Moreover, through collaborations with contract manufacturers, bluebird is now producing large scale GMP lots of vector, and is on track to qualify a GMP cell processing facility with commercial capabilities prior to study initiation. bluebird holds fundamental patent rights for lentiviral gene therapy, including its use in the genetic correction of BTM.
Statement of Benefit to California: 
The company expects to spend a major component of its financial resources conducting business within the state of California during the period of this CIRM award. Specifically: 1) we will have at least two clinical sites in California, and more likely up to 4 sites, 2) our viral vector manufacturing will occur in California, 3) our cell processing will occur in California, 4) we will hire several consultants and full-time employees within California to support the program. Overall, several million dollars will be spent employing the services of people, academic institutions, and other companies within the state of California. Moreover, the disease we aim to treat occurs at a substantially greater rate of in California than other parts of the United States. As such, it is a significant public health concern, for which our therapy could provide a dramatically improved outcome and significant reduction in the lifetime cost of treatment, along with increased productivity. Due to the prevalence of the disease in California, if brought to the market, the pharmacoeconomic and social benefit of our therapy will accrue disproportionately to the state of California.

In Utero Embryonic Stem Cell Transplantation to Treat Congenital Anomalies

Funding Type: 
New Faculty Physician Scientist
Grant Number: 
RN3-06532
ICOC Funds Committed: 
$2 836 742
Disease Focus: 
Blood Disorders
Pediatrics
Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Active
Public Abstract: 
Many fetuses with congenital blood stem cell disorders such as sickle cell disease or thalassemia are prenatally diagnosed early enough in pregnancy to be treated with stem cell transplantation. The main benefit to treating these diseases before birth is that the immature fetal immune system may accept transplanted cells without needing to use immunosuppressant drugs to prevent rejection. Moreover, transplanting stem cells into the fetus—in which many stem cell types are actively multiplying and migrating—can promote similar growth and differentiation of the transplanted cells. Although this strategy works well in animal models, when applied clinically, the number of surviving cells in the blood (“engraftment”) has been too low to achieve a reliable cure. Our lab studies ways to improve engraftment, with the long-term goal of applying these strategies to treat fetuses with congenital blood disorders. In this application, we will use novel embryonic stem cells that may be better suited to differentiate into blood cells in the fetal environment. We will also test various approaches to improve the survival advantage of these stem cells in fetal organs that make blood cells. Finally, we will study the fetal immune system to determine how fetuses become tolerant to the transplanted cells. The experiments in this proposal will give us important information to design clinical trials to treat fetuses with common, currently incurable stem cell disorders.
Statement of Benefit to California: 
The long-term goal of our project is to develop safe and effective ways to perform prenatal stem cell transplantation to treat fetuses with congenital blood disorders, such as thalassemia and hemoglobin disorders. These diseases affect many California citizens. For example, hemoglobin disorders are so common that they are routinely screened for at birth (and prenatal screening is performed if there is a family history). Thalassemias are found more commonly in persons of Mediterranean or Asian descent and are therefore prevalent in our state’s population. Prenatal screening is routinely offered, especially to patients with a family history or those with an ethnic predisposition. Fetal stem cell transplantation would also benefit children with sickle cell disease, 2000 of which are born each year in the United States, and inborn errors of metabolism, which occur in 1 in 4000 births. Thus, once we develop reliable techniques to treat these disorders before birth, there will be an enormous potential to make a difference. Fetal surgery was pioneered in California and is performed only in select centers across the country. Therefore, once we have developed safe and effective therapies for fetuses with stem cell disorders, we also expect increased referrals of such patients to California. The convergence of our expertise in fetal therapies with those in stem cell biology carries great promise for finally realizing the promise of fetal stem cell transplantation.
Progress Report: 
  • Our group works on developing methods for successful transplantation of blood stem cells to treat fetuses with genetic disorders such as sickle cell disease or thalassemia. In this grant, we are using novel stem cells that will differentiate into blood-forming cells and other techniques to improve the “engraftment” of these cells. This year, we focused on using a new technique that creates “space” in the bone marrow of the recipient using an antibody (ACK2) to deplete the host’s blood stem cells. In a mouse model, we showed that this antibody is very effective is improving the engraftment of transplanted blood stem cells. In fact, the treatment is more effective in the fetal environment than the adult. These findings were recently published and we are planning to use this strategy in the monkey model as a step toward clinical applications. We are also working on transplanting human blood stem cells into immunodeficient mouse fetuses to understand whether different sources of stem cells vary in their ability to make blood cells in this setting.

Pages

Subscribe to RSS - Blood Disorders

© 2013 California Institute for Regenerative Medicine