Blood Cancer

Coding Dimension ID: 
287
Coding Dimension path name: 
Cancer / Blood

Mechanisms Underlying the Responses of Normal and Cancer Stem Cells to Environmental and Therapeutic Insults

Funding Type: 
New Faculty II
Grant Number: 
RN2-00934
ICOC Funds Committed: 
$2 274 368
Disease Focus: 
Blood Cancer
Cancer
Trauma
oldStatus: 
Active
Public Abstract: 
Adult stem cells play an essential role in the maintenance of tissue homeostasis. Environmental and therapeutic insults leading to DNA damage dramatically impact stem cell functions and can lead to organ failure or cancer development. Yet little is known about the mechanisms by which adult stem cells respond to such insults by repairing their damaged DNA and resuming normal cellular functions. The blood (hematopoietic) system provides a unique experimental model to investigate the behaviors of specific cell populations. Our objective is to use defined subsets of mouse hematopoietic stem cells (HSCs) and myeloid progenitor cells to investigate how they respond to environmental and therapeutic insults by either repairing damaged DNA and restoring normal functions; accumulating DNA damage and developing cancer; or undergoing programmed cell death (apoptosis) and leading to organ failure. These findings will provide new insights into the fundamental mechanisms that regulate stem cell functions in normal tissues, and a better understanding of their deregulation during cancer development. Such information will identify molecular targets to prevent therapy-related organ damage or secondary cancers. These are severe complications associated with current cancer treatments and are among the leading causes of death worldwide. Originally discovered in blood cancers (leukemia), cancer stem cells (CSCs) have now been recognized in a variety of solid tumors. CSCs represent a subset of the tumor population that has stem cell-like characteristics and the capacity for self-renewal. CSCs result from the transformation of either stem or progenitor cells, which then generate the bulk of the cancer cells. Recent evidence indicates that CSCs are not efficiently killed by current therapies and that CSC persistence could be responsible for disease maintenance and cancer recurrence. Developing interventions that will specifically target CSCs is, therefore, an appealing strategy for improving cancer treatment, which is dependent on understanding how they escape normal regulatory mechanisms and become malignant. Few mouse models of human cancer are currently available in which the CSC population has been identified and purified. This is an essential prerequisite for identifying pathways and molecules amenable to interventional therapies in humans. We have previously developed a mouse model of human leukemia in which we have identified the CSC population as arising from the HSC compartment. We will use this model to understand how deregulations in apoptosis and DNA repair processes contribute to CSC formation and function during disease development. These results will provide new insights into the pathways that distinguish CSCs from normal stem cells and identify ways to prevent their transformation. Such information will be used to design novel and much-needed therapies that will specifically target CSCs while sparing normal stem cells.
Statement of Benefit to California: 
This application investigates how environmental and therapeutic insults leading to DNA damage impact stem cell functions and can lead to organ failure or cancer development. The approach is to study how specific population of blood (hematopoietic) stem, progenitor, and mature cells respond to DNA damaging agents and chose a specific cellular outcome. Such information could identify molecular pathways that are available for interventional therapies to prevent end-organ damage in patients who are treated for a primary cancer and reduce the risk of a subsequent therapy-induced cancer. These are severe complications associated with current mutagenic cancer treatments (radiation or chemotherapeutic agents) that comprise a substantial public health problem in California and in the rest of the developed world. The hematopoietic system is the first to fail following cancer treatment and the formation of therapy-related blood cancer (leukemia) is a common event. The development of novel approaches to prevent therapy-related leukemia will, therefore, directly benefit the health of the Californian population regardless of the type of primary cancer. This application also investigates a novel paradigm in cancer research, namely the role of cancer stem cells (CSCs) in the initiation, progression and maintenance of human cancer. The approach is to study how dysregulations in important cancer-associated pathways (apoptosis and DNA repair processes) contribute to CSC aberrant properties using one of the few established mouse model of human cancer where the CSC population has already been identified. Leukemia, the disease type investigated in this application, has been the subject of many landmark discoveries of basic principles in cancer research that have then been shown to be applicable to a broad range of other cancer types. Accordingly, this research should benefit the people of California in at least two ways. First, the information gained about the properties of CSCs should improve the ability of our physicians and scientists to design, develop and evaluate the efficacy of innovative therapies to target these rare disease-initiating cells for death. This would place Californian cancer research at the forefront of translational science. Second, an average of 11.55 out of 100,000 Californian inhabitants are diagnosed with primary leukemia each year. Thus, in California, leukemia occurs at approximately the same frequency as brain, liver and endocrine cancers. As is true for many types of cancer, most cases of leukemia occur in older adults. At this time, the only treatment that can cure leukemia is allogeneic stem cell transplantation, which is a high-risk and expensive procedure that is most successful in younger patients. The development of novel and safe curative therapies for leukemia would, therefore, particularly benefit the health of our senior population and the economy of the state of California by realizing savings in the healthcare sector.
Progress Report: 
  • Escape from apoptosis and increased genomic instability resulting from defective DNA repair processes are often associated with cancer development, aging and stem cell defects. Adult stem cells play an essential role in the maintenance of normal tissue. Removal of superfluous, damaged and/or dangerous cells is a critical process to maintain tissue homeostasis and protect against malignancy. Yet much remains to be learned about the mechanisms by which normal stem and progenitor cells respond to environmental and therapeutic genotoxic insults. Here, we have used the hematopoietic system as a model to investigate how cancer-associated mutations affect the behaviors of specific stem and progenitor cell populations. Our work during the first year of the CIRM New Faculty award has revealed the differential use of DNA double-strand break repair pathways in quiescent and proliferative hematopoietic stem cells (HSCs), which has clear implications for human health. Most adult stem cell populations, including HSCs, remain in a largely quiescent (G0), or resting, cell cycle state. This quiescent status is widely considered to be an essential protective mechanism stem cells use to minimize endogenous stress caused by cellular respiration and DNA replication. However, our studies demonstrate that quiescence may also have detrimental and mutagenic effects. We found both quiescent and proliferating HSCs to be similarly protected from DNA damaging genotoxic insults due to the expression and activation of cell type specific protective mechanisms. We demonstrate that both quiescent and proliferating HSCs resolve DNA damage with similar efficiencies but use different repair pathways. Quiescent HSCs preferentially utilize nonhomologous end joining (NHEJ) - an error-prone DNA repair mechanism - while proliferating HSCs essentially use homologous recombination (HR) - a high-fidelity DNA repair mechanism. Furthermore, we show that NHEJ-mediated repair in HSCs is associated with acquisition of genomic rearrangements. These findings suggest that the quiescent status of HSCs can, on one hand, be protective by limiting cell-intrinsic stresses but, on the other hand, be detrimental by forcing HSCs to repair damaged DNA with an error-prone mechanism that can generate mutations and eventually cause hematological malignancies. Our results have broad implications for cancer development and provide the beginning of a molecular understanding of why HSCs, despite being protected, are more likely than other cells in the hematopoietic system (i.e., myeloid progenitors) to become transformed. They also partially explain the loss of function occurring in HSCs with age, as it is likely that over a lifetime HSCs have acquired and accumulated numerous NHEJ-mediated mutations that hinder their cellular performance. Finally, our findings may have direct clinical applications for minimizing secondary cancer development. Many solid tumors and hematological malignancies are currently treated with DNA damaging agents, which may result in therapy-induced myeloid leukemia. Our results suggest that it might be beneficial to induce HSCs to cycle before initiating treatment, to avoid inadvertently mutating the patient's own HSCs by forcing them to undergo DNA repair using an error-prone mutagenic mechanism.
  • Our work during the second year of the CIRM New Faculty award has lead to the discovery of at least one key reason why blood-forming stem cells can be susceptible to developing genetic mutations leading to adult leukemia or bone marrow failures. Most adult stem cells, including hematopoietic stem cells (HSCs), are maintained in a quiescent or resting state in vivo. Quiescence is widely considered to be an essential protective mechanism for stem cells that minimizes endogenous stress associated with cellular division and DNA replication. However, we demonstrate that HSC quiescence can also have detrimental effects. We found that HSCs have unique cell-intrinsic mechanisms ensuring their survival in response to ionizing irradiation (IR), which include enhanced pro-survival gene expression and strong activation of a p53-mediated DNA damage response. We show that quiescent and proliferating HSCs are equally radioprotected but use different types of DNA repair mechanisms. We describe how nonhomologous end joining (NHEJ)-mediated DNA repair in quiescent HSCs is associated with acquisition of genomic rearrangements, which can persist in vivo and contribute to hematopoietic abnormalities. These results demonstrate that quiescence is a double-edged sword that, while mostly beneficial, can render HSCs intrinsically vulnerable to mutagenesis following DNA damage. Our findings have important implications for cancer biology. They indicate that quiescent stem cells, either normal or cancerous, are particularly prone to the acquisition of mutations, which overturns the current dogma that cancer development absolutely requires cell proliferation. They help explain why quiescent leukemic stem cells (LSC), which currently survive treatment in most leukemia, do in fact represent a dangerous reservoir for additional mutations that can contribute to disease relapse and/or evolution, and stress the urgent need to develop effective anti-LSC therapies. They also have direct clinical applications for minimizing the risk of therapy-related leukemia following treatment of solid tumors with cytotoxic agents. By showing that proliferating HSCs have significantly decreased mutation rates, with no associated change in radioresistance, they suggest that it would be beneficial to induce HSCs to enter the cycle prior to therapy with DNA-damaging agents in order to enhance DNA repair fidelity in HSCs and thus reduce the risk of leukemia development. While this possibility remains to be tested in the clinic using FDA approved agents such as G-CSF and prostaglandin, it offers exciting new directions for limiting the deleterious side effects of cancer treatment. Our findings also have broad biological implications for tissue function. While the DNA repair mechanism used by quiescent HSCs can indeed produce defective cells, it is likely not detrimental for the organism in evolutionary terms. The blood stem cell system is designed to support the body through its sexually reproductive years, so the genome can be passed along. The ability of quiescent HSCs to survive and quickly undergo DNA repair in response to genotoxic stress supports this goal, and the risk of acquiring enough damaging mutations in these years is minimal. The problem occurs with age, as these long-lived cells have spent a lifetime responding to naturally occurring insults as well as the effects of X-rays, medications and chemotherapies. In this context, the accumulation of NHEJ-mediated DNA misrepair and resultant genomic damages could be a major contributor to the loss of function occurring with age in HSCs, and the development of age-related hematological disorders. We are now using this work on normal HSCs as a platform to understand at the molecular level how the DNA damage response and the mechanisms of DNA repair become deregulated in leukemic HSCs during the development of hematological malignancies.
  • Our work during the third year of the CIRM New Faculty award has extended and broaden up our investigations in two novel directions that are still within the scope of our initial Aims: 1) identifying novel stress-response mechanisms that preserve hematopoietic stem cells (HSC) fitness during periods of metabolic stress; and 2) understanding how deregulations in DNA repair mechanisms contribute to the aberrant functions of old and transformed HSCs. Blood development is organized hierarchically, starting with a rare but well-defined population of HSCs that give rise to a series of committed progenitors and mature cells with exclusive functional and immunophenotypic properties. HSCs are the only cells within the hematopoietic system that self-renew for life, whereas other hematopoietic cells are short-lived and committed to the transient production of mature blood cells. Under steady-state conditions, HSCs are a largely quiescent, slowly cycling cell population, which, in response to environmental cues, are capable of dramatic expansion and contraction to ensure proper homeostatic replacement of all blood cells. While considerable work has deciphered the molecular networks controlling HSC activity, still little is known about how these mechanisms are integrated at the cellular level to ensure life-long maintenance of a functional HSC compartment. HSCs reside in hypoxic niches in the bone marrow microenvironment, and are mostly kept quiescent in order to minimize stress and the potential for damage associated with cellular respiration and cell division. Last year, we showed that HSCs can also engage specialized response mechanisms that protect them from the killing effect of environmental stresses such as ionizing radiation (IR) (Mohrin et al., Cell Stem Cell, 2010). We demonstrated that long-lived HSCs, in contrast to short-lived myeloid progenitors, have enhanced expression of pro-survival members of the bcl2 gene family and robust induction of p53-mediated DNA damage response, which ensures their specific survival and repair following IR exposure. We reasoned that HSCs have other unique protective features, which allow them to contend with a variety of cellular insults and damaged cellular components while maintaining their life-long functionality and genomic integrity. Now, we show that HSCs use the self-catabolic process of autophagy as an essential survival mechanism in response to metabolic stress in vitro or nutriment deprivation in vivo. Last year, we also reported that although HSCs largely survive genotoxic stress their DNA repair mechanisms make them intrinsically vulnerable to mutagenesis (Mohrin et al., Cell Stem Cell, 2010). We showed that their unique quiescent cell cycle status restricts them to the use of the error-prone non-homologous end joining (NHEJ) DNA repair mechanism, which renders them susceptible to genomic instability and transformation. These findings provide the beginning of an understanding of why HSCs, despite being protected at the cellular level, are more likely than other hematopoietic cells to initiate blood disorders (Blanpain et al., Cell Stem Cell, review, 2011). Such hematological diseases increase with age and include immunosenescence (a decline in the adaptive immune system) as well as the development of myeloproliferative neoplasms, leukemia, lymphoma and bone marrow failure syndromes. Many of these features of aging have been linked to changes in the biological functions of old HSCs. Gene expression studies and analysis of genetically modified mice have suggested that errors in DNA repair and loss of genomic stability in HSCs are driving forces for aging and cancer development. However, what causes such failures in maintaining HSC functionality over time remains to be established. We therefore asked whether the constant utilization of error-prone NHEJ repair mechanism and resulting misrepair of DNA damage over a lifetime could contribute to the loss of function and susceptibility to transformation observed in old HSCs. Similarly, we started investigating how mutagenic DNA repair could contribute to the genomic instability of HSC-derived leukemic stem cells (LSC).
  • Our work during the fourth year of the CIRM New Faculty award has been focused on achieving the goals set forth last year for the two first aims of the grant: 1) identifying the stress-response mechanisms that preserve hematopoietic stem cells (HSC) fitness during periods of metabolic stress; and 2) understanding how deregulations in DNA repair mechanisms contribute to the aberrant functions of old HSCs and the aging of the blood system.
  • Blood development is organized hierarchically, starting with a rare but well-defined population of HSCs that give rise to a series of committed progenitors and mature cells with exclusive functional and immunophenotypic properties. HSCs are the only cells within the hematopoietic system that self-renew for life, whereas other hematopoietic cells are short-lived and committed to the transient production of mature blood cells. Under steady-state conditions, HSCs are a largely quiescent, slowly cycling cell population, which, in response to environmental cues, are capable of dramatic expansion and contraction to ensure proper homeostatic replacement of all needed blood cells. While considerable work has deciphered the molecular networks controlling HSC activity, still little is known about how these mechanisms are integrated at the cellular level to ensure life-long maintenance of a functional HSC compartment.
  • HSCs reside in hypoxic niches in the bone marrow microenvironment, and are mostly kept quiescent in order to minimize stress and the potential for damage associated with cellular respiration and cell division. Previously, we found that HSCs also have a unique pro-survival wiring of their apoptotic machinery, which contribute to their enhanced resistance to genotoxic stress (Mohrin et al., Cell Stem Cell, 2010). Now, we identified autophagy as an essential mechanism protecting HSCs from metabolic stress (Warr et al., Nature, in press). We show that HSCs, in contrast to their short-lived myeloid progeny, robustly induce autophagy following ex vivo cytokine withdrawal and in vivo caloric restriction. We demonstrate that FoxO3a is critical to maintain a gene expression program that poise HSCs for rapid induction of autophagy upon starvation. Notably, we find that old HSCs retain an intact FoxO3a-driven pro-autophagy gene program, and that ongoing autophagy is needed to mitigate an energy crisis and allow their survival. Our results demonstrate that autophagy is essential for the life-long maintenance of the HSC compartment and for supporting an old, failing blood system.
  • Previous studies have also suggested that increased DNA damage could contribute to the functional decline of old HSCs. Therefore, we set up to investigate whether the reliance on the error-prone non-homologous end-joining (NHEJ) DNA repair mechanism we previously identified in young HSCs (Mohrin et al., Cell Stem Cell, 2010) could render old HSCs vulnerable to genomic instability. We confirm that old HSCs have increased numbers of γH2AX DNA foci but find no evidence of associated DNA damage. Instead, we show that γH2AX staining in old HSCs entirely co-localized with nucleolar markers and correlated with a significant decrease in ribosome biogenesis. Moreover, we observe high levels of replication stress in proliferating old HSCs leading to severe functional impairment in condition requiring proliferation expansion such as transplantation assays. Collectively, our results illuminate new features of the aging HSC compartment, which are likely to contribute to several facets of age-related blood defects (Flach et al, manuscript in preparation).
  • Our work during the fifth and last year of our CIRM New Faculty award has been essentially focused on understanding how deregulations in DNA repair mechanisms contribute to the aberrant functions of old hematopoietic stem cells (HSC) and the aging of the blood system.

Derivation and Characterization of Cancer Stem Cells from Human ES Cells

Funding Type: 
SEED Grant
Grant Number: 
RS1-00228
ICOC Funds Committed: 
$642 500
Disease Focus: 
Blood Cancer
Cancer
Stem Cell Use: 
Cancer Stem Cell
Embryonic Stem Cell
Cell Line Generation: 
Cancer Stem Cell
Public Abstract: 
Cancer is the leading cause of death for people younger than 85 (1). High cancer mortality rates underscore the need for more sensitive diagnostic techniques as well as therapies that selectively target cells responsible for cancer propagation (1) Compelling studies suggest that human cancer stem cells (CSC) arise from aberrantly self-renewing tissue specific stem or progenitor cells and are responsible for cancer propagation and therapeutic resistance (2-9). Although the majority of current cancer therapies eradicate rapidly dividing cells within the tumor, the rare CSC population may be quiescent and then reactivate resulting in disease progression and relapse (2-9). We recently demonstrated that CSC are involved in progression of chronic phase chronic myelogenous leukemia (CML), a disease that has been the subject of many landmark discoveries in cancer research(19-30), to a more aggressive and therapeutically recalcitrant myeloid blast crisis (BC) phase. These CSC share the same cell surface markers as granulocyte-macrophage progenitors (GMP) but have aberrantly gained the capacity to self-renew as a result of activation of the Wnt/-catenin stem cell self-renewal pathway (4). Because human embryonic stem cells (hESC) have robust self-renewal capacity and can provide a potentially limitless source of tissue specific stem and progenitor cells in vitro, they represent an ideal model system for generating and characterizing human CSC (10-18). Thus, hESC cell research harbors tremendous potential for developing life-saving therapy for patients with cancer by providing a platform to rapidly and rationally test new therapies that specifically target CSC (2-18). To provide a robust model system for screening novel anti-CSC therapies, we propose to generate and characterize CSC from hESC (10-18). We will investigate the role of genes that are essential for initiation of CML such as BCR-ABL and additional mutations such as b-catenin implicated in CSC propagation (19-30). The efficacy of specific Wnt/b-catenin antagonists at inhibiting BCR-ABL+ human ES cell self-renewal, survival and proliferation alone and in combination with potent BCR-ABL antagonists will be assessed in sensitive in vitro and in vivo assays with the ultimate aim of developing highly active anti-CSC therapy that may halt cancer progression and obviate therapeutic resistance (4,31).
Statement of Benefit to California: 
The research outlined in this proposal represents a unique opportunity for collaborations between investigators from disparate disciplines to use human embryonic stem cells to challenge an existing paradigm namely that leukemic blasts are responsible for progression of chronic myelogenous leukemia (CML) rather than leukemic stem cells (LSC). Current clinical diagnostic tests are not sufficiently sensitive to predict timing of progression for all patients with CML nor are they adequate for determining the type of therapeutic intervention required. Moreover, the primary therapy for CML, Abl kinase inhibition, was shown to be cardiotoxic when given long-term at high doses. Furthermore, amplification of BCR-ABL is not the sole event that occurs during CML progression to blast crisis. Identification and inhibition of molecular mutations responsible for the generation of LSC in CML blood and/or marrow may prevent progression to blast crisis (BC) and would represent an innovative, effective form of CML therapy. Modeling of LSC responsible for CML progression in human embryonic stem cells could have a significant impact on our understanding of the pathophysiology of CML, provide novel diagnostic and therapeutic modalities and improve the quality and possibly quantity of life of patients with CML. By using BCR-ABL transduced human embryonic stem cells, we will rigorously evaluate the LSC hypothesis and as a consequence, the additional molecular events required for progression to blast crisis CML. The ultimate aims of this grant are to develop more sensitive methods to predict leukemic progression and to identify novel molecular therapeutic targets through the development of LSC models using human embryonic stem cells. We aim to provide a robust, reproducible system for testing novel anti-LSC compounds alone and in combination in order to expedite the development of novel therapeutic agents for anti-LSC clinical trials at {REDACTED}. Not only may the translational research performed in the context of this grant speed the delivery of innovative anti-LSC therapies for Californians with leukemia, it will help to train California’s future R&D workforce in addition to developing leaders in translational medicine. This grant will provide the personnel working on the project with a clear view of the importance of their research to cancer therapy and a better perspective on future career opportunities in California.
Progress Report: 
  • SEED Grant Research Summary
  • Compelling studies suggest that cancer stem cells (CSC) arise from primitive self-renewing progenitor cells. Although many cancer therapies target rapidly dividing cells, CSC may be quiescent i.e. asleep resulting in therapeutic resistance. Recently, we demonstrated that CSC drive progression of chronic phase (CP) chronic myeloid leukemia (CML), a subject of many landmark cancer research discoveries, to a therapeutically recalcitrant myeloid blast crisis (BC) phase. CML CSC share cell surface markers with granulocyte-macrophage progenitors (GMP) and have amplified expression of the CML fusion gene, BCR-ABL. In addition, they aberrantly gain self-renewal capacity, in part, as a result Wnt/β-catenin activation. Because human embryonic stem cells (hESC) have robust regenerative capacity and can provide a potentially limitless source of tissue specific progenitor cells in vitro, they represent an ideal model system for generating and characterizing human CSC. The main goals of this research were to generate CSC from hESC to provide an experimentally amenable platform to expedite the development of sensitive diagnostics that predict progression and combined modality anti-CSC therapy.
  • To this end, we tested whether BCR-ABL expression in hESC is sufficient to induce changes characteristic of CML stem cells. Unlike mouse ESC, introduction of a novel lentiviral BCR-ABL vector into hESC did not drive myeloid differentiation nor did it induce stromal independence in vitro underscoring key differences between mouse and human hESC and the importance of in vivo models. Notably, Hues16 cells had a higher propensity to differentiate into CD34+ cells than other hESC lines particularly in AGM co-cultures and thus, were used in subsequent in vivo experiments. Moreover, this SEED grant funded Yosuke Minami in Professor Jean Wang’s lab to create a unique CML blast crisis mouse model typified by GMP expansion and resistance to a BCR-ABL inhibitor, imatinib (Minami et al, PNAS 2008;105:17967-72). In addition, a bioluminescent humanized model of blast crisis CML was created based on transplantation of GMP from patient blood into immune deficient mice (RAG2-/-gc-/-). Cells were tagged with firefly luciferase that emits a bioluminescent signal so that leukemic transplantation efficiency could be tracked in vivo (IVIS). As few as 1,000 human blast crisis CML GMP could transplant leukemia in immune deficient mice thereby providing an important model for studying the molecular events that contribute to leukemic transformation (Abrahamsson et al, PNAS 2009;106:3925-9).
  • In the second aim, we hypothesized that BCR-ABL is sufficient for generating CML from self-renewing stem cells. In these studies, Hues16 cells differentiated into CD34+ cells were lentivirally transduced with BCR-ABL leading to sustained BCR-ABL engraftment in 50% of transplanted mice. Chronic phase CD34+ cells derived from CML blood were less efficient at sustaining CML engraftment (7%) suggesting that hESC derived CD34+ cells have higher self-renewal potential and are similar to advanced phase CML progenitors.
  • Thirdly, we hypothesized that BCR-ABL was necessary but not sufficient for progression to blast crisis. Introduction of lentiviral activated beta-catenin or shRNA to GSK3beta, together with BCR-ABL did not enhance BCR-ABL engraftment compared with BCR-ABL transduction of hESC alone. These studies suggested that hESC may already have sufficient self-renewal capacity to sustain the malignant CML clone and are molecularly comparable to advanced CML progenitors that behave like CSC. In addition, through extensive cDNA sequencing of human blast crisis CML progenitors, we found that 57% of samples harbored a misspliced form of GSK3beta that promoted tumor production and could serve as a novel prognostic marker in CML clinical trials (Abrahamsson et al, PNAS 2009;106:3925-9).
  • In the final aim, we hypothesized that CML CSC are not eliminated by BCR-ABL inhibitors alone and that combined modality therapy will be required. In collaborative research involving in vitro analysis of imatinib resistant CML progenitors and more recently in a humanized mouse model of blast crisis CML, we found that dasatinib, a potent BCR-ABL inhibitor, is necessary but not sufficient for CSC eradication. Discovery of a GSK3beta deregulation, a negative regulator of both beta-catenin and sonic hedgehog (Shh) pathways (Zhang et al, Nature 2009), led us to disover that Shh combined with BCR-ABL inhibition abrogated CSC driven tumor formation (manuscript in preparation) providing the impetus for an upcoming Pfizer sponsored Shh inhibitor clinical trial for refractory hematologic malignancies.

Preclinical development of a pan Bcl2 inhibitor for cancer stem cell directed therapy

Funding Type: 
Early Translational II
Grant Number: 
TR2-01789
ICOC Funds Committed: 
$3 341 758
Disease Focus: 
Blood Cancer
Cancer
Stem Cell Use: 
Cancer Stem Cell
Cell Line Generation: 
Cancer Stem Cell
oldStatus: 
Active
Public Abstract: 
Cancer is the leading cause of death for individuals under 85. Relapse and metastatic disease are the leading causes of cancer related mortality. Anti-apoptotic BCL2 family member overexpression has been shown to promote disease progression in both chronic myeloid leukemia (CML) and prostate cancer. Andr., the emergence of cancer stem cells (CSC) promotes apoptosis resistance in the bone marrow metastatic microenvironment. While targeted therapy with BCR-ABL inhibitors has improved survival of patients with chronic phase CML, the prevalence has doubled since 2001 with over 22,000 people living with CML in the US in 2009. Unfortunately, a growing proportion of patients become intolerant or simply cannot afford full dose BCR-ABL inhibitor therapy and thus, progress to advanced phase disease with a 5 year survival rate of less than 30%. Although prostate cancer prevalence was high at 2.26 million in 2007, distant disease was relatively rare at 5%. However, like blast crisis CML, metastatic prostate cancer survival was only 30% over 5 years. 
Overexpression of B-cell lymphoma/leukemia-2 (BCL2) family genes has been observed in human blast crisis CML and advanced prostate cancer and may fuel CSC survival. Recent RNA sequencing data demonstrate that human CSC express a panoply of anti-apoptotic Bcl-2 isoforms in response to extrinsic signals in vivo, indicating that a pan BCL2 inhibitor will be required to abrogate CSC survival. Through binding and anti-tumor studies, a potent inhibitor of BCL2 pro-survival family proteins, BI-97C1, has been identified which inhibits the binding of BH3 peptides to Bcl-XL, Bcl-2, Mcl-1 and Bfl1-1 with nanomolar IC50 values. Notably, BI-97C1 potently inhibits growth of human prostate cancer in a xenograft model as well as blast crisis CML CSC engrafted in RAG2-/-c-/- mice while exerting minimal cytotoxicity toward bax-/-bak-/- cells. Because BI-97C1 inhibits all six anti-apoptotic Bcl-2 family members including Bcl-2, Mcl-1 (myeloid cell leukemia 1), Bcl-XL (BCL2L1), Bfl-1 (BCL-2A1), Bcl-W (BCL2L2) and Bcl-B (BCL2L10) proteins, with improved chemical, plasma and microsomal stability relative to apogossypol, we anticipate that it will have clinical utility for targeting apoptosis resistant human CSC in two malignancies with proven reliance on BCL2 signaling – blast crisis CML and advanced prostate cancer. 
Thus, anti-apoptotic BCL2 family member inhibition with BI-97C1 could represent a vital component of a potentially curative strategy for advanced malignancies that may obviate the need for costly continuous tyrosine kinase inhibitor therapy by increasing sensitivity to therapy. Elimination of CSC contributing to therapeutic resistance, the primary cause of cancer death, is of high clinical importance and thus, development of a small molecule pan-BCL2 inhibitor would fulfill a vital unmet medical need, fuel California biotechnology stem cell R&D efforts and decrease health care costs for patients with cancer.

Statement of Benefit to California: 
Cancer is the leading cause of death for individuals under 85 and usually results from metastatic disease in the setting of therapeutic recalcitrance. Anti-apoptotic BCL2 family member overexpression has been shown to promote disease progression in both chronic myeloid leukemia and prostate cancer. Moreover, the emergence of quiescent cancer stem cells promotes apoptosis resistance in the bone marrow niche for. While targeted BCR-ABL inhibition has resulted in improved survival of patients with chronic phase CML, the prevalence has doubled since 2001 with over 22,000 people living with CML in the US in 2009 (http://www.leukemia-lymphoma.org). Unfortunately, a growing proportion of patients become intolerant or simply cannot afford full dose BCR-ABL inhibitor therapy as a result of spiraling annual costs and thus, progress to advanced phase disease with a 5 year survival rate of less than 30%. Although prostate cancer prevalence was high at 2.26 million in 2007, distant disease was relatively rare at 5%. Like CML, metastatic prostate cancer survival was only 30% over 5 years (http://seer.cancer.gov/statfacts/html/prost.html#prevalence <http:> ). Like blast crisis CML, prostate cancer progression and metastasis is associated with BCL2 overexpression. Thus, anti-apoptotic BCL2 family member inhibition with BI-97C1 could represent a vital component of a potentially curative strategy for advanced malignancies that may obviate the need for costly continuous tyrosine kinase inhibitor therapy by increasing sensitivity to therapy. Elimination of CSC contributing to therapeutic resistance, the primary cause of cancer death, is of high clinical importance and thus, development of a small molecule pan-BCL2 inhibitor would fulfill a vital unmet medical need, fuel California biotechnology stem cell R&amp;D efforts and decrease health care costs for patients with cancer.</http:>
Progress Report: 
  • Overexpression of Bcl-2 family genes may fuel CSC survival. Recent RNA sequencing data demonstrate that human CSC express a panoply of antiapoptotic Bcl-2 isoforms in response to extrinsic signals in vivo, indicating that a pan Bcl-2 inhibitor will be required to abrogate CSC survival. Sabutoclax inhibits growth of blast crisis CML CSC engrafted in RAG2-/-c-/- mice with minimal cytotoxicity toward bax-/-bak-/- cells. Because sabutoclax inhibits all six antiapoptotic Bcl-2 family members including Bcl-2, Mcl-1, Bcl-XL, Bfl-1, Bcl-W and Bcl-B proteins, with good chemical, plasma and microsomal stability, we anticipate that it will have clinical utility for targeting apoptosis resistant human CSC in malignancies
  • Significant progress against milestones in the first year was accomplished and we have made early progress on several milestones projected for Year 2. During this 6 month reporting period, sabutoclax was licensed by a biotech company, Oncothyreon. The license was previously held by Coronado Biosciences. Dr. Pellecchia (SBMRI ) continues to provide sabutoclax to Dr. Jamieson for use in cellular and in vivo studies. SBMRI conducted QC analyses (integrity and purity) on samples’ used in preclinical studies and provided comparative analyses of compound produced by the CMO produced by different methods of synthesis. Importantly, the sabutoclax manufacturing process was optimized allowing scale-up of drug. In formulation studies, a method was developed and qualified that separates impurities and degradation compounds from sabutoclax for quantitation of the drug. Additional solubility and stability studies were performed by Oncothyreon to identify an IV formulation that could be used for both nonclinical studies and the clinic. Several pilot PK studies in mice, rats and dogs, planned for Year 2, were also conducted by Oncothyreon. Through whole transcriptome RNA sequencing Dr. Jamieson showed that Bcl-W was up-regulated in CP and BC progenitors compared to normal CB progenitors. Previous qRT-PCR results for Mcl-1 were confirmed, showing that the long isoform was preferentially expressed in BC CML. Results for Bcl-2 and Mcl-1 were also confirmed at the protein level by FACS analysis and immunohistochemistry of bone marrow (BM) from mice engrafted with human CML CD34+ LSC.
  • Sabutoclax treatment ablated BC CML progenitor cells in vivo and in vitro. Colony formation of BC CML (vs normal progenitor cells) was decreased by sabutoclax in a dose dependent manner. When CML cells were co-cultured with stromal cells or in stroma conditioned media, BCL-2 mRNA expression was increased and colony formation was improved. Knockdown of endogenous BCL2 in BC CML cells by shRNA resulted in decreased colony formation. Preliminary results suggest that BM is a protective niche for BC CML CSC and that sabutoclax may target these niche protected cells.
  • In BC CML engrafted mice, dasatinib increased quiescent BC CML cell engraftment in mouse BM measured by FACS for cell cycle markers. Sabutoclax decreased BCL-2 and MCL1 protein expression by immunohistochemistry staining and decreased quiescent BC CML CSC in BM however sabutoclax increased TUNEL staining in BM suggesting that while dasatinib may increase the number of quiescent BC CML CSC, sabutoclax may do the reverse.
  • High doses of sabutoclax administered in combination with dasatinib resulted in a significant decrease in human cell engraftment in BM versus dasatinib alone. Mice serially transplanted with tissues from combination treated mice had increased survival compared to serial transplants of single agent treated tissues. Human CD34+ cells from the BM of combination treated mice had more cells in cycle than CD34+ cells compared to the BM of mice treated with dasatinib alone. The frequency of CD34+BCL2+ and CD34+MCL1+ BC LSC were significantly lower in BM treated with a combination of sabutoclax and dasatinib suggesting that sabutoclax and dasatinib may act synergistically to increase survival of BC CML engrafted mice.
  • Dormant cancer stem cells (CSC) contribute to therapeutic resistance and relapse in chronic myeloid leukemia (CML) and other recalcitrant malignancies. Cumulative data demonstrate that overexpression of BCL2 family pro-survival splice isoforms fuels quiescent CSC survival in human blast crisis (BC) CML. Whole transcriptome RNA sequencing data, apoptosis PCR array and splice isoform specific qRT-PCR demonstrate that human CSC express anti-apoptotic long BCL2 isoforms in response to extrinsic signals in the marrow niche, indicating that a pan BCL2 inhibitor will be required to abrogate CSC survival. Sabutoclax, a novel pan BCL2 inhibitor, prevents survival of BC CSC engrafted in RAG2-/-c-/- mice, commensurate with downregulation of pro-survival BCL2 splice isoforms and proteins, and sensitizes CSC to a BCR-ABL inhibitor, dasatinib, while exerting minimal cytotoxicity toward normal hematopoietic stem cells. Because sabutoclax inhibits all six anti-apoptotic BCL2 family members, with good chemical, plasma and microsomal stability, in addition to a scaleable production process, we anticipate that it will have broad clinical utility for targeting apoptosis resistant quiescent human CSC in a number of recalcitrant malignancies as featured in our recent lead article (Goff D et al, Cell Stem Cell. 2013 Mar 7;12(3):316-28).
  • Significant progress against milestones in the second year was accomplished and we have made early progress on several milestones projected for Year 3. Whole transcriptome RNA sequencing, qRT-PCR array and splice isoform specific qRT-PCR analysis performed on FACS purified progenitors derived from 8 CP, 8 BC and 6 normal samples demonstrated splice isoform switching favoring pro-survival long isoform expression during progression from CP to blast BC CML and in CSC engrafted in the bone marrow (BM) niche. Both human BCL2 and MCL1 protein expression co-localized with engrafted human leukemic CD34+ cells in the bone marrow epiphysis and served as important biomarkers of response to sabutoclax. Importantly, intravenous treatment with sabutoclax reduced BC CML CSC survival in both marrow and splenic niches at doses that spared normal hematopoietic stem cells in RAG2-/-gamma c-/- xenograft models established with cord blood CD34+ cells.
  • While dasatinib treatment alone increased serially transplantable quiescent BC CML CSC in BM, sabutoclax decreased CSC survival commensurate with upregulation of short pro-apoptotic and downregulation of long anti-apopoptotic BCL2 family isoforms. While previous studies involved intraperitoneal administration, in the last 12 months we have focused on a more clinically relevant intravenous (IV) administration schedule with IV sabutoclax administered alone or in combination with oral dasatinib. In these studies, sabutoclax sensitized quiescent CSC to dasatinib resulting in a significant decrease in CSC survival versus dasatinib alone. Moreover, mice serially transplanted with human cells from combination treated mice had increased survival compared to serial transplants of single agent treated tissues. Human CD34+ cells from the BM of combination treated mice had more cells in cycle than CD34+ cells compared to the BM of mice treated with dasatinib alone. The frequency of CD34+BCL2+ and CD34+MCL1+ BC CSC were significantly lower in BM treated with a combination of sabutoclax and dasatinib suggesting that the combination acts synergistically to decrease CSC survival and increase the lifespan of CSC engrafted mice.
  • During this 12-month reporting period, sabutoclax production was successfully scaled up by two separate CMOs, Syncom and Norac. Dr. Pellecchia (SBMRI) provided flash chromatography purified sabutoclax to Dr. Jamieson for use in cellular and in vivo studies in addition to conducting QC analyses (integrity and purity) on scaled up sabutoclax formulations produced by Norac (4g) and Syncom (30g) in different vehicles. In formulation studies, a flash chromatography method was developed and qualified that separates impurities and degradation compounds from sabutoclax. Additional solubility and stability studies were performed to identify an IV Solutol formulation, compared with the previous IP DMSO/PBS Tween formulation, which could be used for both pre-clinical studies and in future clinical trials. Pilot PK studies in mice and rats were conducted with the Solutol formulated sabutoclax and showed weight loss associated with impurities that could be readily removed by standard flash chromatography. As a result, ssabutoclax production will include flash chromatography to enhance purity and stability and this material will be used for further PK and PD studies. In conclusion, we are on track to accomplish our milestones as set forth in the grant and anticipate that sabutoclax will form the basis of combination clinical studies aimed at eradicating quiescent CSC in a broad array of refractory malignancies.
  • Recent cancer stem cell research performed by ourselves and others has bolstered interest in BCL2 family member expression and inhibition in chronic myeloid leukemia (CML), acute myeloid leukemia (AML) and breast cancer (Goff DJ et al Cell Stem Cell 2013; Lagadinou ED et al Cell Stem Cell 2013; Vaillant F et al Cancer Cell 2013). Overexpression of pro-survival BCL2 family genes has been linked to therapeutic resistance driven by dormant, self-renewing CSC. Thus, the BCL2 family represents an attractive therapeutic target that may provide the potential to reduce relapse rates. Because of the greater proclivity for alternative splicing in humans compared with mice, our CIRM ETll funded research has focused on whole transcriptome RNA sequencing, splice isoform specific qRT-PCR and BCL2 PCR array analysis of FACS-purified CSC from patients with CML and CSC derived from human blast crisis CML engrafted RAG2-/-gc-/- mouse models.
  • A Pan-BCL2 inhibitor renders bone-marrow-resident human leukemia stem cells sensitive to tyrosine kinase inhibition. Cell Stem Cell. 2013 Mar 7;12(3):316-28) was featured in a lead article in Cell Stem Cell in March. This study also led to a number of disclosures relating to unique self-renewal and survival gene splice isoform based CSC detection and patient prognostication strategies. As a result, pan BCL2 targeting has generated considerable interest from academic and pharmaceutical investigators who would like to adopt the approach of dormant CSC sensitization to agents that target dividing cells, including tyrosine kinase inhibitors, chemotherapy and radiation therapy.

RUNNING TITLE: Stem Cell Gene Therapy for HIV in AIDS Lymphoma Patients

Funding Type: 
Disease Team Therapy Planning I
Grant Number: 
DR2-05327
ICOC Funds Committed: 
$74 195
Disease Focus: 
Blood Cancer
Cancer
HIV/AIDS
oldStatus: 
Closed
Public Abstract: 
The Human Immunodeficiency Virus (HIV) is still a major health problem. In both developed and underdeveloped nations, millions of people are infected with this virus. HIV infects cells of the immune system, becomes part of the cell’s genetic information, stays there for the rest of the life of these cells, and uses these cells as a factory to make more HIV. In this process, the immune cells get destroyed. Soon a condition called AIDS, the Acquired Immunodeficiency Syndrome sets in where the immune system cannot fight common infections. If left untreated, death from severe infections occurs within 8 to 10 years. Although advances in treatment using small molecule drugs have extended the life span of HIV infected individuals, neither a cure for HIV infection nor a well working vaccine could be developed. Drug treatment is currently the only option to keep HIV infected individuals alive. Patients have to take a combination of drugs daily and reliably for the rest of their lives. If not taken regularly, HIV becomes resistant to the drugs and continues to destroy immune cells. What makes this situation even more complicated is the fact that many patients cannot take these drugs due to severe side effects. Stem cell gene therapy for HIV may offer an alternative treatment. Blood forming stem cells, also called bone marrow stem cells make all blood cells of the body, including immune system cells such as T cells and macrophages that HIV destroys. If “anti-HIV genes” were inserted into the genetic information of bone marrow stem cells, these genes would be passed on to all new immune cells and make them resistant to HIV. Anti-HIV gene containing immune cells can now multiply in the presence of HIV and fight the virus. In previous and current stem cell gene therapy clinical trials for HIV, only one anti-HIV gene has been used. Our approach, however, will use a combination of three anti-HIV genes which are much more potent. They will not only prevent HIV from entering an immune cell but will also prevent HIV from mutating, since it would have to escape the anti-HIV effect of three genes, similar to triple combination anti-HIV drug therapy. To demonstrate safety and effectiveness of our treatment, we will perform a clinical trial in HIV lymphoma patients. In such patients, the destruction of the immune system by HIV led to the development of a cancer of the lymph nodes called B cell lymphoma. High dose chemotherapy together with the transplantation of the patient’s own bone marrow stem cells cures B cell lymphoma. We will insert anti-HIV genes in the patient’s bone marrow stem cells and then transplant these gene containing cells into the HIV infected lymphoma patient. The gene containing bone marrow stem cells will produce a new immune system and newly arising immune cells will be resistant to HIV. In this case, we have not only cured the patient's cancer but have also given the patient an HIV resistant immune system which will be able to fight HIV.
Statement of Benefit to California: 
As of September 30, 2010, over 198,883 cumulative HIV/AIDS cases were reported in California. Another 40,000 un-named cases of HIV were also reported before 2006 although some of them may be duplicates of the named HIV cases. Patients living with HIV/AIDS totaled 108,986 at the end of September 2010. These numbers continue to grow since new cases of HIV and AIDS are being reported on a daily basis and patients now live much longer. In fact, after New York, California has the second highest number of HIV cases in the nation. Although the current and improved anti-retroviral small molecule drugs have prolonged the life of these patients, they still have to deal with the emotional, financial, and medical consequences of this disease. The fear of side effects and the potential generation of drug resistant strains of HIV is a constant struggle that these patients have to live with for the rest of their lives. Furthermore, not every patient with HIV responds to treatment and not every complication of HIV dissipates upon starting a drug regimen. In fact, the risk of some AIDS-related cancers still remains high despite the ongoing drug therapy. Additionally, in the current economic crisis, the financial burden of the long term treatment of these patients on California taxpayers is even more obvious. In 2006, the lifetime cost of taking care of an HIV patient was calculated to be about $618,900. Most of this was related to the medication cost. With the introduction of new HIV medications that have a substantially higher price and with the increase in the survival of HIV/AIDS patients, the cost of taking care of these patients can be estimated to be very high. The proposed budget cuts and projected shortfall in the California AIDS assistant programs such as ADAP will make the situation worse and could result in catastrophic consequences for patients who desperately need this of kind of support. Consequently, improved therapeutic approaches and the focus on developing a cure for HIV infected patients are issues of great importance to the people of California. Our proposed anti-HIV stem cell gene therapy strategy comprises the modification of autologous hematopoietic blood forming stem cells with a triple combination of potent anti-HIV genes delivered by a single lentiviral vector construct. This approach would engineer a patient’s immune cells in a way to make them completely resistant to HIV infection. By transplanting these anti-HIV gene expressing stem cells back into an HIV infected patient, the ability of HIV to further replicate and ravage the patient’s immune system would be diminished. The prospect of such a stem cell based therapy which may require only a single treatment to cure an HIV infected patient and which would last for the life of the individual would be especially compelling to the HIV community and the people of California.
Progress Report: 
  • HIV is still a major health problem. In both developed and underdeveloped nations, millions of people are infected with this virus. If left untreated, death from severe infections occurs within 8 to 10 years. Although advances in treatment using small molecule drugs have extended the life span of HIV infected individuals, neither a cure for HIV infection nor a well working vaccine could be developed. Drug treatment is currently the only option to keep HIV infected individuals alive. Patients have to take a combination of drugs daily and reliably for the rest of their lives. If not taken regularly, HIV becomes active again and may even become resistant to the drugs and continues to destroy immune cells. What makes this situation even more complicated is the fact that many patients cannot take these drugs due to severe side effects. Stem cell gene therapy for HIV may offer an alternative treatment. If “anti-HIV genes” were inserted into the genetic information of bone marrow stem cells, these genes would be passed on to all new immune cells and make them resistant to HIV. Anti-HIV gene containing immune cells can now multiply in the presence of HIV and fight the virus. In our approach, we are planning to use a combination of three anti-HIV genes which are much more potent. They will not only prevent HIV from entering an immune cell but will also prevent HIV from mutating, since it would have to escape the anti-HIV effect of three genes, similar to triple combination anti-HIV drug therapy. To demonstrate safety and effectiveness of our treatment, we have proposed a clinical trial in HIV lymphoma patients with stem cell gene therapy incorporated into their routine treatment with high dose chemotherapy together with the transplantation. The fund provided by CIRM (California Institute for Regenerative Medicine) gave us the opportunity to put together a panel of experts within the University of California at Davis and another panel of international experts in the area of gene therapy (an external advisory board). Intense discussion in multiple meeting with members of these two panels as well as many other meetings with individual researches within our institution resulted in the design of a clinical trial for treating patients with HIV disease using our gene therapy approach. It further helped us to identify the necessary means needed to support such a regulatory intensive gene therapy trial. To be able to recruit enough patients for such a trial, we used the funds from this planning grant for several presentations to our colleagues in other institutions for a multi-institutional clinical trial approach. The funds provided to us through this grant helped to calculate the budget required to 1) finish our application with Federal Drug Administration (FDA) to obtain the appropriate license for starting such a trial and 2) to manufacture the target drug and 3) to run the actual clinical trial. Finally, with the help of this grant, we have put together a CIRM disease grant proposal and have applied for necessary funds based on the above calculation.
  • The original progress report was submitted to the CIRM on March 1st 2012. The no cost extension was requested to perform the necessary work related to further development of our clinical trial before submission to RAC. During this period, in multiple meetings we rewrote our clinical trial based on the comments of our external advisory board and other consultants. We submitted our clinical trial protocol and Appendix M to RAC committee and after receiving their preliminary comments, we formulated our response. As the last step, we presented our clinical trial to the members of RAC committee and received a unanimous approval to move forward with the IND application to FDA.

Mechanisms of Hematopoietic stem cell Specification and Self-Renewal

Funding Type: 
New Faculty I
Grant Number: 
RN1-00557
ICOC Funds Committed: 
$2 286 900
Disease Focus: 
Blood Cancer
Cancer
Anemia
Stem Cell Use: 
Adult Stem Cell
Embryonic Stem Cell
oldStatus: 
Active
Public Abstract: 
During an individual’s lifetime, blood-forming cells in the bone marrow called hematopoietic stem cells (HSCs) supply all the red and white blood cells needed to sustain life. These blood stem cells are unique because they can make an identical copy of themselves (self-renew). Disorders of the blood system can be terminal, but such diseases may be cured when patients are treated with a bone marrow transplant. Unfortunately, bone marrow is in short supply due to limited availability of donors, and it is not yet possible to expand HSCs outside of the human body; HSCs that are removed from their native environment, or niche, rapidly lose their ability to self-renew and thus cannot sustain hematopoiesis in a transplant recipient. Furthermore, attempts to make blood stem cells from embryonic stem cells (ESCs) have also proved unsuccessful to date because these “tailored HSCs” are defective in self-renewal as well. These problems suggest that our understanding of the biology of HSCs is not sufficient to foster their maintenance or generation. To address this issue, we propose to study hematopoietic stem cells in the context of mammalian development; the entire complement of a person’s HSCs is made in a very short time window during the first trimester of pregnancy. By increasing our understanding of how HSCs are made and acquire self-renewal in vivo, we hope to develop better methods of generating HSCs in vitro and learn to provide the missing cues to coax them into becoming fully functional, self-renewing hematopoietic stem cells. Specifically, we plan to investigate how the fate decision that delineates blood cells from their embryonic precursor, called specification, is maintained at the molecular level. Second, we are interested in what cell type human HSCs descend from so as to understand what precursor to look for when attempting to differentiate ESCs into blood stem cells. Finally, we plan to apply molecular analyses to the property of self-renewal by looking at cell populations that cover a spectrum with regards to self-renewal: HSCs, cultured HSCs (not self-renewing), HSC precursors (not self-renewing), and ESCs differentiated to non-self-renewing HSCs. These comparisons will help define the molecular regulation of self-renewal, and place ESC-derived progenitors on the spectrum of self-renewal. Through these studies, we hope to better understand blood stem cells as they are made and maintained during human development with the ultimate goal to provide wider access to stem cell-based therapies.
Statement of Benefit to California: 
Funding of research to understand hematopoietic stem cell (HSC) biology offers rewards beyond the pursuit of knowledge. HSCs are responsible for providing all of the blood cells in the body, including both red cells that carry oxygen and white cells that mediate immunity. Inherited disorders affecting HSCs and their progeny are responsible for diseases such as sickle cell anemia, Severe Combined Immunity Disorder (SCID), and leukemia; these devastating ailments change the lives of thousands of people in California every year, and currently most are incurable without a bone marrow or cord blood transplant. Due to the limited availability of donors, other alternatives, such as differentiating embryonic stem cells (ESCs) into HSCs, are being explored. One critical fault of ESC-derived progenitors is their inability to “self-renew”, i.e. produce more of themselves, thus eliminating their usefulness for transplantation. However, a deeper understanding of the developmental and molecular processes that create functional HSCs that can self-renew may ultimately make the goal of deriving HSCs from ESCs attainable. Research into the mechanisms of self-renewal may also improve treatments of cancers such as leukemia, as these diseases are a function of over-proliferation of cells caused by uncontrolled self-renewal; targeting genes or proteins involved in abnormal self-renewal programs may provide more specific cancer fighting drugs, and would likely foster collaborations with biotechnology companies. Furthermore, as all stem cells in the body have the ability to self-renew, a clear understanding of self-renewal mechanisms will benefit all stem cell research, and could have a positive effect in a wide range of biomedical specialties.
Progress Report: 
  • The goal of this grant is to investigate the cell intrinsic mechanisms that govern hematopoietic stem cell specification and self-renewal. During the second year of this award, we have further elucidated the regulatory mechanisms that dictate hematopoietic fate specification by validating the target genes that Scl/tal1 activates and represses in vivo (Aim 1). We have also shown that loss of Scl results not only results in loss of all blood cells, but also causes defective arterio-venous identity that precludes generation of hemogenic endothelium and hematopoietic stem cells. We have defined the phenotype of hemogenic endothelium and emerging HSCs in both mouse and human embryos (Aim 2), and identified novel markers that can be used to isolate developing HSCs at distinct stages, as well as to purify functional HSCs further (Aim 3). We have also established an inducible lentiviral based expression system that will now be used to test functionally candidate HSC regulators that were identified by comparing gene expression profiles between freshly isolated HSCs and dysfunctional HSCs that were expanded in culture or generated from human ES cells. We hope that these studies will provide better understanding of the key regulatory mechanisms that govern HSC properties, and ultimately lead to development of improved methods for generation of functional HSCs in culture.
  • Our work has focused on defining mechanisms that govern the specification and self-renewal of hematopoietic stem cells during mouse and human development. Using gene targeted mouse ES cells and mouse embryos, we defined the transcriptional programs that are regulated by Scl, the master regulator for blood formation. We discovered that Scl not only establishes the transcriptional programs that are critical for specifying hemogenic endothelium and hematopoietic stem cells, but it also represses heart development. Strikingly, in the absence of Scl, hemogenic endothelium in embryonic hematopoietic tissues becomes converted to cardiogenic fate, and gives rise to fully functional, beating cardiomyocytes.
  • In order to define the key programs that distinguish self-renewing HSCs from their downstream progenitors or the compromised HSPCs (hematopoietic stem/progenitor cells) that were generated in vitro, we performed microarray analysis for human phenotypic HSCs from various sources. We identified novel markers for human HSCs that can be used to purify transplantable HSCs to a higher purity. We have identified key molecular defects in HSCs that are expanded in culture, or generated from human ES cells. We have further validated that dysregulation of certain Hox genes is a major bottleneck for generating functional HSCs from human ES cells. Future studies are focused on establishing methods that would allow correction of the compromised HSC regulatory networks in cultured HSCs.
  • We have defined key regulatory mechanisms that are required for generation and maintenance of blood forming stem cells. We showed that transcription factor Scl is critical for specifying hemogenic endothelium from where blood stem cells emerge, and moreover, we discovered and unexpected repressive function for Scl to suppress cardiomyogenesis; in the absence of Scl, the blood vessels in start to generate beating cardiomyocytes. We have also identified factors that are critical for blood stem cells to maintain the unique properties: to self-renew (make more of themselves) and engraft (interact with the niche cells that support them). We will now continue to define how these key regulators act so that we can design better strategies to generate blood stem cells as well as heart muscle precursors for therapeutic applications.
  • The goal of this grant was to define mechanisms that govern blood stem cell specification and self-renewal. We have completed the studies on hematopoietic fate specification by defining how Scl/tal1 establishes hemogenic endothelium. We documented that, in addition to Scl’s critical function in activating blood cell regulators, Scl also has to repress heart factors to prevent the misspecification of blood precursors to heart muscle. We documented that Scl controls blood and heart regulators through enhancers that have been primed for activation prior to Scl action (Aim 1). We identified a new surface marker that is expressed in hemogenic endothelium and blood forming cells in the yolk sac (Lyve1), which provides new tools to investigate the origin of blood stem and progenitor cells during development (Aim 2). We identified GPI-80 as a novel marker for transplantable blood stem cells during human fetal development (Aim 2, 3). Taking advantage of this new marker for blood stem cells, we narrowed down the critical defects in the dysfunctional blood precursors that are generated from human ES cells, or expanded in culture from fetal liver blood stem cells (Aim 3). We showed that the inability to induce HOXA cluster genes and other novel blood stem cell regulators that cannot be sustained in culture hinder the generation of blood stem cells from pluripotent cells, and further validated these novel regulators using lentiviral knockdown and overexpression. These findings will now be used to develop novel strategies to generate blood stem cells in culture.

Development of Therapeutic Antibodies Targeting Human Acute Myeloid Leukemia Stem Cells

Funding Type: 
Disease Team Research I
Grant Number: 
DR1-01485
ICOC Funds Committed: 
$19 999 996
Disease Focus: 
Blood Cancer
Cancer
Collaborative Funder: 
UK
Stem Cell Use: 
Cancer Stem Cell
Cell Line Generation: 
Cancer Stem Cell
oldStatus: 
Active
Public Abstract: 
Acute myeloid leukemia (AML) is a cancer of the blood and bone marrow that is rapidly fatal within months if untreated. Even with aggressive treatment, including chemotherapy and bone marrow transplantation, five-year overall survival rates range between 30-40%. Evidence indicates that not all cells in this cancer are the same, and that there is a rare population of leukemia stem cells (LSC) that are responsible for maintaining the disease. Thus, in order to cure this cancer, all LSC must be eliminated, while at the same time sparing the normal blood forming stem cells in the bone marrow. We propose to develop therapeutic antibodies directed against surface markers present in much larger amounts on LSC than on the surface of normal blood forming stem cells. We recently identified and validated several such protein markers including CD47, which we determined contributes to leukemia development by blocking the ingestion and removal of leukemia cells by immune system cells called macrophages. In this way, CD47 acts as a “don’t eat me” signal on LSC. Moreover, we determined that monoclonal antibodies (mAbs) directed against CD47, able to block its interaction with macrophages, mask the “don’t eat me” signal resulting in ingestion and elimination of leukemia in mouse pre-clinical models. We propose a combination of clinical studies, basic research, and pre-clinical development to prepare a therapeutic antibody directed against CD47 and/or other LSC-specific proteins for Initial New Drug (IND) filing with the FDA, and then a Phase I clinical trial to be conducted at {REDACTED} and in the Collaborative Funding Partner country. In collaboration with the pioneering Collaborative Funding Partner country AML Working Group, we will track expression of the LSC proteins in patient samples and correlate with clinical outcomes. This will allow us to identify particular LSC proteins that must be targeted to achieve cure, thereby prioritizing candidate therapeutic antibodies for clinical development. Concurrently, we will conduct basic research and pre-clinical development to prepare these candidates. Basic research during years 1 and 2 will focus on the characterization of anti-CD47 mAb efficacy, investigation of mAb targeting of additional LSC molecules, and determination of efficacy in combinations with anti-CD47. Pre-clinical development during years 1 and 2 will focus on blocking anti-CD47 mAbs, including antibody humanization and large animal model pharmacologic and toxicity studies. Similar studies will be conducted with the most promising antibodies resulting from our basic research. During years 3-4, we will proceed with GMP grade production of the best candidate, followed by efficacy testing in mouse models and large animal models. Finally, in year 4, we will prepare an IND filing with the FDA/MHRA and develop a Phase I clinical trial with this antibody for the treatment of AML. Ultimately, therapeutic antibodies specifically targeting AML LSC offer the possibility of less toxicity with the potential for cure.
Statement of Benefit to California: 
Acute myeloid leukemia (AML) is an aggressive malignancy of the bone marrow with nearly 13,000 new diagnoses annually in the US and 2,200 in the Collaborative Funding Partner country. Current standard of care for medically fit patients consists of several cycles of high dose chemotherapy, and often includes allogeneic hematopoietic cell transplantation. Even with these aggressive treatments, which cause significant morbidity and mortality, relapse is common and the five-year overall survival is 30-40%, but <10% in patients with relapsed or refractory disease or in the majority of AML patients who are over age 65. The goal of this research proposal is to prepare therapeutic antibodies directed against AML stem cell-specific antigens for IND filing with the FDA and a Phase I clinical trial. There are several potential benefits of this research for California: (1) most importantly, this research has the potential to revolutionize current clinical practice and provide a targeted therapy for AML that offers the possibility of less toxicity with the potential for cure; (2) this research will directly contribute to the California economy by funding a contract manufacturing organization to generate and produce GMP-grade clinical antibody, by employing several individuals who will be essential for the conduct of these studies, and through the purchase of equipment and reagents from California vendors; (3) additional clinical and economic benefits for California will derive from the potential application of clinical agents developed here to a number of other human cancers and cancer stem cells; (4) our animal models indicate that a significant fraction of patients with fatal AML can be cured, resulting in savings on their clinical care plus their return as productive contributors to the California economy; (5) if our therapeutic antibodies show clinical benefit in AML, they will be commercialized, and under CIRM policy, profits derived from treating insured patients and lower cost therapies for uninsured patients, would enrich the state and the lives of its citizens; (6) finally, this research has the potential to maintain California as the national and world-wide leader in stem cell technology.
Progress Report: 
  • Our program is focused on producing new therapeutic candidates to prolong remission and potentially cure highly lethal cancers where patients have few alternative treatment options. We have selected Acute Myelogenous Leukemia (AML) as the initial clinical indication for evaluating our novel therapeutics, but anticipate a full development program encompassing many other types of solid tumor cancers.
  • Our strategy is to develop an antibody that binds to and eliminates the cancer-forming stem cells in leukemia and other solid tumors. While current cancer treatments (e.g. surgery, chemotherapy, radiation) will frequently get rid of the bulk of the tumor, they rarely touch the tiny number of cancer stem cells that actually re-generate the masses of cancer cells that have been eliminated. When the latter occurs, the patient is described as having a relapse, leading to a disease recurrence with poor prognosis. Our strategy is to eliminate the small number of cancer-regenerating stem cells by targeting cell membrane proteins expressed by these cells.
  • We have discovered that many cancer cells coat themselves with a protein called CD47 that prevents them from being eaten and disposed of by the patient’s blood cells. In this context, CD47 can be considered a ‘don’t eat me’ signal that protects the cancer cells from being phagocytosed i.e. ‘eaten’. The antibody we are developing binds to and covers the ‘don’t eat me’ CD47 protein, so that the patient’s blood cells are now able to ‘eat’ the cancer cells by standard physiological responses, and eliminate them from the body.
  • Developing an antibody such as this for use in humans requires many steps to evaluate it is safe, while at the same ensuring it targets and eliminates the cancer forming stem cells. The antibody must also ‘look’ like a human antibody, or else the patient will ‘see’ it as a foreign protein and reject it. To achieve these criteria, we have made humanized antibodies that bind to human CD47. We have shown that the antibodies eliminate cancer cells in two ways: (i) blood cells from healthy humans rapidly “ate” and killed leukemia cells collected from separate cancer patients when the anti-human CD47 antibody was added to a mixture of both cell types in a research laboratory test tube; (ii) the anti-human CD47 antibody eliminates human leukemia cells collected from patients, then transferred into special immunodeficient mice which are unable to eliminate the human tumor cells themselves. In these experiments, the treated mice remained free of the human leukemia cells for many weeks post-treatment, and could be regarded as being cured of malignancy.
  • To show the antibodies were safe, we administered to regular mice large amounts of a comparable anti-mouse CD47 antibody on a daily basis for a period of many months. No adverse effects were noted. Unfortunately our antibody to human CD47 did not bind to mouse CD47, so it’s safety could not be evaluated directly in mice. Since the anti-human CD47 antibody does bind to non-human primate CD47, safety studies for our candidate therapeutic need to be conducted in non-human primates. These studies have been initiated and are in progress. Following administration of the anti-human CD47 antibodies, the non-human primates will be monitored for clinical blood pathology, which, as in humans, provides information about major organ function as well as blood cell function in these animals.
  • The next step after identifying an antibody with strong anti-cancer activity, but one that can be safely administered to non-human primates without causing any toxic effects, is to make large amounts of the antibody for use in humans. Any therapeutic candidate that will be administered to humans must be made according to highly regulated procedures that produce an agent that is extremely “clean”, meaning free of viruses, other infectious agents, bacterial products, and other contaminating proteins. This type of production work can only be performed in special facilities that have the equipment and experience for this type of clinical manufacturing. We have contracted such an organization to manufacture clinical grade anti-human CD47 antibodies. This organization has commenced the lengthy process of making anti-CD47 antibody that can be administered to humans with cancer. It will take another 18 months to complete the process of manufacturing clinical grade material in sufficient quantities to run a Phase I clinical trial in patients with Acute Myelogenous Leukemia.
  • Our program is focused on producing new therapeutic candidates to prolong remission and potentially cure highly lethal cancers where patients have few alternative treatment options. Our strategy is to develop an antibody that will eliminate the cancer stem cells which are the source of the disease, and responsible for the disease recurrence that can occur months-to-years following the remission achieved with initial clinical treatment. The cancer stem cells are a small proportion of the total cancer cell burden, and they appear to be resistant to the standard treatments of chemotherapy and radiation therapy. Therefore new therapeutic approaches are needed to eliminate them.
  • In year 2 of the CIRM award, we have continued to develop a clinical-grade antibody that will eliminate the cancer stem cells in Acute Myelogenous Leukemia (AML). We have identified several antibodies that cause human leukemia cells to be eaten and destroyed by healthy human white blood cells when tested in cell culture experiments. These antibodies bind to a protein called CD47 that is present on the outer surface of human leukemia cells. The anti-CD47 antibodies can eliminate leukemia growing in mice injected with AML cells obtained from patients. We have now extensively characterized the properties of our panel of anti-CD47 antibodies, and have identified the lead candidate to progress though the process of drug development. There are several steps in this process, which takes 18-24 months to fully execute. In the last 12 months, we have focused on the following steps:
  • (i) ‘Humanization’ of the antibody: The antibody needs to be optimized so that it looks like a normal human protein that the patient’s immune system will not eliminate because it appears ‘foreign’ to them.
  • (ii) Large scale production of the antibody: To make sufficient quantities of the antibody to complete the culture and animal model experiments required to progress to clinical safety trials with patients, we have contracted with a highly experienced manufacturing facility capable of such large-scale production. We have successfully transferred our antibody to them, and they have inserted it into a proprietary expression cell that will produce large amounts of the protein. This process is managed through weekly interactions with this contract lab. They send us small amounts of the material from each step of their manufacturing process and we test it in our models to ensure the antibody they are preparing retains its anti-cancer properties throughout production.
  • (iii) Pre-clinical safety studies: The antibody must be tested extensively in animals to ensure it does not cause serious limiting damage to any of the normal healthy tissues in the recipient. We have spent much of the last 12 months performing these types of safety experiments. The antibody has been administered to both mice and non-human primates and we have evaluated their overall health status, as well as analyzing their blood cells, blood enzyme levels, and urine, for up to 28 days. We have also collected samples of their organs and tissues to evaluate for abnormalities. Thus far, these assessments have appeared normal except for the development of a mild anemia a few days after the initial antibody injection. Subsequent experiments indicate that this anemia can be managed with existing approved clinical strategies
  • (iv) Determination of optimal dose: We have used mice injected with human cancer cells from AML patients, and determined how much antibody must be injected into these mice to produce a blood level that destroys the leukemia cells. This relationship between antibody dose and anti-cancer activity in the mouse cancer model enables us to estimate the dose to administer to patients.
  • Hematologic tumors and many solid tumors are propagated by a subset of cells called cancer stem cells. These cells appear to be resistant to the standard cancer treatments of chemotherapy and radiation therapy, and therefore new therapeutic approaches are needed to eliminate them. We have developed a monoclonal antibody (anti-CD47 antibody) that recognizes and causes elimination of these cancer stem cells and other cells in the cancer, but not normal blood-forming stem cells or blood cells. Cancer stem cells regularly produce a cell surface ‘invisibility cloak’ called CD47, a ‘don’t eat me signal’ for cells of the native immune system. Anti-CD47 antibody counters the ‘cloak, allowing the patient’s natural immune system eating cells, called macrophages, to eliminate the cancer stem cells.
  • As discussed in our two-year report, we optimized our anti-CD47 antibody so that it looks like a normal human protein that the patient’s immune system will not eliminate because it appears ‘foreign’. In this third year of the grant, we initiated the pre-clinical development of this humanized antibody, and assigned the antibody the development name of Hu5F9. Our major accomplishments in the third year of our grant are as follows:
  • (i) In addition to the hematological malignancies we have studied in previous years, we have now demonstrated the Hu5F9 is effective at inhibiting the growth and spread throughout the body [metastasis] of a large panel of human solid tumors, including breast, bladder, colon, ovarian, glioblastoma [a very aggressive brain cancer], leiomyosarcoma, head & neck squamous cell carcinoma, and multiple myeloma.
  • (ii) We have performed extensive studies optimizing the production and purification of Hu5F9 to standards compatible with use in humans, including that it is sterile, free of contaminating viruses, microorganisms, and bacterial products. We will commence manufacturing of Hu5F under highly regulated sterile conditions to produce what is known as GMP material, suitable for use in humans.
  • (iii) Another step to show Hu5F9 is safe to administer to humans is to administer it to experimental animals and observe its effects. We have demonstrated that Hu5F9 is safe and well tolerated when administered to experimental animals. Notably, no major abnormalities are detected when blood levels of the drug are maintained in the potentially therapeutic range for an extended duration of time.
  • (iv) We have initiated discussions with the FDA regarding the readiness of our program for initiating clinical trials, which we anticipate to start in the first quarter of 2014. To prepare for these trials we have established a collaboration between the Stanford Cancer Institute and the University of Oxford in the United Kingdom, currently our partners in this CIRM-funded program.
  • To our knowledge, CD47 is the first common target in all human cancers, one which has a known function that enables cancers to grow and spread, and one which we have successfully targeted for cancer therapy. Our studies show that Hu5F9 is a first-in-class therapeutic candidate that offers cancer treatment a totally new mechanism of enabling the patient’s immune system to remove cancer stem cells and their metastases.
  • Hematologic tumors and many solid tumors are driven by a subset of cells called cancer stem cells. These cancer stem cells must be eliminated for cures, however, they have been found to be resistant to the standard cancer treatments of chemotherapy and radiation therapy. Therefore, new therapeutic approaches are needed to target these abnormal stem cells. Previously, we found that cancer stem cells have developed a clever way to hide from the patient’s immune system. They display a protein called CD47 on their surface that signals to the immune system “don’t eat me”, thereby preventing their elimination. We have developed a monoclonal antibody (anti-CD47 antibody) that blocks this signal leading to elimination of these cancer stem cells, but not normal most normal cells, by the natural immune system. In our pre-clinical studies, we showed that anti-CD47 antibodies eliminates cancer cells and cancer stem cells from many different types of human cancer including: leukemia, breast cancer, colon cancer, prostate cancer, ovarian cancer, and others. In addition, anti-CD47 antibodies are effective at preventing and even eliminating metastases in animal models. These results indicate that anti-CD47 antibodies have great potential for the treatment of human cancer.
  • In order to develop this approach into a clinical therapeutic, we first optimized our anti-CD47 antibody so that it looks like a normal human protein that the patient’s immune system will not reject. Over the course of this grant project, we have conducted the pre-clinical development of this humanized antibody, termed Hu5F9-G4.
  • (1) Hu5F9-G4 has been manufactured according to Good Manufacturing Practices (GMP) as required by the United States Food and Drug Administration (FDA) for administration to humans. The drug product was manufactured and tested to be free of contaminants and is now ready for clinical use.
  • (2) Hu5F9-G4 has undergone extensive testing to investigate potential toxic effects in humans. According to FDA regulatory guidelines, Hu5F9-G4 was tested in experimental animals where it was given in various increasing doses. In all studies, Hu5F9-G4 was well-tolerated and caused no serious side effects.
  • (3) We have developed a phase 1 first-in-human clinical trial protocol for the investigation of Hu5F9-G4 in patients with solid tumors. In addition, we have prepared all the necessary documentation and clinical operations plans necessary to execute this clinical trial.
  • (4) We have submitted the necessary information on anti-cancer activity, manufacturing, safety, and clinical trial plans to the FDA in an Investigational New Drug (IND) application. This application was approved by FDA for the clinical trial in patients with solid tumors.
  • (5) We continue to develop parallel clinical trial plans for a phase 1 study in patients with acute myeloid leukemia (AML), and anticipate submitting our regulatory filing in 2015.
  • In summary, our studies show that Hu5F9-G4 is a first-in-class therapeutic candidate that offers cancer treatment through a totally new mechanism of enabling the patient’s immune system to remove cancer stem cells and prevent their metastases.

Pages

Subscribe to RSS - Blood Cancer

© 2013 California Institute for Regenerative Medicine