Blood Cancer

Coding Dimension ID: 
287
Coding Dimension path name: 
Cancer / Blood

Prostaglandin pathway regulation of self-renwal in hematopoietic and leukemia stem cells

Funding Type: 
Basic Biology IV
Grant Number: 
RB4-06036
ICOC Funds Committed: 
$1 244 455
Disease Focus: 
Blood Cancer
Cancer
Stem Cell Use: 
Adult Stem Cell
Cancer Stem Cell
oldStatus: 
Active
Public Abstract: 
Leukemias are cancers of the blood cells that result from corruption of the normal controls that regulate blood-forming stem cells. They are serious causes of illness and death, and are particularly devastating in children and the elderly. Despite substantial advances in treatment of leukemia, a significant proportion of cases are unresponsive to current therapy. Since more aggressive chemotherapy regimens provide only marginal improvements in therapeutic efficacy, we have reached a point of diminishing returns using currently available drugs. Thus, there is an urgent need for more targeted, less toxic, and more effective treatments. To this end, our studies focus on defining the defects that corrupt the normal growth controls on blood stem cells. The proposed studies build on our discovery of a key enzyme with an unexpected causative role in leukemia. We propose to further characterize its function using various proteomic approaches, and employ a cross-species comparative approach to identify additional pathways unique to cancer stem cell function. The proposed characterization of crucial growth controls that go awry in blood stem cells to cause leukemia will identify new drug targets for more effective and less toxic treatments against these devastating, life-threatening diseases.
Statement of Benefit to California: 
Leukemias are cancers of the blood cells that cause serious illness and death in children and adults. They result from corruption of the normal controls that regulate blood-forming stem cells. Despite many attempts to improve treatments with new drug combinations, this approach has reached a point of diminishing returns since intensified chemotherapies contribute only marginal improvement in outcome and are associated with increasing toxicity. The proposed characterization of crucial growth controls that go awry in blood stem cells to cause leukemia will identify new drug targets for more effective and less toxic treatments against these devastating, life-threatening diseases.
Progress Report: 
  • Leukemias are cancers of the blood cells that cause serious illness and death in children and adults. Even patients who are successfully cured of their disease often suffer from long-term deleterious health effects of their curative treatment. Thus, there is a need for more targeted, less toxic, and more effective treatments. Our studies focus on the defects and mechanisms that induce leukemia by disrupting the normal growth controls that regulate blood-forming stem cells. Using a comparative genomics approach we have identified genes that are differentially expressed in leukemia stem cells. These genes have been the focus of our studies to establish better biomarkers and treatment targets. One candidate gene codes for an enzyme with a previously unknown, non-canonical causal role in a specific genetic subtype of leukemia caused by abnormalities of the MLL oncogene. To characterize its molecular contributions, we are identifying and characterizing protein partners that may assist and interact with the enzyme in its oncogenic role. Candidate interaction partners have been identified using proteomic techniques, and are being investigated for their possible mechanistic roles in leukemia stem cell functions. Another promising candidate that we identified in the comparative gene expression approach encodes a cell surface protein that is preferentially expressed on leukemia stem cells. We have exploited this cell surface protein as a marker to isolate the rare population of cells in human leukemias with stem cell properties. This technical approach has resulted in the isolation of leukemia stem cell populations that are more highly enriched than those obtained using previous techniques. The highly enriched sub-population of leukemia stem cells has been used for comparative gene expression profiling to define a dataset of genes that are differentially expressed between highly matched populations of leukemia cells that are enriched or depleted of leukemia stem cells. Bioinformatics analysis of the dataset has further suggested specific cellular processes and transcriptional regulatory factors that distinguish human leukemia stem cells caused by abnormalities of the MLL oncogene. These newly identified factors will be studied using in vitro and in vivo assays for their specific contributions to leukemia stem cell function and leukemia pathogenesis. Continued characterization of crucial growth controls that go awry in blood stem cells to cause leukemia will identify new drug targets for more effective and less toxic treatments against these devastating, life-threatening diseases.

Dual targeting of tyrosine kinase and BCL6 signaling for leukemia stem cell eradication

Funding Type: 
Early Translational II
Grant Number: 
TR2-01816-A
ICOC Funds Committed: 
$3 607 305
Disease Focus: 
Blood Cancer
Cancer
Stem Cell Use: 
Cancer Stem Cell
Cell Line Generation: 
Adult Stem Cell
Cancer Stem Cell
Public Abstract: 
Leukemia is the most frequent form of cancer in children and teenagers, but is also common in adults. Chemotherapy has vastly improved the outcome of leukemia over the past four decades. However, many patients still die because of recurrence of the disease and development of drug-resistance in leukemia cells. In preliminary studies for this proposal we discovered that in most if not all leukemia subtypes, the malignant cells can switch between an “proliferation phase” and a “quiescence phase”. The “proliferation phase” is often driven by oncogenic tyrosine kinases (e. g. FLT3, JAK2, PDGFR, BCR-ABL1, SRC kinases) and is characterized by vigorous proliferation of leukemia cells. In this phase, leukemia cells not only rapidly divide, they are also highly susceptible to undergo programmed cell death and to age prematurely. In contrast, leukemia cells in “quiescence phase” divide only rarely. At the same time, however, leukemia cells in "quiescence phase" are highly drug-resistant. These cells are also called 'leukemia stem cells' because they exhibit a high degree of self-renewal capacity and hence, the ability to initiate leukemia. We discovered that the BCL6 factor is required to maintain leukemia stem cells in this well-protected safe haven. Our findings demonstrate that the "quiescence phase" is strictly dependent on BCL6, which allows them to evade cell death during chemotherapy treatment. Once chemotherapy treatment has ceased, persisting leukemia stem cells give rise to leukemia clones that reenter "proliferation phase" and hence initiate recurrence of the disease. Pharmacological inhibition of BCL6 using inhibitory peptides or blocking molecules leads to selective loss of leukemia stem cells, which can no longer persist in a "quiescence phase". In this proposal, we test a novel therapeutic concept eradicate leukemia stem cells: We propose that dual targeting of oncogenic tyrosine kinases (“proliferation”) and BCL6 (“quiescence”) represents a powerful strategy to eradicate drug-resistant leukemia stem cells and prevent the acquisition of drug-resistance and recurrence of the disease. Targeting of BCL6-dependent leukemia stem cells may reduce the risk of leukemia relapse and may limit the duration of tyrosine kinase inhibitor treatment in some leukemias, which is currently life-long.
Statement of Benefit to California: 
Leukemia represents the most frequent malignancy in children and teenagers and is common in adults as well. Over the past four decades, the development of therapeutic options has greatly improved the prognosis of patients with leukemia reaching 5 year disease-free survival rates of ~70% for children and ~45% for adults. Despite its relatively favorable overall prognosis, leukemia remains one of the leading causes of person-years of life lost in the US (362,000 years in 2006; National Center of Health Statistics), which is attributed to the high incidence of leukemia in children. In 2008, the California Cancer Registry expected 3,655 patients with newly diagnosed leukemia and at total of 2,185 death resulting from fatal leukemia. In addition, ~23,300 Californians lived with leukemia in 2008, which highlights that leukemia remains a frequent and life-threatening disease in the State of California despite substantial clinical progress. Here we propose the development of a fundamentally novel treatment approach for leukemia that is directed at leukemia stem cells. While current treatment approaches effectively diminish the bulk of proliferating leukemia cells, they fail to eradicate the rare leukemia stem cells, which give rise to drug-resistance and recurrence of the disease. We propose a dual targeting approach which combines targeted therapy of the leukemia-causing oncogene and the newly discovered leukemia stem cell survival factor BCL6. The power of this new therapy approach will be tested in clinical trials to be started in the State of California.
Progress Report: 
  • Leukemia is the most frequent form of cancer in children and teenagers, but is also common in adults. Chemotherapy has vastly improved the outcome of leukemia over the past four decades. However, many patients still die because of recurrence of the disease and development of drug-resistance in leukemia cells. In preliminary studies for this proposal we discovered that in most if not all leukemia subtypes, the malignant cells can switch between an "expansion phase" and a "dormancy phase". The "expansion phase" is often driven by oncogenic tyrosine kinases (e. g. FLT3, JAK2, PDGFR, BCR-ABL1, SRC kinases) and is characterized by vigorous proliferation of leukemia cells. In this phase, leukemia cells not only rapidly divide, they are also highly susceptible to undergo programmed cell death and to age prematurely. In contrast, leukemia cells in "quiescence phase" divide only rarely. At the same time, however, leukemia cells in "domancy phase" are highly drug-resistant. These cells are also called 'leukemia stem cells' because they exhibit a high degree of self-renewal capacity and hence, the ability to initiate leukemia.
  • Progress during Year 1: During the first year of this project, we discovered that the BCL6 factor is required to maintain leukemia stem cells in this well-protected safe haven. Our findings during year 1 demonstrate that the "dormancy phase" is strictly dependent on BCL6, which allows them to evade cell death during chemotherapy treatment. Once chemotherapy treatment has ceased, persisting leukemia stem cells give rise to leukemia clones that reenter "proliferation phase" and hence initiate recurrence of the disease. Pharmacological inhibition of BCL6 using inhibitory peptides or blocking molecules leads to selective loss of leukemia stem cells, which can no longer persist in a "dormancy phase" .
  • In year 1, we have performed screening procedures to identify novel therapeutic BCL6 inhibitors to eradicate leukemia stem cells: We have found that dual targeting of oncogenic tyrosine kinases ("expansion phase" ) and BCL6 ("dormancy phase") represents a powerful strategy to eradicate drug-resistant leukemia stem cells and prevent the acquisition of drug-resistance and recurrence of the disease.
  • Goal for years 2-3: Targeting of BCL6-dependent leukemia stem cells may reduce the risk of leukemia relapse and may limit the duration of tyrosine kinase inhibitor treatment in some leukemias, which is currently life-long.

Dual targeting of tyrosine kinase and BCL6 signaling for leukemia stem cell eradication

Funding Type: 
Early Translational II
Grant Number: 
TR2-01816-B
ICOC Funds Committed: 
$3 607 305
Disease Focus: 
Blood Cancer
Cancer
Collaborative Funder: 
Germany
Stem Cell Use: 
Cancer Stem Cell
Cell Line Generation: 
Adult Stem Cell
Cancer Stem Cell
oldStatus: 
Active
Public Abstract: 
Leukemia is the most frequent form of cancer in children and teenagers, but is also common in adults. Chemotherapy has vastly improved the outcome of leukemia over the past four decades. However, many patients still die because of recurrence of the disease and development of drug-resistance in leukemia cells. In preliminary studies for this proposal we discovered that in most if not all leukemia subtypes, the malignant cells can switch between an “proliferation phase” and a “quiescence phase”. The “proliferation phase” is often driven by oncogenic tyrosine kinases (e. g. FLT3, JAK2, PDGFR, BCR-ABL1, SRC kinases) and is characterized by vigorous proliferation of leukemia cells. In this phase, leukemia cells not only rapidly divide, they are also highly susceptible to undergo programmed cell death and to age prematurely. In contrast, leukemia cells in “quiescence phase” divide only rarely. At the same time, however, leukemia cells in "quiescence phase" are highly drug-resistant. These cells are also called 'leukemia stem cells' because they exhibit a high degree of self-renewal capacity and hence, the ability to initiate leukemia. We discovered that the BCL6 factor is required to maintain leukemia stem cells in this well-protected safe haven. Our findings demonstrate that the "quiescence phase" is strictly dependent on BCL6, which allows them to evade cell death during chemotherapy treatment. Once chemotherapy treatment has ceased, persisting leukemia stem cells give rise to leukemia clones that reenter "proliferation phase" and hence initiate recurrence of the disease. Pharmacological inhibition of BCL6 using inhibitory peptides or blocking molecules leads to selective loss of leukemia stem cells, which can no longer persist in a "quiescence phase". In this proposal, we test a novel therapeutic concept eradicate leukemia stem cells: We propose that dual targeting of oncogenic tyrosine kinases (“proliferation”) and BCL6 (“quiescence”) represents a powerful strategy to eradicate drug-resistant leukemia stem cells and prevent the acquisition of drug-resistance and recurrence of the disease. Targeting of BCL6-dependent leukemia stem cells may reduce the risk of leukemia relapse and may limit the duration of tyrosine kinase inhibitor treatment in some leukemias, which is currently life-long.
Statement of Benefit to California: 
Leukemia represents the most frequent malignancy in children and teenagers and is common in adults as well. Over the past four decades, the development of therapeutic options has greatly improved the prognosis of patients with leukemia reaching 5 year disease-free survival rates of ~70% for children and ~45% for adults. Despite its relatively favorable overall prognosis, leukemia remains one of the leading causes of person-years of life lost in the US (362,000 years in 2006; National Center of Health Statistics), which is attributed to the high incidence of leukemia in children. In 2008, the California Cancer Registry expected 3,655 patients with newly diagnosed leukemia and at total of 2,185 death resulting from fatal leukemia. In addition, ~23,300 Californians lived with leukemia in 2008, which highlights that leukemia remains a frequent and life-threatening disease in the State of California despite substantial clinical progress. Here we propose the development of a fundamentally novel treatment approach for leukemia that is directed at leukemia stem cells. While current treatment approaches effectively diminish the bulk of proliferating leukemia cells, they fail to eradicate the rare leukemia stem cells, which give rise to drug-resistance and recurrence of the disease. We propose a dual targeting approach which combines targeted therapy of the leukemia-causing oncogene and the newly discovered leukemia stem cell survival factor BCL6. The power of this new therapy approach will be tested in clinical trials to be started in the State of California.
Progress Report: 
  • During the past reporting period (months 18-24 of this grant), we have made progress towards all three milestones. Major progress in Milestone 1 was made by identifying 391 compounds in 10 lead classes that will be developed further in a secondary fragment-based screen. While the goal of identifying lead class compounds with BCL6 inhibitory activity has already been met, we propose to run a secondary, fragment-based screen to refine the existing lead compounds and prioritize a small number for cell-based validation in Milestone 2. The success in Milestone 1 was based on computational modeling, HTS of 200,000 compounds and Fragment-based drug discovery (FBDD).
  • For Milestone 2, we have successfully established POC analysis tools for validation of the ability of compounds to bind the BCL6 lateral groove and already produced 300 mg of BCL6-BTB domain protein needed for biochemical binding assays. Progress in Milestone 2 is based on surface plasmon resonance (SPR) and nuclear magnetic resonance (NMR) assays. In the coming months, we will use crystallographic fragment screening using a subset of our fragment library in addition to SPR and NMR, since crystallographic fragment screens have been shown to yield complimentary hits. For Milestone 3, we have now set up a reliable method to measure disease-modifying activity of BCL6-inhibitory compounds based on a newly generated knockin BCL6 reporter mouse model, in which transcriptional activation of the endogenous BCL6 promoter drives expression of mCherry. This addresses a main caveat of these measurements was that they were strongly influenced by the copy number of lentivector integrations. The BCL6fl/+-mCherry knockin BCL6 reporter system will provide a stable platform to study BCL6-expressing leukemia cells and effects of BCL6 small molecule inhibitors on survival and proliferation on BCL6-dependent leukemia cell populations. This will be a key requirement to measure disease-modifying activity of inhibitory compounds in large-scale assays in Milestone 3. Other requirements (e.g. leukemia xenografts) are already in place. 

Preclinical development of a pan Bcl2 inhibitor for cancer stem cell directed therapy

Funding Type: 
Early Translational II
Grant Number: 
TR2-01789
ICOC Funds Committed: 
$3 341 758
Disease Focus: 
Blood Cancer
Cancer
Stem Cell Use: 
Cancer Stem Cell
Cell Line Generation: 
Cancer Stem Cell
oldStatus: 
Active
Public Abstract: 
Cancer is the leading cause of death for individuals under 85. Relapse and metastatic disease are the leading causes of cancer related mortality. Anti-apoptotic BCL2 family member overexpression has been shown to promote disease progression in both chronic myeloid leukemia (CML) and prostate cancer. Andr., the emergence of cancer stem cells (CSC) promotes apoptosis resistance in the bone marrow metastatic microenvironment. While targeted therapy with BCR-ABL inhibitors has improved survival of patients with chronic phase CML, the prevalence has doubled since 2001 with over 22,000 people living with CML in the US in 2009. Unfortunately, a growing proportion of patients become intolerant or simply cannot afford full dose BCR-ABL inhibitor therapy and thus, progress to advanced phase disease with a 5 year survival rate of less than 30%. Although prostate cancer prevalence was high at 2.26 million in 2007, distant disease was relatively rare at 5%. However, like blast crisis CML, metastatic prostate cancer survival was only 30% over 5 years. Overexpression of B-cell lymphoma/leukemia-2 (BCL2) family genes has been observed in human blast crisis CML and advanced prostate cancer and may fuel CSC survival. Recent RNA sequencing data demonstrate that human CSC express a panoply of anti-apoptotic Bcl-2 isoforms in response to extrinsic signals in vivo, indicating that a pan BCL2 inhibitor will be required to abrogate CSC survival. Through binding and anti-tumor studies, a potent inhibitor of BCL2 pro-survival family proteins, BI-97C1, has been identified which inhibits the binding of BH3 peptides to Bcl-XL, Bcl-2, Mcl-1 and Bfl1-1 with nanomolar IC50 values. Notably, BI-97C1 potently inhibits growth of human prostate cancer in a xenograft model as well as blast crisis CML CSC engrafted in RAG2-/-c-/- mice while exerting minimal cytotoxicity toward bax-/-bak-/- cells. Because BI-97C1 inhibits all six anti-apoptotic Bcl-2 family members including Bcl-2, Mcl-1 (myeloid cell leukemia 1), Bcl-XL (BCL2L1), Bfl-1 (BCL-2A1), Bcl-W (BCL2L2) and Bcl-B (BCL2L10) proteins, with improved chemical, plasma and microsomal stability relative to apogossypol, we anticipate that it will have clinical utility for targeting apoptosis resistant human CSC in two malignancies with proven reliance on BCL2 signaling – blast crisis CML and advanced prostate cancer. Thus, anti-apoptotic BCL2 family member inhibition with BI-97C1 could represent a vital component of a potentially curative strategy for advanced malignancies that may obviate the need for costly continuous tyrosine kinase inhibitor therapy by increasing sensitivity to therapy. Elimination of CSC contributing to therapeutic resistance, the primary cause of cancer death, is of high clinical importance and thus, development of a small molecule pan-BCL2 inhibitor would fulfill a vital unmet medical need, fuel California biotechnology stem cell R&D efforts and decrease health care costs for patients with cancer.
Statement of Benefit to California: 
Cancer is the leading cause of death for individuals under 85 and usually results from metastatic disease in the setting of therapeutic recalcitrance. Anti-apoptotic BCL2 family member overexpression has been shown to promote disease progression in both chronic myeloid leukemia and prostate cancer. Moreover, the emergence of quiescent cancer stem cells promotes apoptosis resistance in the bone marrow niche for. While targeted BCR-ABL inhibition has resulted in improved survival of patients with chronic phase CML, the prevalence has doubled since 2001 with over 22,000 people living with CML in the US in 2009 (http://www.leukemia-lymphoma.org). Unfortunately, a growing proportion of patients become intolerant or simply cannot afford full dose BCR-ABL inhibitor therapy as a result of spiraling annual costs and thus, progress to advanced phase disease with a 5 year survival rate of less than 30%. Although prostate cancer prevalence was high at 2.26 million in 2007, distant disease was relatively rare at 5%. Like CML, metastatic prostate cancer survival was only 30% over 5 years (http://seer.cancer.gov/statfacts/html/prost.html#prevalence <http://seer.cancer.gov/statfacts/html/prost.html#prevalence> ). Like blast crisis CML, prostate cancer progression and metastasis is associated with BCL2 overexpression. Thus, anti-apoptotic BCL2 family member inhibition with BI-97C1 could represent a vital component of a potentially curative strategy for advanced malignancies that may obviate the need for costly continuous tyrosine kinase inhibitor therapy by increasing sensitivity to therapy. Elimination of CSC contributing to therapeutic resistance, the primary cause of cancer death, is of high clinical importance and thus, development of a small molecule pan-BCL2 inhibitor would fulfill a vital unmet medical need, fuel California biotechnology stem cell R&D efforts and decrease health care costs for patients with cancer.
Progress Report: 
  • Overexpression of Bcl-2 family genes may fuel CSC survival. Recent RNA sequencing data demonstrate that human CSC express a panoply of antiapoptotic Bcl-2 isoforms in response to extrinsic signals in vivo, indicating that a pan Bcl-2 inhibitor will be required to abrogate CSC survival. Sabutoclax inhibits growth of blast crisis CML CSC engrafted in RAG2-/-c-/- mice with minimal cytotoxicity toward bax-/-bak-/- cells. Because sabutoclax inhibits all six antiapoptotic Bcl-2 family members including Bcl-2, Mcl-1, Bcl-XL, Bfl-1, Bcl-W and Bcl-B proteins, with good chemical, plasma and microsomal stability, we anticipate that it will have clinical utility for targeting apoptosis resistant human CSC in malignancies
  • Significant progress against milestones in the first year was accomplished and we have made early progress on several milestones projected for Year 2. During this 6 month reporting period, sabutoclax was licensed by a biotech company, Oncothyreon. The license was previously held by Coronado Biosciences. Dr. Pellecchia (SBMRI ) continues to provide sabutoclax to Dr. Jamieson for use in cellular and in vivo studies. SBMRI conducted QC analyses (integrity and purity) on samples’ used in preclinical studies and provided comparative analyses of compound produced by the CMO produced by different methods of synthesis. Importantly, the sabutoclax manufacturing process was optimized allowing scale-up of drug. In formulation studies, a method was developed and qualified that separates impurities and degradation compounds from sabutoclax for quantitation of the drug. Additional solubility and stability studies were performed by Oncothyreon to identify an IV formulation that could be used for both nonclinical studies and the clinic. Several pilot PK studies in mice, rats and dogs, planned for Year 2, were also conducted by Oncothyreon. Through whole transcriptome RNA sequencing Dr. Jamieson showed that Bcl-W was up-regulated in CP and BC progenitors compared to normal CB progenitors. Previous qRT-PCR results for Mcl-1 were confirmed, showing that the long isoform was preferentially expressed in BC CML. Results for Bcl-2 and Mcl-1 were also confirmed at the protein level by FACS analysis and immunohistochemistry of bone marrow (BM) from mice engrafted with human CML CD34+ LSC.
  • Sabutoclax treatment ablated BC CML progenitor cells in vivo and in vitro. Colony formation of BC CML (vs normal progenitor cells) was decreased by sabutoclax in a dose dependent manner. When CML cells were co-cultured with stromal cells or in stroma conditioned media, BCL-2 mRNA expression was increased and colony formation was improved. Knockdown of endogenous BCL2 in BC CML cells by shRNA resulted in decreased colony formation. Preliminary results suggest that BM is a protective niche for BC CML CSC and that sabutoclax may target these niche protected cells.
  • In BC CML engrafted mice, dasatinib increased quiescent BC CML cell engraftment in mouse BM measured by FACS for cell cycle markers. Sabutoclax decreased BCL-2 and MCL1 protein expression by immunohistochemistry staining and decreased quiescent BC CML CSC in BM however sabutoclax increased TUNEL staining in BM suggesting that while dasatinib may increase the number of quiescent BC CML CSC, sabutoclax may do the reverse.
  • High doses of sabutoclax administered in combination with dasatinib resulted in a significant decrease in human cell engraftment in BM versus dasatinib alone. Mice serially transplanted with tissues from combination treated mice had increased survival compared to serial transplants of single agent treated tissues. Human CD34+ cells from the BM of combination treated mice had more cells in cycle than CD34+ cells compared to the BM of mice treated with dasatinib alone. The frequency of CD34+BCL2+ and CD34+MCL1+ BC LSC were significantly lower in BM treated with a combination of sabutoclax and dasatinib suggesting that sabutoclax and dasatinib may act synergistically to increase survival of BC CML engrafted mice.
  • Dormant cancer stem cells (CSC) contribute to therapeutic resistance and relapse in chronic myeloid leukemia (CML) and other recalcitrant malignancies. Cumulative data demonstrate that overexpression of BCL2 family pro-survival splice isoforms fuels quiescent CSC survival in human blast crisis (BC) CML. Whole transcriptome RNA sequencing data, apoptosis PCR array and splice isoform specific qRT-PCR demonstrate that human CSC express anti-apoptotic long BCL2 isoforms in response to extrinsic signals in the marrow niche, indicating that a pan BCL2 inhibitor will be required to abrogate CSC survival. Sabutoclax, a novel pan BCL2 inhibitor, prevents survival of BC CSC engrafted in RAG2-/-c-/- mice, commensurate with downregulation of pro-survival BCL2 splice isoforms and proteins, and sensitizes CSC to a BCR-ABL inhibitor, dasatinib, while exerting minimal cytotoxicity toward normal hematopoietic stem cells. Because sabutoclax inhibits all six anti-apoptotic BCL2 family members, with good chemical, plasma and microsomal stability, in addition to a scaleable production process, we anticipate that it will have broad clinical utility for targeting apoptosis resistant quiescent human CSC in a number of recalcitrant malignancies as featured in our recent lead article (Goff D et al, Cell Stem Cell. 2013 Mar 7;12(3):316-28).
  • Significant progress against milestones in the second year was accomplished and we have made early progress on several milestones projected for Year 3. Whole transcriptome RNA sequencing, qRT-PCR array and splice isoform specific qRT-PCR analysis performed on FACS purified progenitors derived from 8 CP, 8 BC and 6 normal samples demonstrated splice isoform switching favoring pro-survival long isoform expression during progression from CP to blast BC CML and in CSC engrafted in the bone marrow (BM) niche. Both human BCL2 and MCL1 protein expression co-localized with engrafted human leukemic CD34+ cells in the bone marrow epiphysis and served as important biomarkers of response to sabutoclax. Importantly, intravenous treatment with sabutoclax reduced BC CML CSC survival in both marrow and splenic niches at doses that spared normal hematopoietic stem cells in RAG2-/-gamma c-/- xenograft models established with cord blood CD34+ cells.
  • While dasatinib treatment alone increased serially transplantable quiescent BC CML CSC in BM, sabutoclax decreased CSC survival commensurate with upregulation of short pro-apoptotic and downregulation of long anti-apopoptotic BCL2 family isoforms. While previous studies involved intraperitoneal administration, in the last 12 months we have focused on a more clinically relevant intravenous (IV) administration schedule with IV sabutoclax administered alone or in combination with oral dasatinib. In these studies, sabutoclax sensitized quiescent CSC to dasatinib resulting in a significant decrease in CSC survival versus dasatinib alone. Moreover, mice serially transplanted with human cells from combination treated mice had increased survival compared to serial transplants of single agent treated tissues. Human CD34+ cells from the BM of combination treated mice had more cells in cycle than CD34+ cells compared to the BM of mice treated with dasatinib alone. The frequency of CD34+BCL2+ and CD34+MCL1+ BC CSC were significantly lower in BM treated with a combination of sabutoclax and dasatinib suggesting that the combination acts synergistically to decrease CSC survival and increase the lifespan of CSC engrafted mice.
  • During this 12-month reporting period, sabutoclax production was successfully scaled up by two separate CMOs, Syncom and Norac. Dr. Pellecchia (SBMRI) provided flash chromatography purified sabutoclax to Dr. Jamieson for use in cellular and in vivo studies in addition to conducting QC analyses (integrity and purity) on scaled up sabutoclax formulations produced by Norac (4g) and Syncom (30g) in different vehicles. In formulation studies, a flash chromatography method was developed and qualified that separates impurities and degradation compounds from sabutoclax. Additional solubility and stability studies were performed to identify an IV Solutol formulation, compared with the previous IP DMSO/PBS Tween formulation, which could be used for both pre-clinical studies and in future clinical trials. Pilot PK studies in mice and rats were conducted with the Solutol formulated sabutoclax and showed weight loss associated with impurities that could be readily removed by standard flash chromatography. As a result, ssabutoclax production will include flash chromatography to enhance purity and stability and this material will be used for further PK and PD studies. In conclusion, we are on track to accomplish our milestones as set forth in the grant and anticipate that sabutoclax will form the basis of combination clinical studies aimed at eradicating quiescent CSC in a broad array of refractory malignancies.
  • Recent cancer stem cell research performed by ourselves and others has bolstered interest in BCL2 family member expression and inhibition in chronic myeloid leukemia (CML), acute myeloid leukemia (AML) and breast cancer (Goff DJ et al Cell Stem Cell 2013; Lagadinou ED et al Cell Stem Cell 2013; Vaillant F et al Cancer Cell 2013). Overexpression of pro-survival BCL2 family genes has been linked to therapeutic resistance driven by dormant, self-renewing CSC. Thus, the BCL2 family represents an attractive therapeutic target that may provide the potential to reduce relapse rates. Because of the greater proclivity for alternative splicing in humans compared with mice, our CIRM ETll funded research has focused on whole transcriptome RNA sequencing, splice isoform specific qRT-PCR and BCL2 PCR array analysis of FACS-purified CSC from patients with CML and CSC derived from human blast crisis CML engrafted RAG2-/-gc-/- mouse models.
  • A Pan-BCL2 inhibitor renders bone-marrow-resident human leukemia stem cells sensitive to tyrosine kinase inhibition. Cell Stem Cell. 2013 Mar 7;12(3):316-28) was featured in a lead article in Cell Stem Cell in March. This study also led to a number of disclosures relating to unique self-renewal and survival gene splice isoform based CSC detection and patient prognostication strategies. As a result, pan BCL2 targeting has generated considerable interest from academic and pharmaceutical investigators who would like to adopt the approach of dormant CSC sensitization to agents that target dividing cells, including tyrosine kinase inhibitors, chemotherapy and radiation therapy.

Forming the Hematopoietic Niche from Human Pluripotent Stem Cells

Funding Type: 
Basic Biology III
Grant Number: 
RB3-05217
ICOC Funds Committed: 
$1 375 983
Disease Focus: 
Blood Cancer
Cancer
Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Active
Public Abstract: 
The clinical potential of pluripotent stem cells for use in regenerative medicine will be realized only when the process by which tissues are generated from these cells is significantly more efficient and controlled than is currently the case. Fundamental questions remain about the mechanisms by which pluripotent stem cells differentiate into mature tissue. The overall goal of this research proposal is to discover if the cell types produced during differentiation of PSC produce the microenvironment needed for specialized tissue stem cells to develop. To approach this question we will use the hematopoietic (“blood-forming”) system as our model, as it is the best characterized tissue in terms of differentiation pathways and offers a range of unique technical tools with which to rigorously study questions of differentiation. Adult hematopoietic stem cells survive and grow in the bone marrow only if they are physically close to specialized cell types, the so-called hematopoietic stem cell “niche”. We hypothesize that hematopoietic stem cells are not produced from pluripotent cells because the cells that form the niche and provide the necessary signals are not present during this early stage of differentiation. Our research proposal has three specific aims. The first aim is to determine if a single cell type derived from pluripotent cells can generate both blood cells and the cells of the hematopoietic niche. The second aim is to identify the types of niche cells produced from pluripotent cells and define how each of them affect the growth of adult stem cells. In the third aim, the cell types that are found in aim 2 to best support adult hematopoiesis, will then be tested for their ability to promote the production of hematopoietic stem cells from pluripotent stem cells. The findings from these studies will have broad applicability to the production of other types of tissues from pluripotent stem cells, all of which have stem cells that require interaction with a specialized niche. In addition to the biological questions explored in this proposal, our focus on the blood system has direct clinical relevance to the field of bone marrow and cord blood transplantation. The development of a human hematopoietic niche from pluripotent stem cells could potentially be used to expand hematopoietic stem cells from adult tissues like cord blood. Most importantly, the ability to control differentiation from pluripotent stem cells into the blood lineage could provide an unlimited source of matched cells for transplantation for patients with leukemia and other diseases of the bone marrow and the immune system who currently lack suitable donors.
Statement of Benefit to California: 
The unique combination of pluripotentiality and unlimited capacity for proliferation has raised the hope that pluripotent stem cells will one day provide an inexhaustible source of tissue for transplantation and regeneration. Diseases that might be treated from such tissues affect millions of Californians and their families. However, much is still to be learned about the mechanisms by which pluripotent stem cells differentiate into mature tissue. The clinical potential of pluripotent stem cells for regenerative medicine will be realized only when the process by which tissues are generated from these cells is significantly more efficient and better controlled than is currently the case. The research proposed in this application has broad potential benefits for Californians both through the biological questions it will answer and the relevance of these studies for clinical translation. Our goal is to understand the way the microenvironment influences tissue production from pluripotent stem cells, a critical issue for the field of stem cell biology. Specifically we will explore the question- Do the cell types produced during differentiation of pluripotent stem cells produce an adequate microenvironment for the differentiation of tissue or are some cells inhibitory to tissue production? Our approach to these questions will be to use the hematopoietic (“blood-forming”) system as our model, as it is the best characterized tissue in terms of differentiation and offers a range of unique technical tools with which to study these questions rigorously. However, the fundamental concepts formed from these studies will have great relevance for the clinical production of other types of tissues from pluripotent stem cells, such as islets, neural cells and cardiac muscle. In addition to the broad biological questions explored in this proposal, our focus on the blood system has direct clinical relevance to the field of bone marrow and cord blood transplantation. One goal in the proposal is to generate a cellular platform from pluripotent stem cells that will create an environment in which adult blood stem cells can grow and be expanded. Cell numbers collected from cord blood at birth are often insufficient for transplantation in adult patients and older children. The development of a human cell culture system that could expand the number of cord blood stem cells would provide new opportunities for transplantation for patients with leukemia and other diseases of the bone marrow and the immune system who currently lack suitable donors. All scientific findings and technical tools developed in this proposal will be made available to researchers throughout California, under the guidelines from the California Institute of Regenerative Medicine.
Progress Report: 
  • The clinical potential of pluripotent stem cells for use in regenerative medicine will be realized only when the process by which tissues are generated from these cells is significantly more efficient and controlled than is currently the case. Fundamental questions remain about the mechanisms by which pluripotent stem cells differentiate into mature tissue. The overall goal of this research proposal is to discover if the cell types produced during differentiation of PSC produce the microenvironment needed for specialized tissue stem cells to develop.
  • To approach this question we use the hematopoietic (“blood-forming”) system as our model, as it is the best characterized tissue in terms of differentiation pathways and offers a range of unique technical tools with which to rigorously study questions of differentiation. Adult hematopoietic stem cells survive and grow in the bone marrow only if they are physically close to specialized cell types, the so-called hematopoietic stem cell “niche”. We hypothesize that hematopoietic stem cells are not produced from pluripotent cells because the cells that form the niche and provide the necessary signals are not present during this early stage of differentiation.
  • Our research proposal has three specific aims. The first aim is to determine if a single cell type derived from pluripotent cells can generate both blood cells and the cells of the hematopoietic niche. The second aim is to identify the types of niche cells produced from pluripotent cells and define how each of them affect the growth of adult stem cells. In the third aim, the cell types that are found in aim 2 to best support adult hematopoiesis, will then be tested for their ability to promote the production of hematopoietic stem cells from pluripotent stem cells.
  • During the first year of support, we have made significant progress in the first two specific aims. We have developed a method that allows us to track the common origin of the blood forming cells and their microenvironment. We also have identified subsets of cells generated from pluripotent cells that have distinct functions in blood formation. Our plan during the next year is to fully characterize these subsets to understand how they function, and to improve our methods to expand them in culture.
  • The clinical potential of pluripotent stem cells for use in regenerative medicine will be realized only when the process by which tissues are generated from these cells is significantly more efficient and controlled than is currently the case. Fundamental questions remain about the mechanisms by which pluripotent stem cells differentiate into mature tissue. The overall goal of this research proposal is to discover if the cell types produced during differentiation of PSC produce the microenvironment needed for specialized tissue stem cells to develop.
  • To approach this question we use the hematopoietic (“blood-forming”) system as our model, as it is the best characterized tissue in terms of differentiation pathways and offers a range of unique technical tools with which to rigorously study questions of differentiation. Adult hematopoietic stem cells (HSC) survive and grow in the bone marrow only if they are physically close to specialized cell types, the so-called hematopoietic stem cell “niche”. We hypothesize that hematopoietic stem cells are not produced from pluripotent cells because the cells that form the niche and provide the necessary signals are not present during this early stage of differentiation.
  • Our research proposal has three specific aims. The first aim is to determine if a single cell type derived from pluripotent cells can generate both blood cells and the cells of the hematopoietic niche. The second aim is to identify the types of niche cells produced from pluripotent cells and define how each of them affect the growth of adult stem cells. In the third aim, the cell types that are found in aim 2 to best support adult hematopoiesis, will then be tested for their ability to promote the production of hematopoietic stem cells from pluripotent stem cells.
  • During the second year of support, we have made significant progress in all three specific aims. We continue to refine our method that allows us to track the common origin of the blood forming cells and their microenvironment during development. We have identified subsets of cells generated from pluripotent cells that can support cord blood HSC and now we are determining the mechanisms by which these cells act and how they can be best used to support HSC that develop from PSC.

Derivation and Characterization of Cancer Stem Cells from Human ES Cells

Funding Type: 
SEED Grant
Grant Number: 
RS1-00228
ICOC Funds Committed: 
$642 500
Disease Focus: 
Blood Cancer
Cancer
Stem Cell Use: 
Cancer Stem Cell
Embryonic Stem Cell
Cell Line Generation: 
Cancer Stem Cell
oldStatus: 
Closed
Public Abstract: 
Cancer is the leading cause of death for people younger than 85 (1). High cancer mortality rates underscore the need for more sensitive diagnostic techniques as well as therapies that selectively target cells responsible for cancer propagation (1) Compelling studies suggest that human cancer stem cells (CSC) arise from aberrantly self-renewing tissue specific stem or progenitor cells and are responsible for cancer propagation and therapeutic resistance (2-9). Although the majority of current cancer therapies eradicate rapidly dividing cells within the tumor, the rare CSC population may be quiescent and then reactivate resulting in disease progression and relapse (2-9). We recently demonstrated that CSC are involved in progression of chronic phase chronic myelogenous leukemia (CML), a disease that has been the subject of many landmark discoveries in cancer research(19-30), to a more aggressive and therapeutically recalcitrant myeloid blast crisis (BC) phase. These CSC share the same cell surface markers as granulocyte-macrophage progenitors (GMP) but have aberrantly gained the capacity to self-renew as a result of activation of the Wnt/-catenin stem cell self-renewal pathway (4). Because human embryonic stem cells (hESC) have robust self-renewal capacity and can provide a potentially limitless source of tissue specific stem and progenitor cells in vitro, they represent an ideal model system for generating and characterizing human CSC (10-18). Thus, hESC cell research harbors tremendous potential for developing life-saving therapy for patients with cancer by providing a platform to rapidly and rationally test new therapies that specifically target CSC (2-18). To provide a robust model system for screening novel anti-CSC therapies, we propose to generate and characterize CSC from hESC (10-18). We will investigate the role of genes that are essential for initiation of CML such as BCR-ABL and additional mutations such as b-catenin implicated in CSC propagation (19-30). The efficacy of specific Wnt/b-catenin antagonists at inhibiting BCR-ABL+ human ES cell self-renewal, survival and proliferation alone and in combination with potent BCR-ABL antagonists will be assessed in sensitive in vitro and in vivo assays with the ultimate aim of developing highly active anti-CSC therapy that may halt cancer progression and obviate therapeutic resistance (4,31).
Statement of Benefit to California: 
The research outlined in this proposal represents a unique opportunity for collaborations between investigators from disparate disciplines to use human embryonic stem cells to challenge an existing paradigm namely that leukemic blasts are responsible for progression of chronic myelogenous leukemia (CML) rather than leukemic stem cells (LSC). Current clinical diagnostic tests are not sufficiently sensitive to predict timing of progression for all patients with CML nor are they adequate for determining the type of therapeutic intervention required. Moreover, the primary therapy for CML, Abl kinase inhibition, was shown to be cardiotoxic when given long-term at high doses. Furthermore, amplification of BCR-ABL is not the sole event that occurs during CML progression to blast crisis. Identification and inhibition of molecular mutations responsible for the generation of LSC in CML blood and/or marrow may prevent progression to blast crisis (BC) and would represent an innovative, effective form of CML therapy. Modeling of LSC responsible for CML progression in human embryonic stem cells could have a significant impact on our understanding of the pathophysiology of CML, provide novel diagnostic and therapeutic modalities and improve the quality and possibly quantity of life of patients with CML. By using BCR-ABL transduced human embryonic stem cells, we will rigorously evaluate the LSC hypothesis and as a consequence, the additional molecular events required for progression to blast crisis CML. The ultimate aims of this grant are to develop more sensitive methods to predict leukemic progression and to identify novel molecular therapeutic targets through the development of LSC models using human embryonic stem cells. We aim to provide a robust, reproducible system for testing novel anti-LSC compounds alone and in combination in order to expedite the development of novel therapeutic agents for anti-LSC clinical trials at {REDACTED}. Not only may the translational research performed in the context of this grant speed the delivery of innovative anti-LSC therapies for Californians with leukemia, it will help to train California’s future R&D workforce in addition to developing leaders in translational medicine. This grant will provide the personnel working on the project with a clear view of the importance of their research to cancer therapy and a better perspective on future career opportunities in California.
Progress Report: 
  • SEED Grant Research Summary
  • Compelling studies suggest that cancer stem cells (CSC) arise from primitive self-renewing progenitor cells. Although many cancer therapies target rapidly dividing cells, CSC may be quiescent i.e. asleep resulting in therapeutic resistance. Recently, we demonstrated that CSC drive progression of chronic phase (CP) chronic myeloid leukemia (CML), a subject of many landmark cancer research discoveries, to a therapeutically recalcitrant myeloid blast crisis (BC) phase. CML CSC share cell surface markers with granulocyte-macrophage progenitors (GMP) and have amplified expression of the CML fusion gene, BCR-ABL. In addition, they aberrantly gain self-renewal capacity, in part, as a result Wnt/β-catenin activation. Because human embryonic stem cells (hESC) have robust regenerative capacity and can provide a potentially limitless source of tissue specific progenitor cells in vitro, they represent an ideal model system for generating and characterizing human CSC. The main goals of this research were to generate CSC from hESC to provide an experimentally amenable platform to expedite the development of sensitive diagnostics that predict progression and combined modality anti-CSC therapy.
  • To this end, we tested whether BCR-ABL expression in hESC is sufficient to induce changes characteristic of CML stem cells. Unlike mouse ESC, introduction of a novel lentiviral BCR-ABL vector into hESC did not drive myeloid differentiation nor did it induce stromal independence in vitro underscoring key differences between mouse and human hESC and the importance of in vivo models. Notably, Hues16 cells had a higher propensity to differentiate into CD34+ cells than other hESC lines particularly in AGM co-cultures and thus, were used in subsequent in vivo experiments. Moreover, this SEED grant funded Yosuke Minami in Professor Jean Wang’s lab to create a unique CML blast crisis mouse model typified by GMP expansion and resistance to a BCR-ABL inhibitor, imatinib (Minami et al, PNAS 2008;105:17967-72). In addition, a bioluminescent humanized model of blast crisis CML was created based on transplantation of GMP from patient blood into immune deficient mice (RAG2-/-gc-/-). Cells were tagged with firefly luciferase that emits a bioluminescent signal so that leukemic transplantation efficiency could be tracked in vivo (IVIS). As few as 1,000 human blast crisis CML GMP could transplant leukemia in immune deficient mice thereby providing an important model for studying the molecular events that contribute to leukemic transformation (Abrahamsson et al, PNAS 2009;106:3925-9).
  • In the second aim, we hypothesized that BCR-ABL is sufficient for generating CML from self-renewing stem cells. In these studies, Hues16 cells differentiated into CD34+ cells were lentivirally transduced with BCR-ABL leading to sustained BCR-ABL engraftment in 50% of transplanted mice. Chronic phase CD34+ cells derived from CML blood were less efficient at sustaining CML engraftment (7%) suggesting that hESC derived CD34+ cells have higher self-renewal potential and are similar to advanced phase CML progenitors.
  • Thirdly, we hypothesized that BCR-ABL was necessary but not sufficient for progression to blast crisis. Introduction of lentiviral activated beta-catenin or shRNA to GSK3beta, together with BCR-ABL did not enhance BCR-ABL engraftment compared with BCR-ABL transduction of hESC alone. These studies suggested that hESC may already have sufficient self-renewal capacity to sustain the malignant CML clone and are molecularly comparable to advanced CML progenitors that behave like CSC. In addition, through extensive cDNA sequencing of human blast crisis CML progenitors, we found that 57% of samples harbored a misspliced form of GSK3beta that promoted tumor production and could serve as a novel prognostic marker in CML clinical trials (Abrahamsson et al, PNAS 2009;106:3925-9).
  • In the final aim, we hypothesized that CML CSC are not eliminated by BCR-ABL inhibitors alone and that combined modality therapy will be required. In collaborative research involving in vitro analysis of imatinib resistant CML progenitors and more recently in a humanized mouse model of blast crisis CML, we found that dasatinib, a potent BCR-ABL inhibitor, is necessary but not sufficient for CSC eradication. Discovery of a GSK3beta deregulation, a negative regulator of both beta-catenin and sonic hedgehog (Shh) pathways (Zhang et al, Nature 2009), led us to disover that Shh combined with BCR-ABL inhibition abrogated CSC driven tumor formation (manuscript in preparation) providing the impetus for an upcoming Pfizer sponsored Shh inhibitor clinical trial for refractory hematologic malignancies.

Development of Therapeutic Antibodies Targeting Human Acute Myeloid Leukemia Stem Cells

Funding Type: 
Disease Team Research I
Grant Number: 
DR1-01485
ICOC Funds Committed: 
$19 999 996
Disease Focus: 
Blood Cancer
Cancer
Collaborative Funder: 
UK
Stem Cell Use: 
Cancer Stem Cell
Cell Line Generation: 
Cancer Stem Cell
oldStatus: 
Active
Public Abstract: 
Acute myeloid leukemia (AML) is a cancer of the blood and bone marrow that is rapidly fatal within months if untreated. Even with aggressive treatment, including chemotherapy and bone marrow transplantation, five-year overall survival rates range between 30-40%. Evidence indicates that not all cells in this cancer are the same, and that there is a rare population of leukemia stem cells (LSC) that are responsible for maintaining the disease. Thus, in order to cure this cancer, all LSC must be eliminated, while at the same time sparing the normal blood forming stem cells in the bone marrow. We propose to develop therapeutic antibodies directed against surface markers present in much larger amounts on LSC than on the surface of normal blood forming stem cells. We recently identified and validated several such protein markers including CD47, which we determined contributes to leukemia development by blocking the ingestion and removal of leukemia cells by immune system cells called macrophages. In this way, CD47 acts as a “don’t eat me” signal on LSC. Moreover, we determined that monoclonal antibodies (mAbs) directed against CD47, able to block its interaction with macrophages, mask the “don’t eat me” signal resulting in ingestion and elimination of leukemia in mouse pre-clinical models. We propose a combination of clinical studies, basic research, and pre-clinical development to prepare a therapeutic antibody directed against CD47 and/or other LSC-specific proteins for Initial New Drug (IND) filing with the FDA, and then a Phase I clinical trial to be conducted at {REDACTED} and in the Collaborative Funding Partner country. In collaboration with the pioneering Collaborative Funding Partner country AML Working Group, we will track expression of the LSC proteins in patient samples and correlate with clinical outcomes. This will allow us to identify particular LSC proteins that must be targeted to achieve cure, thereby prioritizing candidate therapeutic antibodies for clinical development. Concurrently, we will conduct basic research and pre-clinical development to prepare these candidates. Basic research during years 1 and 2 will focus on the characterization of anti-CD47 mAb efficacy, investigation of mAb targeting of additional LSC molecules, and determination of efficacy in combinations with anti-CD47. Pre-clinical development during years 1 and 2 will focus on blocking anti-CD47 mAbs, including antibody humanization and large animal model pharmacologic and toxicity studies. Similar studies will be conducted with the most promising antibodies resulting from our basic research. During years 3-4, we will proceed with GMP grade production of the best candidate, followed by efficacy testing in mouse models and large animal models. Finally, in year 4, we will prepare an IND filing with the FDA/MHRA and develop a Phase I clinical trial with this antibody for the treatment of AML. Ultimately, therapeutic antibodies specifically targeting AML LSC offer the possibility of less toxicity with the potential for cure.
Statement of Benefit to California: 
Acute myeloid leukemia (AML) is an aggressive malignancy of the bone marrow with nearly 13,000 new diagnoses annually in the US and 2,200 in the Collaborative Funding Partner country. Current standard of care for medically fit patients consists of several cycles of high dose chemotherapy, and often includes allogeneic hematopoietic cell transplantation. Even with these aggressive treatments, which cause significant morbidity and mortality, relapse is common and the five-year overall survival is 30-40%, but <10% in patients with relapsed or refractory disease or in the majority of AML patients who are over age 65. The goal of this research proposal is to prepare therapeutic antibodies directed against AML stem cell-specific antigens for IND filing with the FDA and a Phase I clinical trial. There are several potential benefits of this research for California: (1) most importantly, this research has the potential to revolutionize current clinical practice and provide a targeted therapy for AML that offers the possibility of less toxicity with the potential for cure; (2) this research will directly contribute to the California economy by funding a contract manufacturing organization to generate and produce GMP-grade clinical antibody, by employing several individuals who will be essential for the conduct of these studies, and through the purchase of equipment and reagents from California vendors; (3) additional clinical and economic benefits for California will derive from the potential application of clinical agents developed here to a number of other human cancers and cancer stem cells; (4) our animal models indicate that a significant fraction of patients with fatal AML can be cured, resulting in savings on their clinical care plus their return as productive contributors to the California economy; (5) if our therapeutic antibodies show clinical benefit in AML, they will be commercialized, and under CIRM policy, profits derived from treating insured patients and lower cost therapies for uninsured patients, would enrich the state and the lives of its citizens; (6) finally, this research has the potential to maintain California as the national and world-wide leader in stem cell technology.
Progress Report: 
  • Our program is focused on producing new therapeutic candidates to prolong remission and potentially cure highly lethal cancers where patients have few alternative treatment options. We have selected Acute Myelogenous Leukemia (AML) as the initial clinical indication for evaluating our novel therapeutics, but anticipate a full development program encompassing many other types of solid tumor cancers.
  • Our strategy is to develop an antibody that binds to and eliminates the cancer-forming stem cells in leukemia and other solid tumors. While current cancer treatments (e.g. surgery, chemotherapy, radiation) will frequently get rid of the bulk of the tumor, they rarely touch the tiny number of cancer stem cells that actually re-generate the masses of cancer cells that have been eliminated. When the latter occurs, the patient is described as having a relapse, leading to a disease recurrence with poor prognosis. Our strategy is to eliminate the small number of cancer-regenerating stem cells by targeting cell membrane proteins expressed by these cells.
  • We have discovered that many cancer cells coat themselves with a protein called CD47 that prevents them from being eaten and disposed of by the patient’s blood cells. In this context, CD47 can be considered a ‘don’t eat me’ signal that protects the cancer cells from being phagocytosed i.e. ‘eaten’. The antibody we are developing binds to and covers the ‘don’t eat me’ CD47 protein, so that the patient’s blood cells are now able to ‘eat’ the cancer cells by standard physiological responses, and eliminate them from the body.
  • Developing an antibody such as this for use in humans requires many steps to evaluate it is safe, while at the same ensuring it targets and eliminates the cancer forming stem cells. The antibody must also ‘look’ like a human antibody, or else the patient will ‘see’ it as a foreign protein and reject it. To achieve these criteria, we have made humanized antibodies that bind to human CD47. We have shown that the antibodies eliminate cancer cells in two ways: (i) blood cells from healthy humans rapidly “ate” and killed leukemia cells collected from separate cancer patients when the anti-human CD47 antibody was added to a mixture of both cell types in a research laboratory test tube; (ii) the anti-human CD47 antibody eliminates human leukemia cells collected from patients, then transferred into special immunodeficient mice which are unable to eliminate the human tumor cells themselves. In these experiments, the treated mice remained free of the human leukemia cells for many weeks post-treatment, and could be regarded as being cured of malignancy.
  • To show the antibodies were safe, we administered to regular mice large amounts of a comparable anti-mouse CD47 antibody on a daily basis for a period of many months. No adverse effects were noted. Unfortunately our antibody to human CD47 did not bind to mouse CD47, so it’s safety could not be evaluated directly in mice. Since the anti-human CD47 antibody does bind to non-human primate CD47, safety studies for our candidate therapeutic need to be conducted in non-human primates. These studies have been initiated and are in progress. Following administration of the anti-human CD47 antibodies, the non-human primates will be monitored for clinical blood pathology, which, as in humans, provides information about major organ function as well as blood cell function in these animals.
  • The next step after identifying an antibody with strong anti-cancer activity, but one that can be safely administered to non-human primates without causing any toxic effects, is to make large amounts of the antibody for use in humans. Any therapeutic candidate that will be administered to humans must be made according to highly regulated procedures that produce an agent that is extremely “clean”, meaning free of viruses, other infectious agents, bacterial products, and other contaminating proteins. This type of production work can only be performed in special facilities that have the equipment and experience for this type of clinical manufacturing. We have contracted such an organization to manufacture clinical grade anti-human CD47 antibodies. This organization has commenced the lengthy process of making anti-CD47 antibody that can be administered to humans with cancer. It will take another 18 months to complete the process of manufacturing clinical grade material in sufficient quantities to run a Phase I clinical trial in patients with Acute Myelogenous Leukemia.
  • Our program is focused on producing new therapeutic candidates to prolong remission and potentially cure highly lethal cancers where patients have few alternative treatment options. Our strategy is to develop an antibody that will eliminate the cancer stem cells which are the source of the disease, and responsible for the disease recurrence that can occur months-to-years following the remission achieved with initial clinical treatment. The cancer stem cells are a small proportion of the total cancer cell burden, and they appear to be resistant to the standard treatments of chemotherapy and radiation therapy. Therefore new therapeutic approaches are needed to eliminate them.
  • In year 2 of the CIRM award, we have continued to develop a clinical-grade antibody that will eliminate the cancer stem cells in Acute Myelogenous Leukemia (AML). We have identified several antibodies that cause human leukemia cells to be eaten and destroyed by healthy human white blood cells when tested in cell culture experiments. These antibodies bind to a protein called CD47 that is present on the outer surface of human leukemia cells. The anti-CD47 antibodies can eliminate leukemia growing in mice injected with AML cells obtained from patients. We have now extensively characterized the properties of our panel of anti-CD47 antibodies, and have identified the lead candidate to progress though the process of drug development. There are several steps in this process, which takes 18-24 months to fully execute. In the last 12 months, we have focused on the following steps:
  • (i) ‘Humanization’ of the antibody: The antibody needs to be optimized so that it looks like a normal human protein that the patient’s immune system will not eliminate because it appears ‘foreign’ to them.
  • (ii) Large scale production of the antibody: To make sufficient quantities of the antibody to complete the culture and animal model experiments required to progress to clinical safety trials with patients, we have contracted with a highly experienced manufacturing facility capable of such large-scale production. We have successfully transferred our antibody to them, and they have inserted it into a proprietary expression cell that will produce large amounts of the protein. This process is managed through weekly interactions with this contract lab. They send us small amounts of the material from each step of their manufacturing process and we test it in our models to ensure the antibody they are preparing retains its anti-cancer properties throughout production.
  • (iii) Pre-clinical safety studies: The antibody must be tested extensively in animals to ensure it does not cause serious limiting damage to any of the normal healthy tissues in the recipient. We have spent much of the last 12 months performing these types of safety experiments. The antibody has been administered to both mice and non-human primates and we have evaluated their overall health status, as well as analyzing their blood cells, blood enzyme levels, and urine, for up to 28 days. We have also collected samples of their organs and tissues to evaluate for abnormalities. Thus far, these assessments have appeared normal except for the development of a mild anemia a few days after the initial antibody injection. Subsequent experiments indicate that this anemia can be managed with existing approved clinical strategies
  • (iv) Determination of optimal dose: We have used mice injected with human cancer cells from AML patients, and determined how much antibody must be injected into these mice to produce a blood level that destroys the leukemia cells. This relationship between antibody dose and anti-cancer activity in the mouse cancer model enables us to estimate the dose to administer to patients.
  • Hematologic tumors and many solid tumors are propagated by a subset of cells called cancer stem cells. These cells appear to be resistant to the standard cancer treatments of chemotherapy and radiation therapy, and therefore new therapeutic approaches are needed to eliminate them. We have developed a monoclonal antibody (anti-CD47 antibody) that recognizes and causes elimination of these cancer stem cells and other cells in the cancer, but not normal blood-forming stem cells or blood cells. Cancer stem cells regularly produce a cell surface ‘invisibility cloak’ called CD47, a ‘don’t eat me signal’ for cells of the native immune system. Anti-CD47 antibody counters the ‘cloak, allowing the patient’s natural immune system eating cells, called macrophages, to eliminate the cancer stem cells.
  • As discussed in our two-year report, we optimized our anti-CD47 antibody so that it looks like a normal human protein that the patient’s immune system will not eliminate because it appears ‘foreign’. In this third year of the grant, we initiated the pre-clinical development of this humanized antibody, and assigned the antibody the development name of Hu5F9. Our major accomplishments in the third year of our grant are as follows:
  • (i) In addition to the hematological malignancies we have studied in previous years, we have now demonstrated the Hu5F9 is effective at inhibiting the growth and spread throughout the body [metastasis] of a large panel of human solid tumors, including breast, bladder, colon, ovarian, glioblastoma [a very aggressive brain cancer], leiomyosarcoma, head & neck squamous cell carcinoma, and multiple myeloma.
  • (ii) We have performed extensive studies optimizing the production and purification of Hu5F9 to standards compatible with use in humans, including that it is sterile, free of contaminating viruses, microorganisms, and bacterial products. We will commence manufacturing of Hu5F under highly regulated sterile conditions to produce what is known as GMP material, suitable for use in humans.
  • (iii) Another step to show Hu5F9 is safe to administer to humans is to administer it to experimental animals and observe its effects. We have demonstrated that Hu5F9 is safe and well tolerated when administered to experimental animals. Notably, no major abnormalities are detected when blood levels of the drug are maintained in the potentially therapeutic range for an extended duration of time.
  • (iv) We have initiated discussions with the FDA regarding the readiness of our program for initiating clinical trials, which we anticipate to start in the first quarter of 2014. To prepare for these trials we have established a collaboration between the Stanford Cancer Institute and the University of Oxford in the United Kingdom, currently our partners in this CIRM-funded program.
  • To our knowledge, CD47 is the first common target in all human cancers, one which has a known function that enables cancers to grow and spread, and one which we have successfully targeted for cancer therapy. Our studies show that Hu5F9 is a first-in-class therapeutic candidate that offers cancer treatment a totally new mechanism of enabling the patient’s immune system to remove cancer stem cells and their metastases.

Development of Highly Active Anti-Leukemia Stem Cell Therapy (HALT)

Funding Type: 
Disease Team Research I
Grant Number: 
DR1-01430
ICOC Funds Committed: 
$19 999 826
Disease Focus: 
Blood Cancer
Cancer
Collaborative Funder: 
Canada
Stem Cell Use: 
Cancer Stem Cell
oldStatus: 
Active
Public Abstract: 
Leukemias are cancers of the blood forming cells that afflict both children and adults. Many drugs have been developed to treat leukemias and related diseases. These drugs are often effective when first given, but in many cases of adult leukemia, the disease returns in a form that is not curable, causing disability and eventual death. During the last few years, scientists have discovered that some leukemia cells possess stem cell properties that make them more potent in promoting leukemia growth and resistance to common types of treatment. These are called leukemia stem cells (LSC). More than in other cancers, scientists also understand the exact molecular changes in the blood forming cells that cause leukemias, but it has been very difficult to translate the scientific results into new and effective treatments. The main difficulty has been the failure of existing drugs to eliminate the small numbers of LSC that persist in patients, despite therapy, and that continue to grow, spread, invade and kill normal cells. In fact, the models used for drug development in the pharmaceutical industry have not been designed to detect drugs or drug combinations capable of destroying the LSC. Drugs against LSC may already exist, or could be simple to make, but there has not been an easy way to identify these drugs. Recently, physicians and scientists at universities and research institutes have developed tools to isolate and to analyze LSC donated by patients. By studying the LSC, the physicians and scientists have identified the molecules that these cells need to survive. The experimental results strongly suggest that it will eventually be possible to destroy LSC with drugs or drug combinations, with minimal damage to most normal cells. Now we need to translate the new knowledge into practical treatments. The CIRM Leukemia Team is composed of highly experienced scientists and physicians who first discovered LSC for many types of leukemia and who have developed the LSC systems to test drugs. The investigators in the Team have identified drug candidates from the vigorous California pharmaceutical industry, who have already performed expensive pharmacology and toxicology studies, but who lack the cells and model systems to assess a drug’s ability to eliminate leukemia stem cells. This Team includes experts in drug development, who have previously been successful in quickly bringing a new leukemia drug to clinical trials. The supported interactive group of physicians and scientists in California and the Collaborative Funding Partner country has the resources to introduce into the clinic, within four years, new drugs for leukemias that may also represent more effective therapies for other cancers for the benefit of our citizens.
Statement of Benefit to California: 
Thousands of adults and children in California are afflicted with leukemia and related diseases. Although tremendous gains have been made in the treatment of childhood leukemia, 50% of adults diagnosed with leukemia will die of their disease. Current therapies can cost tens of thousands of dollars per year per patient, and do not cure the disease. For the health of the citizens of California, both physical and financial, we need to find a cure for these devastating illnesses. What has held up progress toward a cure? Compelling evidence indicates that the leukemias are not curable because available drugs do not destroy small numbers of multi-drug resistant leukemia stem cells. A team approach is necessary to find a cure for leukemia, which leverages the expertise in academia and industry. Pharmaceutical and biotech companies have developed drugs that inhibit pathways known to be involved in leukemia stem cell survival and growth, but are using them for unrelated indications. In addition, they do not have the expertise to determine whether the inhibitors will kill leukemia stem cells. The Leukemia Team possesses stem cell expertise and has developed state of the art systems to determine whether drugs will eradicate leukemia stem cells. They have also have access to technologies that may allow them to identify patients who will respond to the treatment. The development plan established by the Leukemia Disease Team will also serve as a model for the clinical development of drugs against solid tumor stem cells, which are not as well understood. In summary, the benefits to the citizens of California from the CIRM disease specific grant in leukemia are: (1) direct benefit to the thousands of leukemia patients (2) financial savings due to definitive treatments that eliminate the need for costly maintenance therapies
Progress Report: 
  • Development of Highly Active Leukemia Therapy (HALT)
  • Leukemias are cancers of the blood forming cells that affect both children and adults. Although major advances have been made in the treatment of leukemias, many patients still succumb to the disease. In these patients, the leukemias may progress despite therapy because they harbor primitive malignant stem-like cells that are resistant to most drugs. This CIRM disease specific grant aims to develop a combination of highly active anti-leukemic therapy (HALT) that can destroy the drug-resistant cancer stem-like cells, without severely harming normal cells.
  • During the current year of support, substantial progress has been made in achieving this goal. The CIRM investigators have shown that two different drugs that inhibit different proteins in leukemia stem cells can sensitize them to chemotherapeutic agents, and block their ability to self-renew. The CIRM investigators have also demonstrated that two different antibodies against molecules on the surface of the leukemia cells can inhibit their survival in both test tube experiments and in mouse models.
  • Extensive experiments are underway to confirm these promising results. The results will enable the planning and implementation of potentially transforming clinical trials in leukemia patients, during the period of CIRM grant support.
  • During the past 12 months, our disease team has made further progress in
  • the development of stem cell targeted treatment for chronic lymphocytic
  • leukemias and other leukemias. Stem cells express some molecules on the
  • surface that are different from the corresponding molecules on adult
  • cells. The ROR1 molecule is highly expressed by malignant cells from
  • patients with chronic lymphocytic leukemia, as well as by progenitor cells
  • from other forms of leukemia and lymphoma. It is not expressed by normal
  • adult cells. With the support of the CIRM Disease Team grant, the
  • cooperating investigators have prepared monoclonal antibodies against the
  • ROR1 molecule, that are potent and specific. In animal models, the
  • antibodies can retard leukemia growth and spread. Unlike other anti-cancer
  • drugs, the new antibodies are not toxic for normal bone marrow cells.
  • Thus, they can potentiate the action of other agents used for the
  • treatment of leukemia.
  • The disease team is now focused on the pre-clinical development, safety
  • testing, and scale-up manufacturing of our new, promising agents, in
  • preparation for their introduction into the clinic.
  • During the past 12 months, our disease team has made further progress in
  • the development of stem cell targeted treatment for chronic lymphocytic
  • leukemias and other leukemias. Stem cells express some molecules on the
  • surface that are different from the corresponding molecules on adult
  • cells. The ROR1 molecule is highly expressed by malignant cells from
  • patients with chronic lymphocytic leukemia, as well as by progenitor cells
  • from other forms of leukemia and lymphoma. It is not expressed by normal
  • adult cells. With the support of the CIRM Disease Team grant, the
  • cooperating investigators have prepared a humanized monoclonal antibody against the
  • ROR1 molecule, that is potent and specific. In animal models, the
  • antibodies can retard leukemia growth and spread. Unlike other anti-cancer
  • drugs, the new antibodies are not toxic for normal bone marrow cells.
  • Thus, they can potentiate the action of other agents used for the
  • treatment of leukemia.
  • The disease team is now focused on the pre-clinical development, safety
  • testing, and scale-up manufacturing of our new, promising agents, in
  • preparation for their introduction into the clinic.
  • During the past 12 months, our disease team has made further progress in
  • the development of stem cell targeted treatment for chronic lymphocytic
  • leukemias and other leukemias. Stem cells express some molecules on the
  • surface that are different from the corresponding molecules on adult
  • cells. The ROR1 molecule is highly expressed by malignant cells from
  • patients with chronic lymphocytic leukemia, as well as by progenitor cells
  • from other forms of leukemia and lymphoma. It is not expressed by normal
  • adult cells. With the support of the CIRM Disease Team grant, the
  • cooperating investigators have prepared a humanized monoclonal antibody against the
  • ROR1 molecule, that is potent and specific. In animal models, the
  • antibodies can retard leukemia growth and spread.
  • The disease team has now finalized the pre-clinical development, safety
  • testing, and scale-up manufacturing of our new, promising agent, in
  • preparation for their introduction into the clinic.

Human endothelial reprogramming for hematopoietic stem cell therapy.

Funding Type: 
New Faculty Physician Scientist
Grant Number: 
RN3-06479
ICOC Funds Committed: 
$3 084 000
Disease Focus: 
Blood Disorders
Blood Cancer
Cancer
Stem Cell Use: 
Directly Reprogrammed Cell
Cell Line Generation: 
Directly Reprogrammed Cell
oldStatus: 
Active
Public Abstract: 
The current roadblocks to hematopoietic stem cell (HSC) therapies include the rarity of matched donors for bone marrow transplant, engraftment failures, common shortages of donated blood, and the inability to expand HSCs ex vivo in large numbers. These major obstacles would cease to exist if an extensive, bankable, inexhaustible, and patient-matched supply of blood were available. The recent validation of hemogenic endothelium (blood vessel cells lining the vessel wall give rise to blood stem cells) has introduced new possibilities in hematopoietic stem cell therapy. As the phenomenon of hemogenic endothelium only occurs during embryonic development, we aim to understand the requirements for the process and to re-engineer mature human endothelium (blood vessels) into once again producing blood stem cells (HSCs). The approach of re-engineering tissue specific de-differentiation will accelerate the pace of discovery and translation to human disease. Engineering endothelium into large-scale hematopoietic factories can provide substantial numbers of pure hematopoietic stem cells for clinical use. Higher numbers of cells, and the ability to grow cells from matched donors (or the patients themselves) will increase engraftment and decrease rejection of bone marrow transplantation. In addition, the ability to program mature lineage restricted cells into more primitive versions of the same cell lineage will capitalize on cell renewal properties while minimizing malignancy risk.
Statement of Benefit to California: 
Bone marrow transplantation saves the lives of millions with leukemia and other diseases including genetic or immunologic blood disorders. California has over 15 centers serving the population for bone marrow transplantation. While bone marrow transplantation can be seen as a standard to which all stem cell therapies should aspire, there still remains the difficulty of finding matched donors, complications such as graft versus host disease, and the recurrence of malignancy. While cord blood has provided another donor source of stem cells and improved engraftment, it still requires pooling from multiple donors for sufficient cell numbers to be transplanted, which may increase transplant risk. By understanding how to reprogram blood vessels (such as those in the umbilical cord) for production of blood stem cells (as it once did during human development), it could eventually be possible to bank umbilical cord vessels to provide a patient matched reproducible supply of pure blood stem cells for the entire life of the patient. Higher numbers of cells, and the ability to grow cells from matched donors (or the patients themselves) will increase engraftment and decrease rejection of bone marrow transplantation. In addition, the proposed work will introduce a new approach to engineering human cells. The ability to turn back the clock to near mature cell specific stages without going all the way back to early embryonic stem cell stages will reduce the risk of malignancy.
Progress Report: 
  • We aim to understand how blood stem cells develop from blood vessels during development. We are also interested in learning whether the blood-making program can be turned back on in blood vessel cells for blood production outside the human body. During the past year we have been able to extract and culture blood vessel cells that once had blood making capacity. We have also started experiments that will help uncover the regulation of the blood making program. In addition, we have developed tools to help the process of understanding whether iPS technology can "turn back time" in mature blood vessels and turn on the blood making program.

Combinatorial Chemistry Approaches to Develop LIgands against Leukemia Stem Cells

Funding Type: 
New Faculty I
Grant Number: 
RN1-00561
ICOC Funds Committed: 
$2 392 397
Disease Focus: 
Blood Cancer
Cancer
Stem Cell Use: 
Adult Stem Cell
Cancer Stem Cell
Cell Line Generation: 
Cancer Stem Cell
oldStatus: 
Active
Public Abstract: 
Various cells and organs in the human body originate from a small group of primitive cells called stem cells. Human cancer cells were also recently found to arise from a group of special stem cells, called cancer stem cells (CSCs). At present, cancer that has spread throughout the body (metastasized) is difficult to treat, and survival rates are low. One major reason for therapeutic failure is that CSCs are relatively resistant to current cancer treatments. Although most mature cancer cells are killed by treatment, resistant CSCs will survive to regenerate additional cancer cells and cause a recurrence of cancer. As opposed to other human stem cells, CSCs have their own unique molecules on their cell surface. This project aims to develop agents that specifically target the unique cell surface molecules of CSCs. These agents will have the potential to eradicate cancer from the very root, i.e., from the stem cells (CSCs) that produce mature cancer cells. In this project, we will develop agents that specifically target leukemia stem cells to determine the feasibility of our approach. Leukemia is the fourth most common cause of cancer death in males and the fifth in females. If our approach is successful, we can use the same approach for other cancer types. To develop these specific agents, we will screen a library of billions of molecules to identify those that specifically target the unique cell surface molecules of leukemia stem cells (LSCs). After we identify these specific molecules, we will optimize their structure to increase their specific binding to LSCs. Specific binding to LSCs is crucial, as the optimized molecules will be able to uniquely kill LSCs and spare normal blood cells. Many leukemia patients need stem cell transplantation during treatment. There are two approaches to harvesting stem cells for transplantation: those harvested from patients themselves and those harvested from healthy donors. Stem cells harvested from healthy donors need to genetically match patients’ cells. Otherwise, these transplanted cells from the donor recognize the recipient’s (host or patient) cells as non-self cells and attack these cells. This response leads to a serious disease called graft-versus-host disease (GVHD). It is often difficult to find matched donors. Stem cells harvested from patients are usually not used for the treatment of acute leukemia because they are contaminated with LSCs that will lead to recurrence of leukemia after transplantation. If this project is successful, the targeting agents developed in this project can be used to eliminate the contaminating LSCs and decrease the leukemia recurrence after transplantation.
Statement of Benefit to California: 
Acute leukemia is the sixth most common cause of cancer death in males and females in California. The outcome for acute leukemia is poor and over 70% of patients will die from this disease. This project aims to develop therapeutic agents that specifically target leukemia stem cells and therefore eradicate leukemia from its root. These agents can also be used for stem cell transplantation. Many leukemia patients need stem cell transplantation during treatment. There are two approaches to harvesting stem cells for transplantation: those harvested from patients themselves and those harvested from healthy donors. Stem cells harvested from healthy donors need to genetically match patients’ cells. Otherwise, these transplanted cells from the donor recognize the recipient’s (host or patient) cells as non-self cells and attack these cells. This response leads to a serious disease called graft-versus-host disease (GVHD). It is often difficult to find matched donors. This is especially true in California because of the genetically diversified population. Stem cells harvested from patients are usually not used because they are contaminated with leukemia stem cells that will lead to recurrence of leukemia after transplantation. If this project is successful, the targeting agents developed in this project can be used to eliminate the contaminated leukemia cells and decrease the likelihood of leukemia recurrence after transplantation. The ligands developed in this project can be used for targeted therapy for leukemia. Since no such ligands have been identified so far that specifically target leukemia stem cells, these ligands can be patented and eventually commercialized. This may have huge financial benefits to California. If this project is successful, the same approach can be used to treat other cancers and for the development of more commercialized drugs. If this grant is funded, it will secure my career as a physician-scientist in stem cell and cancer research. The physician-scientist is a diminishing breed in that it is difficult for physicians to do research while meeting the huge demands of the clinic. However, there is a huge gap between basic research and clinical applications. This gap is in part traced to the fact that it is difficult to find researchers who know and can integrate clinical needs with basic research. I consider myself a promising physician-scientist who has received extensive, rigorous and systematic training in medical science and basic research ([REDACTED]). If this grant is funded, I will not only carry out this important research, but this will also give me protected time for this research.
Progress Report: 
  • Human cancer cells were recently found to arise from a group of special stem cells, called cancer stem cells (CSCs). At present, cancer that has spread throughout the body (metastasized) is difficult to treat, and survival rates are low. One major reason for therapeutic failure is that CSCs are relatively resistant to current cancer treatments. Although most cancer cells are killed by treatment, resistant CSCs will survive to regenerate additional cancer cells and cause a recurrence of cancer. As opposed to other human stem cells, CSCs may have some unique molecules that can be targeted for cancer treatment. This project is to use such technologies as our patented one-bead one-compound technology (OBOC) to develop small molecules that can specifically target cancer stem cells. With OBOC, trillions copies of small molecules are synthesized in tiny beads around 90 microns. During development, millions of molecules can be screened against cancer stem cells with hours to days. So far, we have identified six molecules that target CSC. Currently, we are optimizing these molecules to increase their efficiency of these molecules on CSC. Once fully developed, these molecules will have the potential to eradicate cancer from the very root, i.e., from the stem cells (CSCs) that produce mature cancer cells.
  • Acute myeloid leukemia is a group of serious blood malignant diseases. The treatment outcome is poor, in large part, to the fact that a small group of cells named leukemia stem cells can survive treatment, regenerate more leukemic cells and cause recurrence. This project aims to improve the treatment outcomes of acute leukemia by eradicating leukemia stem cells. During the previous two years, we identified several small molecules that can specifically bind to leukemia stem cells. Over the last one year, we determined that one of these small molecules has the potential to work like a “smart missile” to guide the delivery of chemotherapeutic drugs to leukemia stem cells. More specifically, we linked this small molecule on the surface of nanoparticles that are small particles with the size of about 1/100th of one micron (much smaller than the width of a human hair). Inside of these nanoparticles, we can load chemotherapeutic drugs. We found that our small molecules can specifically attach the nanoparticles to leukemia stem cells, and deliver the drug load to the inside of the cells. Therefore, these “smart” nanoparticles can potentially target leukemia stem cells, and eradicate leukemia from the very root. Furthermore, chemotherapeutic drugs formulated in these nanoparticles are less toxic, suggesting that high-dose chemotherapeutic drugs can be given to patients to treat leukemia without increasing the horrendous toxicity associated with regular chemotherapy.
  • Acute myeloid leukemia is a group of serious blood malignant diseases. The treatment outcome is poor, in large part, due to the fact that a small group of cells named leukemia stem cells can survive treatment, regenerate more leukemic cells and cause recurrence. This project aims to improve the treatment outcomes of acute leukemia by eradicating leukemia stem cells. We identified one molecule that can specifically bind to leukemia stem cells. We also developed nanoparticles that are small particles with the size of about 1/100th of one micron (much smaller than the width of a human hair). Inside of these nanoparticles, we can load chemotherapeutic drugs, such as daunorubicin that is one of the two drugs used for the upfront treatment of acute leukemia. When we attached the stem cell-targeting molecules on the surface of nanoparticles, these nanoparticles work like “small missiles” that can seek and delivery daunorubicin into leukemia stem cells. We have shown that these “smart” nanoparticle can delivery chemotherapeutic drug daunorubicin to leukemia cells directly isolated from clinical patient specimens, and kills these cells more efficient that the regular nanoparticles. Therefore, these “smart” nanoparticles can potentially target leukemia stem cells, and eradicate leukemia from the very root. Furthermore, chemotherapeutic drugs formulated in these nanoparticles are less toxic, suggesting that high-dose chemotherapeutic drugs can be given to patients to treat leukemia without increasing the horrendous toxicity associated with regular chemotherapy.
  • Acute myeloid leukemia (AML) is the most common acute leukemia in adults and a very serious disease. Most AML cells arise from a group of special stem cells, named leukemia stem cells (LSCs). One major reason for treatment failure is that LSCs are relatively resistant to current treatments. Although most leukemia cells are killed by treatment, resistant LSCs will survive to regenerate additional leukemia cells and cause a recurrence of leukemia. Recently, we have developed a small molecule that can recognize and bind to AML LSCs. We have also developed tiny particles named nanomicelles. These nanomicelles have a size of about 1-2/100th of one micron (one millionth of a meter), and can be loaded with chemotherapy drug called daunorubicin that can kill LSCs. In this project, we will coat the drug-loaded nanomicelles with small molecules that specifically bind and kill LSCs. In patient’s body, these drug-loaded nanomicelles will work like “smart bombs”, and deliver a high concentration of daunorubicin to kill LSCs. Over the last one year, we found that these LSC-targeting nanomicelles could target and kill LSC more efficiently that free daunorubicin or nanomicelles that do not target LSC. We also found that, compared to free daunorubicin commonly used in the treatment of AML now, daunorubicin in nanomicelles could raise the blood daunorubicin concentration by more than 20 times. This is clinically significant as leukemia cells and LSC are located inside blood vessels and bone, and have direct contact with blood. Therefore, increase in blood daunorubicin concentration may represent more efficiency in killing leukemia and LSC.
  • Acute myeloid leukemia (AML) is the most common acute leukemia in adults and a very serious disease. Most AML cells arise from a group of special stem cells, named leukemia stem cells (LSCs). One major reason for treatment failure is that LSCs are relatively resistant to current treatments. Although most leukemia cells are killed by treatment, resistant LSCs will survive to regenerate additional leukemia cells and cause a recurrence of leukemia. Recently, we have developed a small molecule that can recognize and bind to AML LSCs. We have also developed tiny particles named nanomicelles. These nanomicelles have a size of about 1-2/100th of one micron (one millionth of a meter), and can be loaded with chemotherapy drug called daunorubicin that can kill LSCs. In this project, we will coat the drug-loaded nanomicelles with small molecules that specifically bind and kill LSCs. In patient’s body, these drug-loaded nanomicelles will work like “smart bombs”, and deliver a high concentration of daunorubicin to kill LSCs. Over the last one year, we found that daunorubicin-loaded nanomicelles could significantly increase the blood daunorubicin concentration by 20-35 times after intravenous administration. This is clinically significant as leukemia cells and leukemia stem cells are mainly located inside blood vessels. Therefore, increase in blood daunorubicin concentration by nanomicelles means leukemia and leukemia stem cells are exposed to 20-35 times more daunorubicin than regular chemotherapy. one of the major toxicity of daunorubicin is toxicity to the heart. As acute myeloid leukemia usually occurs in elderly patients, many of them already have heart diseases that prevent them from receiving the most effective chemotherapeutic drug daunorubicin. We found that, when compared to the standard daunorubicin, daunorubicin in nanomicelle has 3-5 folds less toxicity to the heart. In addition, the toxicity to other vital organs, such as liver and spleen, is significantly decreased. Compared to the standard daunorubicin, daunorubicin in nanomicelles dramatically increases the drug efficacy in killing cancer cells and prolonging the survival in animal models.

Pages

Subscribe to RSS - Blood Cancer

© 2013 California Institute for Regenerative Medicine